• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Precise Segmentation of Choroid Layer in Diabetic Retinopathy Fundus OCT Images by Using SEC-UNet*

    2022-12-22 13:58:40XUXiangCongCHENJunYanWANGXueHuaRuiONGHongLianWANGMingYiZHONGJunPingTANHaiShuZHENGYiXuONGKeHANDingAn

    XU Xiang-Cong,CHEN Jun-Yan,WANG Xue-Hua*,LⅠRui,XⅠONG Hong-Lian,WANG Ming-Yi,ZHONG Jun-Ping,TAN Hai-Shu,ZHENG Yi-Xu,XⅠONG Ke***,HAN Ding-An*

    (1)School of Physics and Optoelectronic Engineering,Foshan University,Foshan 528225,China;2)Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic,Foshan University,Foshan 528225,China;3)School of Mechatronic Engineering and Automation,Foshan University,Foshan 528225,China;4)Department of Ophthalmology,Nanfang Hospital,Southern Medical University,Guangzhou 510515,China)

    Abstract Objective Diabetic retinopathy (DR) is a serious complication of diabetes that may cause vision loss or even blindness in patients. Early examination of the choroid plays an essential role in the diagnosis of DR. However, owing to the fuzzy choroid-sclera interface (CSⅠ) and shadow of retinopathy in the optical coherence tomography (OCT) images of DR, most existing algorithms cannot segment the choroid layer precisely. The present paper aims to improve the accuracy of choroid segmentation in DR OCT images. Methods Ⅰn this paper, we propose an optimized squeeze-excitation-connection (SEC) module integrated with the UNet,called the SEC-UNet,which not only focuses on the target but also jumps out of the local optimum to enhance the overall expressive ability.Results The experimental results show that the area under the ROC curve(AUC)of the SEC-UNet reaches up to 0.993 0, which outperforms that obtained for conventional UNet and SE-UNet models. Ⅰt indicates that the SEC-UNet can obtain accurate and complete segmentation results of the choroid layer. Statistical analysis of choroid parameter changes indicated that compared with normal eyes,the 1 mm adjacent area of choroid fovea increased in 87.1%of DR patients.Ⅰt proved that DR is likely to cause choroid layer thickening.Conclusion Our method may become a useful diagnostic tool for doctors to explore the function of the choroid in the prevention,pathogenesis,and prognosis of diabetic eye disease.

    Key words diabetic retinopathy,choroid segmentation,optical coherence tomography,squeeze-excitation-connection UNet

    Diabetic retinopathy (DR) is a serious complication of diabetes and has become one of the main causes of blindness worldwide[1].Early detection of eye diseases and appropriate treatment can greatly reduce the number of patients with DR[2].The choroid is a vascular plexus layer that lies between the sclera and retina, providing oxygen and nourishment to the eye[3]. Ⅰt performs critical physiological functions and plays a crucial role in determining various diseased conditions[4-8]. Studies have shown that changes in the shape and anatomical structure of the choroid are strongly related to the incidence and severity of DR[9-11]. Figure 1 illustrates the manually segmented boundaries in a fundus optical coherence tomography(OCT) B-scan image of DR. This process is timeconsuming and depends on the experience and subjective judgment of the doctor. Therefore, an automatic and precise segmentation method is urgently needed for future clinical applications.

    Fig.1 Illustration of a manually labeled OCT B-scan of a patient with DRFour boundaries consist of internal limiting membrane (ⅠLM; red curve), inner segment/out segment (ⅠS/OS; blue curve), Bruch's membrane (BM; yellow curve), and choroid-sclera interface (CSⅠ;green curve).

    Ⅰn the past, many algorithms for choroid segmentation have been developed[12-18],such as graph search[19], active contours and Markov random fields[20], and support vector machines (SVM)[21].However, these have not been adopted into the real clinical environment;this is primarily because a.there are too many super parameters that need to be adjusted in the segmentation program, and b. the segmentation results need to be manually corrected and processed.Ⅰn recent years,deep learning has been widely used in medical image processing. Masoodet al.[17]used a convolutional neural network (CNN)Cifar-10 architecture to extract the choroid part of OCT images into patches with or without CSⅠ.However, it needs to deal with a large number of overlapping windows, which can be computationally redundant. Georgeet al.[22]used SegNet to obtain the choroid region and used the morphology for edge detection. Segmentation of pathological choroid images is not ideal because of the inadequate use of shallow features. UNet may be one of the most popular and successful architectures for medical image segmentation to date[23]because its fully CNN structure requires only a small number of samples,the encoding path of coarse-grained context detection,and the decoding path of fine-grained location.However,because the shape,size,or light of the target affects the accuracy of the segmentation results, a single UNet may not perform well. Therefore,multiple UNets are cascaded to increase the model performance. Oktayet al.[24]proposed attention gates,which automatically learn to focus on the target, and integrating them into the conventional UNet model can increase the prediction accuracy without adding additional networks. Another excellent attention mechanism is the squeeze-and-excitation (SE)module[25], which can focus on the target, highlight useful features by channel, and suppress irrelevant features.Rundoet al.[26]incorporated SE modules into UNet to segment the prostate zonal and achieved excellent results.

    However, the SE module in the network can easily fall into the local optimum while ignoring the global features of the target, which results in a decreased accuracy in the DR choroid boundary segmentation task. Ⅰn this paper, we propose an optimized SE module, namely the squeeze-excitationconnection (SEC) module, in which a skip connection between the feature mapping layer and the conversion output was inserted.The SEC module not only retains the attention ability of the original SE module but also enables the current layer to pass its own feature maps to the subsequent layer, thereby enhancing the overall expressive ability of the network. We integrated the SEC module with UNet and compared it with conventional UNet and SE-UNet models for segmentation of the choroid boundary in DR OCT images.The results indicated that SEC-UNet achieved the best performance (i.e., an area under the ROC curve (AUC) value of 0.993 0). The qualitative and quantitative comparisons demonstrated that the SEC module is effective and that the proposed model can achieve precise segmentation of DR choroid images.Ⅰn this paper, we measure the foveal choroidal thickness and the volume of the adjacent area. Ⅰn the future, it may become a useful diagnostic tool for doctors to explore the mechanism for the pathogenesis of DR.

    1 Methods

    Ⅰn this study, the SEC-UNet was developed to segment the choroid boundaries in OCT images of DR, where the UNet structure serves as the backbone and the SEC module serves as an attention mechanism to strengthen the discriminative representation ability,thereby making the network more adaptive to DR choroid segmentation tasks.

    1.1 Network architecture

    SEC-UNet combines an encoder and a decoder path,as shown in Figure 2.The network starts with an input image with dimensions 320×320×3. The first layer of the encoder path is a convolutional layer with a stride of 1.The second layer is the SEC module with a channel size of 128. The third layer comprises maxpooling layers with a stride of 2. We repeated the same steps 3 times, and the channel sizes of these modules were 256, 512, and 1 024, respectively. The decoder path takes the output of the encoder path as the input; the two paths are similar except that the maxpooling layers are replaced by upsampling layers with a stride of 2 in the decoder path. The features obtained through the encoder and decoder paths are combined by the skip connection. At the end of the net, the choroid and background areas are segmented using the SoftMax activation function.

    1.2 SEC module

    The SEC module is an optimized version of the SE module,as shown in Figure 3.The SE module is a lightweight gating mechanism[25]. Ⅰt can enhance the representational power of the network by modeling channel-wise relationships.

    Ⅰn the SE module,the input mapsX'∈RH'×W'×C'are transformed (Ftr) to feature mapsX∈RH×W×C.Before feedingXinto the next transformation, it undergoes 3 successive steps: squeeze, excitation, and connection.The global spatial information is squeezed(Fsq) into a channel descriptor by global average pooling, and the gating mechanism is employed to tackle the issue of exploiting channel dependencies:

    Fig.2 Architecture of the proposed SEC-UNet model

    Fig.3 Squeeze-excitation-connection module

    whereσdenotes the Sigmoid function,δrefers to the rectified linear unit (ReLU)[27]function,W1 ∈andW2 ∈are fully connected layers, andris the reduction rate in the dimensionality reduction layer (set as 16). The transformation output of the SE module is obtained by rescaling(Fscale)ofF(X).

    The SE module recalibrates the features through the internal gating structure to focus the attention of the network on the target. However, it easily falls into the local optimum, ignoring the global features of the target, which results in inaccurate boundary segmentation in the choroid segmentation task. Ⅰn this study, we modified the original structure of the SE module. We took inspiration from the dense connectivity in DenseNet, which takes a feed-forward mode to connect the current layer to the subsequent layer, thus encouraging feature reuse and enhancing feature expression capabilities[28]. We inserted a skip connection (Fconnect)between the feature mapping layer and the transform output:

    This feed-forward connection mode can take advantage of the context information and can effectively enhance the global and local expression capabilities at the same time. Ⅰt also encourages feature reuse throughout the network and makes the module more compact.

    2 Experiments and results

    Ⅰn this section, we introduced the database used to evaluate networks followed by detailed network parameters and training details and displayed the segmentation results and comparison among different networks.

    2.1 Dataset

    The collection and analysis of image data were approved by the Human Research Ethics Committee of Nanfang Hospital of Southern Medical University and adhered to the tenets of the Declaration of Helsinki. The dataset was acquired using Heidelberg OCTSPECTRALⅠS S200 and consisted of EDⅠ-OCT images from 40 DR eyes (25 patients). Each EDⅠ-OCT cube has 128 B-scans, and a given B-scan contains 512 A-scans, each of which comprises 596 pixels. We randomly selected 30 B-scans from each volume and manually annotated them by experienced doctors. For each B-scan, we used the graph search method[29]to obtain the ⅠS/OS boundary, removed the region above it to retain region of interest (ROⅠ) for reducing the choroid-independent information, and then cropped it into 10 patches (320×320) in the horizontal direction to expand the data. The new dataset was divided into training set, validation set,and test set in the ratio 7∶2∶1.

    2.2 Implementation

    The proposed method was built on Keras with TensorFlow as the backend[30]. The experiments were run on a single GPU (NVⅠDⅠA GeForce GTX 2080Ti). The model was trained for 100 epochs. Each convolution layer in the model had a kernel size of 3×3. The weights and biases of SEC-UNet were initialized using the He_normal scheme. We used the Adam optimizer with a mini-batch size of 8 to update the network weights and biases. The learning rate for training the model was 10-5. Ⅰn the training stage, we placed a dropout layer with a probability of 0.2 after the convolution layer to prevent the network from overfitting.

    2.3 Evaluation metrics

    The choroid segmentation results can be evaluated by accuracy (ACC), sensitivity (SE),specificity (SP), andF1-score (F1)[31], which are defined as

    whereTP,TN,FP, andFNrepresent the number of true positive, true negative, false positive, and false negative pixels, respectively. Other evaluation metrics, such as receiver operating characteristic(ROC)curve andAUC,were also used in this study.

    2.4 Comparison between different networks

    To validate the performance of the proposed algorithm, we tested SEC-UNet for DR choroid segmentation and compared it with the conventional UNet[23]and SE-UNet[26]models. These networks were trained on the same parameter settings,including the Adam optimizer, initial learning rate, and maximum epoch number, to ensure a fair comparison.As shown in Figure 4,the ROC curve of the proposed model reaches the upper left corner,and theAUCis(a value of 0.993 0) larger than that of the other two models. Ⅰn contrast, the ROC curves of the UNet and SE-UNet were entangled, which reveals that SE-UNet cannot improve the performance of UNet in this segmentation task. For the complex features of DR choroid images, the SE module overfocuses on the boundary and falls into the local optimum, while ignoring the overall expression of the target.

    Table 1 lists the evaluation metrics of the models.The highlighted numbers represent the best performance. Ⅰt can be observed that despite anSEvalue lower than the SE-UNet model, theACC,SP,andF1 values of the proposed model are higher than those of the other two, indicating its superiority in the segmentation performance. SEC-UNet has the slowest training and prediction speed, which trades computational cost for superior segmentation performance. The higherSEvalue but lowerSPvalue of the SE-UNet model indicates that it tends to oversegment the choroid region. TheF1 values of UNet and SE-UNet are similar, which verifies the drawbacks of over-focus on the boundary in the SE module.

    Fig.4 ROC curve and AUC analysis of different models

    Table 1 Comparison with different models

    Figure 5 shows 4 sample results to visually compare our method with other models. The original images, choroid ROⅠimages, and ground-truth masks are presented in Figure 5a-c. The segmentation results obtained by UNet, SE-UNet, and SEC-UNet are shown in Figure 5d-f. Ⅰt can be observed that BM is better than CSⅠin the segmentation results of each model because of the fuzzy gradient feature of CSⅠ.The shadow of retinopathy in the DR choroid image is projected into the choroid, which makes it difficult to distinguish the features of the choroid internal vessels and the sclera. This leads to the UNet and SE-UNet mistaking the internal vessel pixels as scleral pixels,as shown in Figure 5d, e. Moreover, the CSⅠ in UNet's segmentation results deviate greatly from the correct one; this is because its main purpose is to recover the global information of the target object,ignoring detailed features such as boundaries. The segmentation results of SE-UNet are slightly better compared with UNet's, but the accuracy of boundary segmentation is lower because of its tendency to easily fall into the local optimum, ignoring the global features of the target. SEC-UNet obtained the most accurate and complete segmentation results (Figure 5f) compared with the ground-truth masks (Figure 5c), which proves that the SEC module can not only focus on the target object but also jump out the local optimum to take advantage of the global feature information. The qualitative and quantitative results demonstrate that the proposed SEC module is effective and the SEC-UNet can achieve automatic and precise segmentation of choroid layer in DR OCT images.

    Fig.5 Sample resultsFrom left to right: (a) original choroid OCT images; (b) choroid ROⅠimages: removed the region above choroid to reduce independent information;(c)ground-truth masks;(d-f)results obtained by UNet,SE-UNet,and our proposed method.

    2.5 Statistical analyses of the choroidal parameters variation

    According to clinical findings, DR may cause choroidal changes[10]. Thus the quantitative measurement of choroidal parameters is of great significance for the diagnosis and preventive treatment of DR. This paper calculated 38 sets of choroid foveal thickness (CFT) and volume of adjacent area (CFV) within 1 mm diameter,respectively, from 28 DR patients.The average values of 7 normal people served as the threshold to judge choroidal change.Results showed in Table 2 indicated that mostCFT, 1 mmCFVincreased in DR eyes compared with normal eyes. And the 1 mmCFVperformed the highest correlation with DR. So it can be used to characterize the choroidal changes caused by DR more accurately and comprehensively.

    Table 2 The performance of CFT,1 mm CFV(xˉ± s)

    Statistical analysis of choroid parameter changes indicated that compared with normal eyes, the 1 mm adjacent area of choroid fovea increased in 87.1% of DR patients. Ⅰt proved that DR is likely to cause choroid layer thickening.

    3 Conclusion

    Ⅰn this paper, we presented a new SEC-UNet model to improve the accuracy of choroid segmentation in DR OCT images. Compared with the conventional UNet and SE-UNet models, this model achieved the best performance(AUCvalue of 0.993 0).Our algorithm can obtain automatic and precise segmentation of the choroid layer in DR images,which may be helpful for doctors in diagnosing fundus diseases related to the choroid state. The statistical analysis of choroid parameter presented the 1 mm adjacent area of choroid fovea increased in 87.1% of DR patients, which means DR may thicken the choroid layer. Ⅰn addition, the proposed SEC module can also be incorporated into other network frameworks, such as VGG[32], ResNet[33], and DenseNet[28], to accomplish tasks such as image classification, scene classification, and object detection.

    午夜两性在线视频| av网站免费在线观看视频| 在线观看免费午夜福利视频| 亚洲avbb在线观看| 水蜜桃什么品种好| 亚洲欧美色中文字幕在线| 19禁男女啪啪无遮挡网站| 大香蕉久久成人网| 制服人妻中文乱码| 国产精品久久久久久精品电影小说| 亚洲精品国产区一区二| 国产欧美日韩精品亚洲av| 免费看十八禁软件| 大码成人一级视频| 亚洲国产精品成人久久小说| 国产成人系列免费观看| 永久免费av网站大全| 最新在线观看一区二区三区| 亚洲av成人一区二区三| 99久久人妻综合| 亚洲av美国av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久综合国产亚洲精品| 成人av一区二区三区在线看 | www.精华液| 又黄又粗又硬又大视频| 国产xxxxx性猛交| 欧美日韩亚洲综合一区二区三区_| 国产成人一区二区三区免费视频网站| 亚洲av成人一区二区三| 欧美av亚洲av综合av国产av| 国产成人精品久久二区二区91| 女警被强在线播放| 亚洲欧美一区二区三区久久| 天天躁狠狠躁夜夜躁狠狠躁| 天天操日日干夜夜撸| 免费不卡黄色视频| 一本大道久久a久久精品| videos熟女内射| 久久女婷五月综合色啪小说| 成人国语在线视频| 亚洲自偷自拍图片 自拍| 精品人妻一区二区三区麻豆| 亚洲欧美精品自产自拍| 久久久久国产一级毛片高清牌| 欧美乱码精品一区二区三区| 美女午夜性视频免费| 黄频高清免费视频| 高清在线国产一区| 性色av一级| kizo精华| 亚洲色图 男人天堂 中文字幕| 丰满迷人的少妇在线观看| 亚洲精品成人av观看孕妇| 80岁老熟妇乱子伦牲交| 嫁个100分男人电影在线观看| www.熟女人妻精品国产| 动漫黄色视频在线观看| 91精品三级在线观看| 波多野结衣一区麻豆| 精品国产乱子伦一区二区三区 | 性少妇av在线| a级毛片黄视频| 日韩电影二区| 国产福利在线免费观看视频| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久精品电影小说| 亚洲国产看品久久| 亚洲人成电影观看| 久久国产亚洲av麻豆专区| 999久久久国产精品视频| 国产在线免费精品| 一本—道久久a久久精品蜜桃钙片| 久久精品国产综合久久久| 乱人伦中国视频| 免费高清在线观看日韩| 中文精品一卡2卡3卡4更新| 老司机影院成人| 男人添女人高潮全过程视频| 欧美亚洲 丝袜 人妻 在线| 久久影院123| 十分钟在线观看高清视频www| 美国免费a级毛片| 波多野结衣av一区二区av| 少妇裸体淫交视频免费看高清 | 飞空精品影院首页| 国产精品九九99| 18禁黄网站禁片午夜丰满| 精品卡一卡二卡四卡免费| 99久久人妻综合| 欧美激情高清一区二区三区| 欧美少妇被猛烈插入视频| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 18禁黄网站禁片午夜丰满| 午夜91福利影院| 日韩中文字幕欧美一区二区| 欧美精品高潮呻吟av久久| 免费女性裸体啪啪无遮挡网站| 国产成人欧美在线观看 | 99香蕉大伊视频| 一本—道久久a久久精品蜜桃钙片| 午夜福利视频精品| 在线观看一区二区三区激情| 亚洲黑人精品在线| 黄色a级毛片大全视频| 国产高清视频在线播放一区 | 国产老妇伦熟女老妇高清| 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| 欧美精品av麻豆av| 亚洲国产欧美日韩在线播放| 叶爱在线成人免费视频播放| 亚洲精品国产色婷婷电影| 丰满饥渴人妻一区二区三| 一二三四社区在线视频社区8| av福利片在线| 99国产精品一区二区三区| 成年动漫av网址| 视频在线观看一区二区三区| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美| 肉色欧美久久久久久久蜜桃| 成人影院久久| 久久精品国产a三级三级三级| 中文字幕另类日韩欧美亚洲嫩草| 多毛熟女@视频| 日韩中文字幕欧美一区二区| 黄色视频,在线免费观看| 久久久久国产一级毛片高清牌| 美女国产高潮福利片在线看| 1024香蕉在线观看| 亚洲国产av新网站| 久久久久国产精品人妻一区二区| 19禁男女啪啪无遮挡网站| e午夜精品久久久久久久| 亚洲一区中文字幕在线| 国产不卡av网站在线观看| tocl精华| 不卡av一区二区三区| 80岁老熟妇乱子伦牲交| 久久久国产成人免费| 午夜91福利影院| 日韩视频在线欧美| 久久香蕉激情| 老司机影院成人| 久久中文看片网| 免费在线观看黄色视频的| 国产成+人综合+亚洲专区| 久久狼人影院| 免费人妻精品一区二区三区视频| 性色av乱码一区二区三区2| 多毛熟女@视频| 国产成人欧美| 免费观看人在逋| 欧美国产精品一级二级三级| 国产深夜福利视频在线观看| 亚洲欧美精品自产自拍| 日日夜夜操网爽| av在线老鸭窝| 两性夫妻黄色片| 热re99久久国产66热| 国产xxxxx性猛交| 一区二区三区精品91| 一级毛片精品| 欧美黑人精品巨大| 三级毛片av免费| 岛国在线观看网站| 女人久久www免费人成看片| 777米奇影视久久| 亚洲五月色婷婷综合| 亚洲精品粉嫩美女一区| 2018国产大陆天天弄谢| 国产欧美日韩一区二区三区在线| 欧美精品一区二区大全| 中文字幕高清在线视频| 亚洲视频免费观看视频| 成人国语在线视频| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久久久人妻精品电影 | 乱人伦中国视频| 男女下面插进去视频免费观看| 黄片播放在线免费| 欧美在线黄色| 国产麻豆69| 下体分泌物呈黄色| 亚洲av电影在线进入| 一级片'在线观看视频| 超碰97精品在线观看| 一个人免费在线观看的高清视频 | 日韩欧美国产一区二区入口| 超色免费av| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 香蕉国产在线看| 国产成人精品久久二区二区免费| 宅男免费午夜| 久久久久视频综合| 亚洲精品国产av蜜桃| 久久99一区二区三区| 亚洲情色 制服丝袜| 99国产极品粉嫩在线观看| 中亚洲国语对白在线视频| 99国产精品99久久久久| 国产91精品成人一区二区三区 | 精品少妇内射三级| 一本一本久久a久久精品综合妖精| 日本撒尿小便嘘嘘汇集6| 国产精品免费视频内射| 久久中文字幕一级| 国产日韩一区二区三区精品不卡| 午夜影院在线不卡| 波多野结衣一区麻豆| 不卡av一区二区三区| www.999成人在线观看| 日韩中文字幕视频在线看片| 999久久久国产精品视频| 亚洲国产精品一区二区三区在线| 亚洲成人手机| 日本精品一区二区三区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品亚洲一区二区| 日韩熟女老妇一区二区性免费视频| 欧美中文综合在线视频| 国产亚洲av片在线观看秒播厂| 免费人妻精品一区二区三区视频| 丝袜脚勾引网站| 国产亚洲欧美在线一区二区| 国产人伦9x9x在线观看| 日韩 欧美 亚洲 中文字幕| 99香蕉大伊视频| 午夜激情av网站| 视频区欧美日本亚洲| 欧美国产精品一级二级三级| 免费少妇av软件| 99精品久久久久人妻精品| 一本综合久久免费| 欧美激情极品国产一区二区三区| 亚洲情色 制服丝袜| 免费少妇av软件| 中文字幕人妻熟女乱码| 动漫黄色视频在线观看| 麻豆av在线久日| 搡老熟女国产l中国老女人| 久久亚洲国产成人精品v| 一本色道久久久久久精品综合| 久久久精品区二区三区| 伊人亚洲综合成人网| 国产成人a∨麻豆精品| 男人添女人高潮全过程视频| 成人国语在线视频| av天堂在线播放| av超薄肉色丝袜交足视频| 亚洲av片天天在线观看| 国产精品九九99| 欧美精品av麻豆av| 久热这里只有精品99| 色婷婷av一区二区三区视频| 久久久久久久国产电影| 亚洲色图 男人天堂 中文字幕| 精品福利观看| 亚洲一码二码三码区别大吗| 美国免费a级毛片| 一二三四社区在线视频社区8| 国产精品免费大片| 丁香六月天网| 亚洲伊人久久精品综合| 三上悠亚av全集在线观看| 亚洲一区二区三区欧美精品| 777久久人妻少妇嫩草av网站| 国产精品一区二区在线观看99| 青春草亚洲视频在线观看| 亚洲第一av免费看| 国产区一区二久久| 韩国精品一区二区三区| 久久久国产成人免费| 亚洲五月色婷婷综合| 51午夜福利影视在线观看| 国产免费视频播放在线视频| 亚洲精品美女久久av网站| 一级毛片电影观看| 国产淫语在线视频| 色综合欧美亚洲国产小说| 乱人伦中国视频| 日本av免费视频播放| 狂野欧美激情性bbbbbb| 母亲3免费完整高清在线观看| 精品久久久精品久久久| 人人妻人人澡人人爽人人夜夜| 黄色a级毛片大全视频| av视频免费观看在线观看| 日韩大片免费观看网站| 丁香六月天网| 十分钟在线观看高清视频www| 国产高清视频在线播放一区 | 亚洲精品一区蜜桃| 操出白浆在线播放| 免费在线观看影片大全网站| 后天国语完整版免费观看| 一二三四在线观看免费中文在| 久久人妻福利社区极品人妻图片| 丰满少妇做爰视频| 日韩视频一区二区在线观看| 国产成人a∨麻豆精品| 99re6热这里在线精品视频| √禁漫天堂资源中文www| 国产在线观看jvid| 爱豆传媒免费全集在线观看| 无遮挡黄片免费观看| 国产欧美日韩综合在线一区二区| 成人av一区二区三区在线看 | 日本五十路高清| av福利片在线| 亚洲精品国产av蜜桃| 制服诱惑二区| 美女视频免费永久观看网站| 成年人黄色毛片网站| 国产亚洲av高清不卡| 欧美在线一区亚洲| 色老头精品视频在线观看| 久久人妻福利社区极品人妻图片| 国产在视频线精品| 中文字幕另类日韩欧美亚洲嫩草| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 99九九在线精品视频| 国产一区二区激情短视频 | 肉色欧美久久久久久久蜜桃| 亚洲自偷自拍图片 自拍| 大陆偷拍与自拍| 国产1区2区3区精品| 在线精品无人区一区二区三| 天堂8中文在线网| 黄片小视频在线播放| 丰满人妻熟妇乱又伦精品不卡| 男人添女人高潮全过程视频| 精品久久蜜臀av无| 亚洲欧美色中文字幕在线| 女人精品久久久久毛片| 少妇精品久久久久久久| 成年女人毛片免费观看观看9 | av电影中文网址| 国产成人精品在线电影| 黑人操中国人逼视频| 国产三级黄色录像| 少妇猛男粗大的猛烈进出视频| 国产在线视频一区二区| 精品国内亚洲2022精品成人 | 每晚都被弄得嗷嗷叫到高潮| 久久久国产成人免费| 老汉色∧v一级毛片| 又大又爽又粗| 性色av一级| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 欧美日韩成人在线一区二区| 啦啦啦啦在线视频资源| 国产精品偷伦视频观看了| 午夜激情av网站| 一级片免费观看大全| 国产精品一区二区精品视频观看| 亚洲精品自拍成人| 国产视频一区二区在线看| 亚洲激情五月婷婷啪啪| 久久久精品区二区三区| 国产熟女午夜一区二区三区| 91字幕亚洲| 女警被强在线播放| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 无遮挡黄片免费观看| 各种免费的搞黄视频| tube8黄色片| 亚洲伊人久久精品综合| 国产精品麻豆人妻色哟哟久久| 欧美黄色淫秽网站| 青春草视频在线免费观看| 国产亚洲欧美精品永久| 午夜免费观看性视频| 亚洲国产中文字幕在线视频| 日韩欧美一区二区三区在线观看 | 亚洲精品久久久久久婷婷小说| 国产精品1区2区在线观看. | 在线精品无人区一区二区三| 国产成人免费无遮挡视频| 久久精品人人爽人人爽视色| 亚洲精品国产av成人精品| 免费观看av网站的网址| www日本在线高清视频| 在线看a的网站| 色老头精品视频在线观看| 老鸭窝网址在线观看| 久久久久国产精品人妻一区二区| 国产色视频综合| 美女视频免费永久观看网站| 国产成人一区二区三区免费视频网站| 国产亚洲av片在线观看秒播厂| 成年女人毛片免费观看观看9 | 2018国产大陆天天弄谢| 日韩欧美一区视频在线观看| 青春草亚洲视频在线观看| 欧美黑人欧美精品刺激| 午夜福利视频精品| 免费观看av网站的网址| 国产精品一区二区精品视频观看| 久久性视频一级片| 亚洲 国产 在线| 免费不卡黄色视频| 久久狼人影院| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 国产成人精品久久二区二区免费| 久久女婷五月综合色啪小说| 老司机深夜福利视频在线观看 | 亚洲精品国产区一区二| 热99re8久久精品国产| 极品少妇高潮喷水抽搐| 欧美一级毛片孕妇| av视频免费观看在线观看| 成人18禁高潮啪啪吃奶动态图| 99精品欧美一区二区三区四区| 高潮久久久久久久久久久不卡| 国产三级黄色录像| 亚洲精品国产av成人精品| 高清黄色对白视频在线免费看| 国产精品一区二区精品视频观看| 亚洲av国产av综合av卡| 动漫黄色视频在线观看| 精品国产一区二区久久| 国产在线观看jvid| 欧美精品av麻豆av| 亚洲精品国产精品久久久不卡| 99久久99久久久精品蜜桃| 成年美女黄网站色视频大全免费| 狂野欧美激情性bbbbbb| 久9热在线精品视频| 韩国精品一区二区三区| 色综合欧美亚洲国产小说| 另类亚洲欧美激情| 日日夜夜操网爽| 亚洲性夜色夜夜综合| www日本在线高清视频| 中国美女看黄片| 999精品在线视频| 日本wwww免费看| tube8黄色片| 国产精品 欧美亚洲| 欧美老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 91av网站免费观看| 亚洲专区国产一区二区| 欧美精品一区二区免费开放| 亚洲 国产 在线| 99热网站在线观看| 国产精品香港三级国产av潘金莲| 亚洲国产精品一区三区| 国产一区二区激情短视频 | 国产成人影院久久av| 蜜桃国产av成人99| 久久久精品国产亚洲av高清涩受| 精品国产一区二区三区四区第35| 丰满迷人的少妇在线观看| 女性生殖器流出的白浆| 丰满少妇做爰视频| 母亲3免费完整高清在线观看| 在线观看www视频免费| 热99re8久久精品国产| 国产日韩欧美在线精品| 制服人妻中文乱码| 国产成人精品在线电影| 97人妻天天添夜夜摸| 欧美日韩视频精品一区| 精品亚洲成a人片在线观看| 午夜久久久在线观看| 中文字幕人妻丝袜一区二区| netflix在线观看网站| 交换朋友夫妻互换小说| 亚洲国产欧美日韩在线播放| 最新在线观看一区二区三区| 欧美午夜高清在线| 99国产精品99久久久久| 亚洲黑人精品在线| 欧美 日韩 精品 国产| 在线av久久热| 亚洲视频免费观看视频| 大片免费播放器 马上看| 国产高清视频在线播放一区 | 午夜免费成人在线视频| 多毛熟女@视频| 99国产精品免费福利视频| 午夜91福利影院| 伊人亚洲综合成人网| 国产一级毛片在线| 久久久久视频综合| 一本一本久久a久久精品综合妖精| 亚洲国产欧美网| 亚洲av欧美aⅴ国产| 亚洲精品在线美女| 最新在线观看一区二区三区| 国产91精品成人一区二区三区 | 精品人妻1区二区| www.精华液| 啦啦啦 在线观看视频| 高清欧美精品videossex| 十八禁人妻一区二区| 国产在线一区二区三区精| 熟女少妇亚洲综合色aaa.| 十八禁网站免费在线| 无限看片的www在线观看| 1024视频免费在线观看| 18禁观看日本| 亚洲欧洲日产国产| 欧美激情极品国产一区二区三区| 岛国在线观看网站| 99精品久久久久人妻精品| 巨乳人妻的诱惑在线观看| 我的亚洲天堂| 日本a在线网址| 999久久久精品免费观看国产| 国产97色在线日韩免费| 亚洲国产精品999| 搡老熟女国产l中国老女人| 亚洲精品日韩在线中文字幕| 国产精品影院久久| 亚洲精品国产色婷婷电影| 国产成人精品在线电影| 亚洲精品第二区| 一区二区av电影网| 久久国产精品男人的天堂亚洲| 精品第一国产精品| 美女脱内裤让男人舔精品视频| 国产亚洲av高清不卡| 性少妇av在线| 久久中文看片网| 一本综合久久免费| 两性夫妻黄色片| 国产一区有黄有色的免费视频| 青青草视频在线视频观看| 狠狠婷婷综合久久久久久88av| 国产日韩欧美视频二区| 日本撒尿小便嘘嘘汇集6| 91麻豆精品激情在线观看国产 | 亚洲国产欧美一区二区综合| 日韩制服丝袜自拍偷拍| 亚洲精品国产色婷婷电影| 国产精品自产拍在线观看55亚洲 | 成年人午夜在线观看视频| 欧美人与性动交α欧美精品济南到| 在线观看一区二区三区激情| 一级毛片女人18水好多| 交换朋友夫妻互换小说| 成年av动漫网址| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区在线观看99| 亚洲精品第二区| 操美女的视频在线观看| 一本一本久久a久久精品综合妖精| 我要看黄色一级片免费的| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 久久青草综合色| 啪啪无遮挡十八禁网站| av线在线观看网站| 制服人妻中文乱码| 国产伦人伦偷精品视频| 蜜桃国产av成人99| 亚洲avbb在线观看| 久久女婷五月综合色啪小说| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 亚洲国产日韩一区二区| 午夜激情av网站| 老司机午夜十八禁免费视频| 久久av网站| 欧美人与性动交α欧美软件| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品aⅴ一区二区三区四区| 亚洲av成人一区二区三| 91国产中文字幕| 丁香六月天网| 精品国内亚洲2022精品成人 | 欧美午夜高清在线| 无限看片的www在线观看| 欧美人与性动交α欧美精品济南到| avwww免费| 9191精品国产免费久久| 久久九九热精品免费| 日韩 欧美 亚洲 中文字幕| 中文字幕高清在线视频| 王馨瑶露胸无遮挡在线观看| 一区二区三区精品91| 国产真人三级小视频在线观看| 少妇猛男粗大的猛烈进出视频| 最新的欧美精品一区二区| 91成人精品电影| av在线播放精品| 色精品久久人妻99蜜桃| 无遮挡黄片免费观看| 国产av国产精品国产| 国产黄色免费在线视频| 在线观看一区二区三区激情| 国产成人免费无遮挡视频| 丝袜人妻中文字幕| 国产日韩欧美在线精品| 中文字幕高清在线视频| 国产精品成人在线| 一区福利在线观看| 人妻人人澡人人爽人人| 99精品久久久久人妻精品| 巨乳人妻的诱惑在线观看| 热re99久久国产66热| 两性夫妻黄色片| 日韩欧美一区视频在线观看| 日韩免费高清中文字幕av| 日韩有码中文字幕|