任子暉, 李昂, 吳新忠, 許嘉琳, 陳澤彭
(中國礦業(yè)大學(xué) 信息與控制工程學(xué)院,江蘇 徐州 221116)
礦井通風(fēng)系統(tǒng)作為煤礦的“血液循環(huán)系統(tǒng)”,不斷向煤礦井下工作地點(diǎn)輸送充足的新鮮空氣,從而確保礦井安全回采及工作人員健康[1]。在煤礦開采過程中,礦井通風(fēng)系統(tǒng)的巷道屬性和通風(fēng)網(wǎng)絡(luò)結(jié)構(gòu)等會(huì)隨著回采、掘進(jìn)而發(fā)生改變,任一巷道分支通風(fēng)參數(shù)的改變都會(huì)使整個(gè)通風(fēng)網(wǎng)絡(luò)狀態(tài)發(fā)生變化[2],若通風(fēng)系統(tǒng)失效、風(fēng)量調(diào)控不及時(shí),都將引發(fā)有毒有害氣體污染范圍擴(kuò)大,嚴(yán)重時(shí)會(huì)導(dǎo)致人員中毒傷亡,威脅礦井安全生產(chǎn)。因此,為滿足用風(fēng)地點(diǎn)的風(fēng)量需求,需要進(jìn)行風(fēng)量的按需智能調(diào)控。
近年來,國內(nèi)外學(xué)者對通風(fēng)網(wǎng)絡(luò)優(yōu)化理論與風(fēng)量智能調(diào)控技術(shù)開展了深入研究。文獻(xiàn)[3]深入研究了回路風(fēng)量法,提出了無初值化的Scott-Hinsley 算法,優(yōu)化了Scott-Hinsley 算法的收斂性,使其適用于復(fù)雜礦井通風(fēng)網(wǎng)絡(luò)的解算。文獻(xiàn)[4]構(gòu)建了一種智能通風(fēng)控制系統(tǒng),提高了復(fù)雜礦井通風(fēng)網(wǎng)絡(luò)的解算效率;提出了礦井通風(fēng)智能控制思想,奠定了礦井通風(fēng)系統(tǒng)智能調(diào)控的基礎(chǔ)。文獻(xiàn)[5]研究了通風(fēng)系統(tǒng)優(yōu)化問題,應(yīng)用遺傳算法(Genetic Algorithm,GA)進(jìn)行風(fēng)量求解,在優(yōu)化過程中評估和選擇最具經(jīng)濟(jì)效益的解決方案,使得通風(fēng)機(jī)的運(yùn)行能耗最小。文獻(xiàn)[6]以礦井通風(fēng)網(wǎng)絡(luò)的總功率最小為目標(biāo),結(jié)合改進(jìn)的粒子群優(yōu)化(Particle Swarm Optimization,PSO)算法實(shí)現(xiàn)通風(fēng)網(wǎng)絡(luò)尋優(yōu),使得通風(fēng)系統(tǒng)總功率消耗明顯降低,達(dá)到了節(jié)能目的。文獻(xiàn)[7]引入靈敏度理論來量化可調(diào)分支風(fēng)阻臨界值,有針對性地通過改變分支風(fēng)阻進(jìn)行風(fēng)量調(diào)節(jié)。文獻(xiàn)[8]通過研究礦井風(fēng)量智能調(diào)控的關(guān)鍵技術(shù),指明了實(shí)現(xiàn)智能化礦井通風(fēng)的重點(diǎn)研發(fā)方向。
雖然礦井通風(fēng)相關(guān)研究取得了眾多成果,越來越多的智能優(yōu)化算法被應(yīng)用到通風(fēng)網(wǎng)絡(luò)優(yōu)化研究中,但這些智能優(yōu)化算法在求解調(diào)風(fēng)參數(shù)時(shí)普遍存在模型復(fù)雜、收斂速度慢、易陷入局部最優(yōu)等缺陷,也缺乏與調(diào)風(fēng)分支優(yōu)化選擇相結(jié)合的研究。為此,本文將通風(fēng)基礎(chǔ)理論與煤礦具體通風(fēng)需求相結(jié)合,提出了一種基于改進(jìn)天牛須搜索(Beetle Antennae Search,BAS)算法的礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量智能調(diào)控方法。構(gòu)建了通風(fēng)網(wǎng)絡(luò)風(fēng)量優(yōu)化模型,引入靈敏度和分支支配度理論確定風(fēng)量調(diào)節(jié)分支集和風(fēng)阻可調(diào)范圍,采用改進(jìn)BAS 算法求解出最優(yōu)的調(diào)風(fēng)參數(shù),進(jìn)而控制對應(yīng)的調(diào)風(fēng)設(shè)施,實(shí)現(xiàn)風(fēng)量調(diào)控。
在礦井生產(chǎn)推進(jìn)過程中,當(dāng)某一用風(fēng)分支i的風(fēng)量供給不足時(shí),容易導(dǎo)致瓦斯聚集而引起瓦斯?jié)舛瘸轠9]。以該用風(fēng)分支的風(fēng)量需求最大值為優(yōu)化目標(biāo),定義最大風(fēng)量目標(biāo)函數(shù):Fmax=Qi(Qi為目標(biāo)用風(fēng)分支i的風(fēng)量,m3/s)。
在礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量智能調(diào)控過程中需遵循回路風(fēng)壓平衡、節(jié)點(diǎn)風(fēng)量平衡兩大風(fēng)量流動(dòng)定律及滿足通風(fēng)網(wǎng)絡(luò)分支最小需風(fēng)量[10]。
(1) 節(jié)點(diǎn)風(fēng)量平衡定律:
式中:akj為構(gòu)成關(guān)聯(lián)矩陣的元素,akj=1 時(shí)表示節(jié)點(diǎn)k(k=1,2,…,M,M為通風(fēng)網(wǎng)絡(luò)節(jié)點(diǎn)數(shù))與分支j(j=1,2,…,N,N為通風(fēng)網(wǎng)絡(luò)分支數(shù))正向關(guān)聯(lián),akj=-1時(shí)表示節(jié)點(diǎn)k與分支j負(fù)向關(guān)聯(lián),akj=0 時(shí)表示節(jié)點(diǎn)k與分支j沒有關(guān)聯(lián);Qj為 分支j的風(fēng)量,m3/s。
(2) 回路風(fēng)壓平衡定律:
式中:bvj為構(gòu)成回路矩陣的元素,bvj=1 時(shí)表示分支j在回路v(v=1,2,···,N-M+1)中且同向,bvj=-1時(shí)表示分支j在回路 v 中且反向,bvj=0 時(shí)表示 分支j不屬于回路v;Rj為分支j的風(fēng)阻,N·s2/m8;Pj為分支j各風(fēng)壓代數(shù)和,Pa。
為了保證風(fēng)量優(yōu)化調(diào)節(jié)的安全與穩(wěn)定,應(yīng)使礦用通風(fēng)機(jī)工作在工況點(diǎn)處,避免引發(fā)通風(fēng)機(jī)喘振[11]。因此,礦用通風(fēng)機(jī)的實(shí)際工作風(fēng)壓Hf應(yīng)不高于最高風(fēng)壓Hfmax的90%,運(yùn)行效率η應(yīng)高于0.6。
結(jié)合風(fēng)量流動(dòng)的基本定律及風(fēng)量調(diào)節(jié)的約束條件分析可知,礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量優(yōu)化調(diào)節(jié)數(shù)學(xué)模型是非線性、帶有約束條件的,不利于計(jì)算求解。為此,應(yīng)用精確罰函數(shù)將該風(fēng)量優(yōu)化調(diào)節(jié)數(shù)學(xué)模型求解轉(zhuǎn)換為非線性無約束化類型問題的求解[12]。優(yōu)化后的非線性無約束化的礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量優(yōu)化調(diào)節(jié)數(shù)學(xué)模型為
式中:F為風(fēng)量目標(biāo)函數(shù);γ,φ,τ,ρ均為懲罰因子;Rjmax,Rjmin分別為阻值可調(diào)節(jié)大小的上下限;Qjmin為各分支的最小需風(fēng)量。
懲罰因子的選取對算法成功實(shí)現(xiàn)有著重要意義,懲罰因子選取不當(dāng)會(huì)導(dǎo)致算法無法收斂于最優(yōu)解,失去懲罰的意義[12]。為克服上述缺陷,對懲罰因子進(jìn)行改進(jìn),引入模擬退火算法,定義懲罰因子 σ:
式中:Tt為第t(t=1,2,…,G,G為總迭代次數(shù))代的數(shù)學(xué)參數(shù);∈[0,1]。
隨著Tt逐漸減小,懲罰因子 σ在迭代過程中逐漸增大,趨于一個(gè)常量,使得解集收斂于所求極值。
礦井通風(fēng)網(wǎng)絡(luò)中,假設(shè)分支j的風(fēng)阻Rj發(fā)生變化,改變量為ΔRj,受此影響,通風(fēng)網(wǎng)絡(luò)分支i的風(fēng)量Qi發(fā)生變化,變化量為 ΔQi,當(dāng)0 時(shí),有
式中dij為分支i風(fēng)量被分支j風(fēng)阻影響后的變化程度,稱為風(fēng)量靈敏度[11]。
對已知具有n條分支的礦井通風(fēng)網(wǎng)絡(luò),分別利用節(jié)點(diǎn)風(fēng)量平衡方程(式(1))和回路風(fēng)壓平衡方程(式(2))對風(fēng)阻Rj求偏導(dǎo),聯(lián)立求得各分支風(fēng)量相對于風(fēng)阻變化的靈敏度,由此構(gòu)成通風(fēng)網(wǎng)絡(luò)風(fēng)量靈敏度矩陣D:
風(fēng)量靈敏度矩陣中,j列元素的改變對所有風(fēng)支風(fēng)量影響程度的總和稱為分支j的支配度:
分支支配度Uj的值越大,表示分支j在通風(fēng)網(wǎng)絡(luò)中的影響程度越大,反之則越小。因此,為了保持礦井整體風(fēng)量穩(wěn)定,要保證高支配度分支阻值的穩(wěn)定,不能輕易改變。
假設(shè)通風(fēng)網(wǎng)絡(luò)中想采用增阻調(diào)節(jié)方式來增大分支i的風(fēng)量,則需要以dij>0 為原則選擇調(diào)阻分支j并選取風(fēng)量靈敏度矩陣D中第i行中的較大值[11]。在實(shí)際確定增阻調(diào)節(jié)分支時(shí),要綜合考慮風(fēng)量靈敏度和分支支配度的影響。
確定風(fēng)量調(diào)節(jié)分支的選擇原則:① 風(fēng)量靈敏度dij的值越大越好。② 分支支配度Uj的值越小越好。
風(fēng)量調(diào)節(jié)分支選擇的具體步驟如下:
(1) 將風(fēng)量靈敏度矩陣D中第i行元素降序排列,得到風(fēng)支集合E1。
(2) 將分支支配度Uj中元素也降序排列,得到風(fēng)支集合E2。
(3) 結(jié)合礦井實(shí)際情況,在E1中去掉E1和E2的交集,最終確定調(diào)節(jié)分支集。
確定風(fēng)量調(diào)節(jié)分支集后,需要進(jìn)一步求解分支風(fēng)阻的調(diào)節(jié)范圍,并以此為依據(jù)進(jìn)行智能調(diào)風(fēng)。
根據(jù)大量通風(fēng)網(wǎng)絡(luò)模擬調(diào)節(jié)的數(shù)據(jù)發(fā)現(xiàn),風(fēng)量靈敏度dij與調(diào)節(jié)風(fēng)阻Rj之間滿足以下關(guān)系:
式中x,y,z均為常量,由擬合數(shù)據(jù)得到。
當(dāng)分支風(fēng)阻Rj增大時(shí),風(fēng)量Qi也不斷增加,同時(shí)靈敏度dij不斷衰減;當(dāng)風(fēng)阻Rj增大并超過某一臨界值Rjmax后,靈敏度dij將變得極小,此時(shí)調(diào)風(fēng)進(jìn)入不靈敏狀態(tài)。所以,為使增阻調(diào)風(fēng)更靈敏、高效,分支j風(fēng)阻Rj必須維持在合理的調(diào)節(jié)范圍內(nèi),Rj0為分支j的初始風(fēng)阻。通過大量的通風(fēng)網(wǎng)絡(luò)調(diào)風(fēng)數(shù)據(jù)分析,調(diào)節(jié)分支的風(fēng)阻臨界值Rjmax應(yīng)為靈敏度dij衰減至初始風(fēng)阻10%時(shí)所對應(yīng)的風(fēng)阻:
由此,便可求得風(fēng)阻調(diào)控的最大臨界值Rjmax。
初步確定調(diào)節(jié)分支集與風(fēng)阻調(diào)節(jié)范圍后,需調(diào)用優(yōu)化算法對風(fēng)量優(yōu)化目標(biāo)函數(shù)進(jìn)行求解,并根據(jù)所求風(fēng)量是否滿足實(shí)際需求,進(jìn)而確定最優(yōu)調(diào)風(fēng)參數(shù)。傳統(tǒng)的優(yōu)化算法要求目標(biāo)函數(shù)必須是可微且連續(xù)的,無法求解礦井風(fēng)量目標(biāo)函數(shù)。為克服傳統(tǒng)優(yōu)化算法的缺陷與不足,許多智能優(yōu)化算法被應(yīng)用到礦井通風(fēng)網(wǎng)絡(luò)優(yōu)化研究中[8],如GA、PSO 算法、灰狼優(yōu)化(Grey Wolf Optimizer,GWO)算法、標(biāo)準(zhǔn)BAS算法等。目前,標(biāo)準(zhǔn)BAS 算法作為一種新興的生物啟發(fā)式算法,因其模型簡單、魯棒性強(qiáng)、收斂速度快且不易陷入局部最優(yōu)而廣受歡迎[13],其尋優(yōu)性能明顯優(yōu)于PSO,GA,GWO 等算法,故本文應(yīng)用標(biāo)準(zhǔn)BAS 算法對目標(biāo)函數(shù)進(jìn)行尋優(yōu),確定最優(yōu)風(fēng)量調(diào)控方法。
標(biāo)準(zhǔn)BAS 算法是一種新型的智能優(yōu)化算法,主要模仿天牛搜索食物、尋偶的機(jī)制建立的數(shù)學(xué)模型[14]。天牛在活動(dòng)時(shí),通過頭頂左右2 個(gè)觸須準(zhǔn)確探測周圍環(huán)境中目標(biāo)氣味濃度的不同,確立目標(biāo)的方位。
(1) 天牛在W維中頭的朝向隨機(jī),產(chǎn)生隨機(jī)向量e=rand(W,1),歸一化得e=e/norm(e)。
(2) 左右觸須Xleft、Xright的位置由天牛位置Xt兩須間距l(xiāng)t和隨機(jī)向量e共同決定。
(3) 計(jì)算適應(yīng)度函數(shù)f(X)并判斷天牛兩側(cè)觸須的氣味濃度f(Xleft)和大小,更新位置。
式中δtt為第次迭代時(shí)天牛的搜索步長。
標(biāo)準(zhǔn)BAS 算法在尋優(yōu)過程中僅有單只天牛,缺乏種群多樣性。在處理如礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量優(yōu)化等高維復(fù)雜問題時(shí),精度低且不易跳出局部極值。因此,為了提高標(biāo)準(zhǔn)BAS 算法的綜合優(yōu)化性能,需要對標(biāo)準(zhǔn)BAS 算法進(jìn)行改進(jìn)。
2.2.1 種群初始化
標(biāo)準(zhǔn)BAS 算法是單個(gè)個(gè)體搜索算法,處理高維復(fù)雜問題時(shí)很難遍歷整個(gè)搜索空間,一定程度上影響了搜索效率。拉丁超立方抽樣(Latin Hypercube Sampling,LHS)法基于逆函數(shù)轉(zhuǎn)換法,可從決策空間中選取數(shù)目均勻、對稱、具有全區(qū)域信息的樣本點(diǎn),目前已經(jīng)成功應(yīng)用到多種進(jìn)化算法中[15]。為此,本文采用LHS 法初始化生成天牛群,得到含有K個(gè)隨機(jī)分布在解空間中的天牛個(gè)體的初始種群,改善算法的全局搜索能力。
假設(shè)W維變量C的各個(gè)元素相互獨(dú)立,其概率分布為Lθ。對每個(gè)元素進(jìn)行K次抽樣,用抽樣值生成K個(gè)初始種群。定義K×W維矩陣V,數(shù)列{1,2,···,K}中元素隨機(jī)構(gòu)成V的列元素。令隨機(jī)變量ξ服從區(qū)間[0,1]的隨機(jī)分布,得到
式中:Cms為第s(s=1,2,···,W)個(gè)元素的第m(m=1,2,···,K)次抽樣值;Vms為矩陣V的m行s列元素。
2.2.2 搜索步長更新
天牛群的每次迭代都伴隨著位置、搜索步長和兩須間距的更新。但是,如果目標(biāo)函數(shù)的適應(yīng)度值較好,則應(yīng)該只更新天牛群的位置,控制搜索步長和兩須間距不變;反之,應(yīng)改變搜索步長和兩須間距。因此,設(shè)計(jì)一個(gè)基于反饋的兩須間距和搜索步長的更新策略:假設(shè)存在一個(gè)極小的反饋概率p,使得X只天牛在概率p下會(huì)以當(dāng)前步長錯(cuò)過目標(biāo)函數(shù)的更優(yōu)位置,同時(shí)生成一個(gè)[0,1]的隨機(jī)數(shù) rand(1)并與p進(jìn)行比較。若 rand(1)>p,表示在多數(shù)情況下,X只天牛在當(dāng)前步長下無法找到目標(biāo)函數(shù)極值,則更新步長和兩須之間的間距;若 rand(1)≤p,則表示在少數(shù)情況下保持步長和兩須間距不變。步長更新規(guī)則如下:
式中:ω為自適應(yīng)權(quán)重;α 和 β分別為lt和 δt的遞減因子;l0,δ0分別為天牛兩須間距和搜索步長的初始值。
自適應(yīng)權(quán)重可以動(dòng)態(tài)控制算法的搜索特性,該參數(shù)設(shè)計(jì)的好壞會(huì)直接影響算法的收斂速度與尋優(yōu)精度,降低搜索的盲目性。因此,設(shè)計(jì)動(dòng)態(tài)自適應(yīng)權(quán)重 ω為
式中:ωmax,ωmin分別為最大、最小自適應(yīng)權(quán)重;tmax為最大迭代次數(shù)。
基于改進(jìn)BAS 算法分析并結(jié)合智能礦井風(fēng)量優(yōu)化調(diào)節(jié)數(shù)學(xué)模型,基于改進(jìn)BAS 算法的風(fēng)量調(diào)節(jié)尋優(yōu)具體步驟如下:
(1) 初始化天牛須種群信息和相關(guān)參數(shù),包括種群規(guī)模、最大迭代次數(shù)、天牛搜索步長 δt、兩須間距l(xiāng)t、遞減因子 α 和 β及自適應(yīng)權(quán)重參數(shù)ωmax和ωmin。確定調(diào)節(jié)分支集和調(diào)阻范圍、對應(yīng)變量維數(shù)W及上下限,利用LHS 法生成初始種群X。
(2) 計(jì)算每只天牛的風(fēng)量適應(yīng)度f并排序,獲得當(dāng)前最大的適應(yīng)度fmax及其對應(yīng)的位置。
(3) 天牛群按照式(10)、式(11)進(jìn)行位置更新Xt,并按照式(13)-式(15)判斷是否反饋更新天牛步長 δt和兩須間距l(xiāng)t。
(4) 基于貪婪規(guī)則,計(jì)算所有更新后天牛群的風(fēng)量適應(yīng)度f并與fmax比較,若f>fmax,則用f替換fmax,用Xt替換。
(5) 迭代計(jì)算。判斷當(dāng)前迭代是否達(dá)到最大迭代次數(shù),若是則執(zhí)行步驟(6),否則返回步驟(2)。
(6) 返回最優(yōu)天牛個(gè)體(Xbest,Fbest),Xbest為 最優(yōu)調(diào)節(jié)分支集的風(fēng)阻,F(xiàn)best為需風(fēng)分支可調(diào)風(fēng)量最大值。
為驗(yàn)證本文提出的礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量智能調(diào)控方法的可行性,利用礦井通風(fēng)實(shí)驗(yàn)平臺進(jìn)行實(shí)驗(yàn)測試。礦井通風(fēng)實(shí)驗(yàn)平臺參照某礦井通風(fēng)系統(tǒng)的實(shí)際情況,模擬“一礦兩面”結(jié)構(gòu)進(jìn)行設(shè)計(jì),按照與實(shí)物1∶4 的比例搭建而成。該實(shí)驗(yàn)平臺通風(fēng)網(wǎng)絡(luò)巷道如圖1 所示,巷道的斷面尺寸為1.2 m×1 m,整個(gè)通風(fēng)網(wǎng)絡(luò)巷道占地總面積約為180 m2。
圖 1 通風(fēng)網(wǎng)絡(luò)巷道Fig. 1 Ventilation network roadway
通風(fēng)實(shí)驗(yàn)平臺配套有智能通風(fēng)控制中心,主要由高壓控制柜、PLC 智能監(jiān)控柜和人工操作控制臺3 個(gè)部分組成,如圖2 所示,可實(shí)現(xiàn)通風(fēng)巷道環(huán)境參數(shù)監(jiān)測、數(shù)據(jù)分析和處理、通風(fēng)故障報(bào)警和決策、通風(fēng)設(shè)施調(diào)節(jié)控制等功能。
圖 2 智能通風(fēng)控制中心Fig. 2 Intelligent ventilation control center
基于該平臺,設(shè)計(jì)礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量智能調(diào)控方法的步驟如下:
(1) 井下傳感器實(shí)時(shí)監(jiān)測礦井通風(fēng)環(huán)境的風(fēng)壓、風(fēng)速、甲烷濃度等參數(shù),并將數(shù)據(jù)上傳至智能通風(fēng)控制中心。
(2) 智能通風(fēng)控制中心接收原始監(jiān)測數(shù)據(jù),并對數(shù)據(jù)進(jìn)行濾波處理。
(3) 智能通風(fēng)控制中心通過OPC 協(xié)議將數(shù)據(jù)上傳至Matlab 中進(jìn)行通風(fēng)網(wǎng)絡(luò)解算,并判斷當(dāng)前通風(fēng)系統(tǒng)的健康狀態(tài)。當(dāng)用風(fēng)分支的風(fēng)量不足時(shí),通風(fēng)系統(tǒng)隨即調(diào)用風(fēng)量調(diào)節(jié)數(shù)學(xué)模型進(jìn)行風(fēng)量調(diào)節(jié)。
(4) 求解風(fēng)量靈敏度矩陣,結(jié)合分支支配度確定最優(yōu)調(diào)節(jié)分支集并求解其調(diào)阻范圍。調(diào)用改進(jìn)BAS 算法進(jìn)行風(fēng)量尋優(yōu),確定最優(yōu)調(diào)風(fēng)參數(shù)后發(fā)出調(diào)風(fēng)指令。
(5) 智能通風(fēng)控制中心根據(jù)具體指令調(diào)節(jié)風(fēng)門、風(fēng)窗等設(shè)施,直到最終用風(fēng)分支的風(fēng)量滿足需求后停止調(diào)風(fēng)。
實(shí)驗(yàn)平臺通風(fēng)網(wǎng)絡(luò)拓?fù)淙鐖D3 所示。通風(fēng)網(wǎng)絡(luò)包含15 個(gè)節(jié)點(diǎn)、21 條分支、7 個(gè)獨(dú)立回路數(shù)。其中,1 號分支和20 號分支分別為通風(fēng)網(wǎng)絡(luò)的進(jìn)風(fēng)口和出風(fēng)口分支,21 號偽分支與大氣相連通,其風(fēng)阻為0,通風(fēng)機(jī)安裝在20 號分支上,通風(fēng)機(jī)的風(fēng)壓特性函數(shù)為Hf=2 897.93+17.24Q-0.5Q2(Q為通風(fēng)機(jī)風(fēng)量)。
圖 3 通風(fēng)網(wǎng)絡(luò)拓?fù)銯ig. 3 Ventilation network topology
通風(fēng)系統(tǒng)的通風(fēng)網(wǎng)絡(luò)初始參數(shù)見表1。包含分支編號、始末節(jié)點(diǎn)、風(fēng)阻和初始風(fēng)量及最小需風(fēng)量。最小需風(fēng)量表示實(shí)際風(fēng)量不應(yīng)低于此數(shù)值,否則可能帶來通風(fēng)問題或引發(fā)事故。
表 1 通風(fēng)網(wǎng)絡(luò)初始參數(shù)Table 1 Initial parameters of ventilation network
基于Matlab 靈敏度計(jì)算程序,得到風(fēng)量靈敏度矩陣,如圖4 所示。矩陣共有22 行21 列(本文截取22 行10 列),每行數(shù)據(jù)表示通風(fēng)網(wǎng)絡(luò)其他分支風(fēng)阻變化時(shí)對該分支風(fēng)量變化的影響程度,每列數(shù)據(jù)表示該分支的風(fēng)阻變化對通風(fēng)網(wǎng)絡(luò)各分支風(fēng)量的影響程度。第22 行數(shù)據(jù)表示該分支在通風(fēng)網(wǎng)絡(luò)中支配度Uj的大小。
圖 4 風(fēng)量靈敏度矩陣Fig. 4 Sensitivity matrix of air volume
以分支4 風(fēng)量調(diào)節(jié)為例分析,若以增阻調(diào)節(jié)的方式來增大Q4,則需選擇風(fēng)量靈敏度矩陣中d4,j>0的分支進(jìn)行調(diào)節(jié)。從圖4 中導(dǎo)出分支4 風(fēng)量靈敏度d4,j及支配度Uj,見表2。
表 2 分支4 風(fēng)量的靈敏度和支配度Table 2 Sensitivity and dominance of the air volume of branch 4
由調(diào)節(jié)分支優(yōu)化選擇原則可得到最佳調(diào)節(jié)分支集為{15,18,5,8}。分別對選出的4 個(gè)調(diào)節(jié)分支取10 個(gè)不同阻值計(jì)算靈敏度,見表3。
對表3 中每條分支的10 組數(shù)據(jù)進(jìn)行擬合,以第2 組靈敏度d4,18與風(fēng)阻R18的關(guān)系為例,通過Matlab處理得到擬合曲線,如圖5 所示??煽闯?,隨著風(fēng)阻R18不 斷增大,靈敏度d4,18不斷衰減,表明風(fēng)阻R18對分支4 風(fēng)量Q4調(diào)控靈敏性不斷下降。以相同的方式擬合其他3 組數(shù)據(jù),得到4 條分支的靈敏度擬合公式:
圖 5 靈敏度d4,18隨風(fēng)阻 R18的變化Fig. 5 Variation of sensitivity d4,18 with air resistance R18
表 3 靈敏度 d4,j隨Rj 的變化Table 3 Variation of sensitivity d4,j with Rj
結(jié)合式(9)得到各個(gè)待調(diào)分支風(fēng)阻的可調(diào)節(jié)范圍:R15∈[0.209,2.745],R18∈[0.296,3.114],R5∈[0.197,3.004],R8∈[0.415,4.005]。
確定了對分支4 風(fēng)量調(diào)節(jié)的最優(yōu)可調(diào)分支集和風(fēng)阻調(diào)節(jié)范圍后,采用改進(jìn)BAS 算法對該分支風(fēng)量進(jìn)行尋優(yōu),確定分支4 可調(diào)風(fēng)量的最大值。同時(shí)為驗(yàn)證改進(jìn)BAS 算法的效果,分別與PSO 算法和標(biāo)準(zhǔn)BAS 算法進(jìn)行對比。PSO 算法作為一種經(jīng)典的群智能優(yōu)化算法,目前已被廣泛應(yīng)用于函數(shù)優(yōu)化、神經(jīng)網(wǎng)絡(luò)訓(xùn)練、工業(yè)優(yōu)化控制等領(lǐng)域,具有一定代表性。所以本文選擇PSO 算法進(jìn)行對比。各算法的主要參數(shù)設(shè)置如下:種群規(guī)模為10,變量維數(shù)為4。改進(jìn)BAS 算法的反饋概率p=0.02,迭代次數(shù)為150。為避免單次運(yùn)行算法在求解時(shí)出現(xiàn)偶然性結(jié)果,3 種算法均對模型優(yōu)化50 次,并對最優(yōu)收斂結(jié)果取平均值,結(jié)果見表4??煽闯?,改進(jìn)BAS 算法優(yōu)化求解分支4 風(fēng)量時(shí),解得的風(fēng)量平均值和最優(yōu)解均高于PSO 算法和標(biāo)準(zhǔn)BAS 算法;平均運(yùn)行時(shí)間雖略長于標(biāo)準(zhǔn)BAS 算法,但遠(yuǎn)短于PSO 算法;其平均收斂代數(shù)最多,精度最高,容易跳出局部循環(huán),得到最優(yōu)解。因此,從整體上看,改進(jìn)BAS 算法在搜索能力和尋優(yōu)效果上均優(yōu)于其他2 種算法,運(yùn)算性能強(qiáng)大。
表 4 不同算法優(yōu)化結(jié)果Table 4 Optimization results of different algorithms
3 種算法的某次仿真結(jié)果如圖6 所示。可以直觀看出,改進(jìn)BAS 算法對分支4 調(diào)節(jié)風(fēng)量的最大值優(yōu)于標(biāo)準(zhǔn)BAS 和PSO 算法,可以達(dá)到14.018 5 m3/s。R18=0.99 N·s2/m8,R5=0.20N·s2/m8,R8=1.18 N·s2/m8,
圖 6 不同算法所得分支4 風(fēng)量適應(yīng)度曲線Fig. 6 Air volume fitness curves of branch 4 obtained by different algorithms
此時(shí)各調(diào)節(jié)分支的風(fēng)阻分別為R15=1.19 N·s2/m8,并由通風(fēng)網(wǎng)絡(luò)解算可求得其他各分支的風(fēng)量,見表5。
表 5 優(yōu)化調(diào)節(jié)后各分支風(fēng)量分配Table 5 Air volume distribution of each branch after optimal adjustment m3/s
通過對比表1 發(fā)現(xiàn),聯(lián)合增阻調(diào)風(fēng)后的其他各分支均能夠滿足最小需風(fēng)量要求,符合按需分風(fēng)的要求。由此得到分支4 風(fēng)量可調(diào)范圍為[9.57,14.02],風(fēng)量上調(diào)高達(dá) 46.5%。
基于上述理論分析,使用礦井通風(fēng)實(shí)驗(yàn)平臺對分支4 進(jìn)行實(shí)驗(yàn)驗(yàn)證。在通風(fēng)過程中,假設(shè)某時(shí)刻分支4 的瓦斯?jié)舛扔性龃筅厔?,為安全起見,用CO2代替瓦斯氣體實(shí)驗(yàn),注入氣體使得分支4 瓦斯絕對涌出量為0.09 m3/s。根據(jù)計(jì)算可知[16],分支4的安全風(fēng)量需要增大并維持在13.5 m3/s 以上,同時(shí)要避免風(fēng)流增加導(dǎo)致瓦斯攜帶量變大,分支4 通風(fēng)量不得大于最小安全風(fēng)量的20%(風(fēng)量≤16.2 m3/s),且其他分支風(fēng)量均要滿足最小需風(fēng)量要求。智能通風(fēng)控制中心檢測到分支4 的瓦斯體積分?jǐn)?shù)超過1%后報(bào)警,并立即啟動(dòng)風(fēng)量智能調(diào)控方法:以增阻調(diào)風(fēng)方式增大分支4 需風(fēng)量,將瓦斯體積分?jǐn)?shù)降低至0.5%以下。由表4 可知,采用改進(jìn)BAS 算法對15,18,5,8 分支進(jìn)行聯(lián)合增阻時(shí),平均最大風(fēng)量可調(diào)至13.981 7 m3/s,符合調(diào)風(fēng)要求。
通過Matlab 進(jìn)行通風(fēng)網(wǎng)絡(luò)解算后可得,當(dāng)分支R15=1.17 N·s2/m8,R18=0.97 N·s2/m8,R5=0.22 N·s2/m8,R8=1.20 N·s2/m8時(shí),分支4 的風(fēng)量可達(dá)13.98 m3/s,由此確定本次調(diào)風(fēng)方案。此時(shí),智能通風(fēng)控制中心將調(diào)風(fēng)參數(shù)下發(fā)給PLC 控制模塊,PLC控制模塊控制分支15,18,5,8 的風(fēng)門和風(fēng)窗開度,使風(fēng)阻達(dá)到目標(biāo)值,使分支4 的風(fēng)量能穩(wěn)定增大至需風(fēng)量,并不斷降低瓦斯?jié)舛?,從而保證礦井通風(fēng)安全。
分支4 的瓦斯體積分?jǐn)?shù)隨風(fēng)量變化的曲線如圖7所示??煽闯?,從設(shè)定風(fēng)量優(yōu)化目標(biāo)到最終完成調(diào)風(fēng),中間僅用時(shí)13 s。表明該風(fēng)量智能調(diào)控方法在礦井發(fā)生風(fēng)量異常情況時(shí)能夠迅速做出響應(yīng),滿足礦井按需分風(fēng)的要求。
圖 7 分支4 瓦斯體積分?jǐn)?shù)隨風(fēng)量變化曲線Fig. 7 Change curves of gas volume fraction in branch 4 with air volume
(1) 研究了風(fēng)量流動(dòng)定律,結(jié)合風(fēng)量調(diào)節(jié)時(shí)的約束條件,建立了礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量優(yōu)化調(diào)節(jié)的非線性無約束化數(shù)學(xué)模型,并采用精確罰函數(shù)對該模型進(jìn)行優(yōu)化。
(2) 利用風(fēng)量靈敏度和分支支配度理論優(yōu)化選擇調(diào)節(jié)分支,并確定調(diào)節(jié)分支調(diào)阻范圍。
(3) 提出了一種多策略改進(jìn)的BAS 算法,有效提高了種群多樣性,增強(qiáng)了全局與局部尋優(yōu)能力,面對礦井通風(fēng)復(fù)雜問題求解時(shí)綜合性能顯著提升。實(shí)驗(yàn)結(jié)果表明:相比于標(biāo)準(zhǔn)BAS 算法和PSO 算法,改進(jìn)BAS 算法綜合尋優(yōu)性能更優(yōu)越,設(shè)定風(fēng)量調(diào)節(jié)目標(biāo)后可對風(fēng)量目標(biāo)模型進(jìn)行快速精準(zhǔn)尋優(yōu)。
(4) 利用礦井通風(fēng)實(shí)驗(yàn)平臺驗(yàn)證基于改進(jìn)BAS算法的礦井通風(fēng)網(wǎng)絡(luò)風(fēng)量智能調(diào)控方法的可靠性。結(jié)果表明,在設(shè)定風(fēng)量調(diào)節(jié)目標(biāo)后,該方法可快速精準(zhǔn)地求解出待調(diào)分支的風(fēng)量最優(yōu)值,調(diào)節(jié)后的分支風(fēng)量滿足礦井安全生產(chǎn)的調(diào)風(fēng)要求,風(fēng)量上調(diào)高達(dá)46.5%,可迅速將有毒有害氣體排出,保證用風(fēng)地點(diǎn)安全。