張靜 何偉* 王浩 劉向華 許高飛
1 合肥工業(yè)大學(xué)土木與水利工程學(xué)院
2 安徽省建筑設(shè)計(jì)研究總院股份有限公司
3 安徽科恩新能源有限公司
近年來,石蠟(PA)因其相變焓值大和適宜的熱力學(xué)特性等[1]優(yōu)勢,目前在暖通與建筑領(lǐng)域得到廣泛的應(yīng)用。然而,PA 作為相變材料也存在一些缺點(diǎn),一方面是其熱導(dǎo)率較低,只有約0.2 W/mK[2],大大延緩了其吸收和釋放熱量的速度。另一方面,PA 還存在著相變過程中固液相體積差異較大的問題,極易發(fā)生液相的泄露[3]。因此在本文中選取膨脹石墨(EG)承載PA,利用物理吸附作用實(shí)現(xiàn)PA 的定形。以EG 為基體制備的復(fù)合相變材料(PCM),雖然可以提高材料的導(dǎo)熱系數(shù),但是由于EG 的體積較大,對于一些限制尺寸的領(lǐng)域如地埋管的回填[4]等方面有很大的局限。本文將PA/EG 復(fù)合相變材料與導(dǎo)熱系數(shù)較高銀銅粉摻混,以達(dá)到在提高導(dǎo)熱系數(shù)的同時(shí),控制復(fù)合體積的目的。
實(shí)驗(yàn)所使用材料:相變?nèi)埸c(diǎn)為43 ℃的固體PA,相變潛熱為255 KJ/Kg;純度為99%的EG,80 目,膨脹倍數(shù)為200 倍;含銀5%的銀銅粉;304 型號不銹鋼(換熱模型材料);2 cm 厚度的保溫棉。在實(shí)驗(yàn)過程中,所用到的設(shè)備有電子天平、恒溫箱、集熱式恒溫磁力攪拌器、差示掃描量熱儀、熱常數(shù)分析儀、多路溫度測試儀。
2.1.1 材料的制備
本研究通過將熔化的PA 吸附到EG 中來得到復(fù)合相變材料。第一步,將EG 放置于恒溫箱中干燥,在200 ℃的溫度下保持10 h。第二步,將固體PA 置于70 ℃恒溫水浴中,直至完全熔化。第三步,將EG 按照比例(5%、7%、10%、15%、20%)加入到融化的PA 中,并在80 ℃的恒溫水浴中不斷攪拌4 h,使PA 充分吸附。第四步,將混合均勻的復(fù)合相變材料放置于100 ℃的烘箱中,干燥10 h。圖1 為復(fù)合材料制備原理圖。
圖1 復(fù)合過程原理圖
2.2.2 材料中石蠟的滲漏測試
稱取適量的不同質(zhì)量分?jǐn)?shù)PA/EG 復(fù)合相變材料,壓制成直徑為1 0mm,高度為5 mm 的圓片,記錄重量。放置于快速濾紙上,作好標(biāo)記后放置于恒溫箱中,溫度設(shè)置為100 ℃。2 h 后取出分別稱重。利用兩次稱重的值,可以求出石蠟的滲漏率。表1 是壓制成片后的相變材料在加熱處理前后的重量記錄,石蠟的滲漏率由下列公式求得:
式中:L 為石蠟的滲漏率,W1、W2分別為PCM 圓片處理前后的質(zhì)量。從表1 中可以看出,隨著EG 質(zhì)量分?jǐn)?shù)的提高,復(fù)合材料中PA 的滲漏率呈線性減小。當(dāng)EG的質(zhì)量分?jǐn)?shù)大于10%后,PA 的泄露率均低于7%。
由于EG 的膨脹體積較大,因此根據(jù)上述對EG/PA 復(fù)合相變材料泄露率與體積的分析,綜合考慮選擇10%的EG/PA 復(fù)合相變材料作為基礎(chǔ)材料,與銀銅粉混合。其制備方法如下:將10%的EG/PA 復(fù)合相變材料等量分為五份,分別按照10%、20%、30%、40%的質(zhì)量分?jǐn)?shù)加入銀銅粉,充分?jǐn)嚢杌旌暇鶆颉?/p>
圖2 展示了復(fù)合PCM(EG 含量為10%,銀銅粉含量為10%,20%,30%,40%)的熱流曲線,對熱流與時(shí)間曲線與X 軸圍成的面積進(jìn)行積分,求得潛熱值,如表2所示。由表2 可以得出,添加銀銅粉對于復(fù)合PCM 的潛熱值影響較小,40%銀銅粉/10%膨脹石墨/石蠟定形相變材料的熔化潛熱值為191.39 KJ/Kg,相比純石蠟衰減了10.7%,凝固潛熱值為197.53 KJ/Kg,衰減了10.03%,故銀銅粉可以單純用于增加復(fù)合相變材料的導(dǎo)熱系數(shù)。
表2 新型定形材料的相變溫度與潛熱
圖2 0%,10%,20%,30%,40%銀銅粉/10%膨脹石墨/石蠟定形相變材料的DSC 曲線
同時(shí),本文通過熱常數(shù)分析儀對復(fù)合材料進(jìn)行了分析,測試的結(jié)果如表2 所示。從表2 可以看出,復(fù)合相變材料的導(dǎo)熱系數(shù)均隨著銀銅粉質(zhì)量分?jǐn)?shù)的增加而增加。這歸因于銀銅粉具有良好的導(dǎo)熱性能,當(dāng)銀銅粉的質(zhì)量分?jǐn)?shù)增加到到一定程度時(shí),銀銅粉就會在復(fù)合相變材料體系中形成連續(xù)相,構(gòu)成了致密的三維網(wǎng)絡(luò)結(jié)構(gòu)[5]。
換熱模塊是由兩根長度為20 cm,直徑分別為6 cm 和8 cm 的不銹鋼管制成。將復(fù)合相變材料填充適量到外管中,填充高度為1 cm 后,將內(nèi)管放置于外管中心處,將相變材料填入內(nèi)外管之間的間隙中,一邊填充一邊壓實(shí)。最后用保溫棉包裹。
通過多路采集儀來記錄模塊中相變材料和熱水溫度的變化。實(shí)驗(yàn)設(shè)備圖如圖3 所示。將K 型熱電偶插入到內(nèi)管中。將水燒至沸騰,迅速倒入模型中并密封。對多路溫度測試儀開啟巡檢功能,時(shí)間間隔為30 s。記錄數(shù)據(jù)。
圖3 實(shí)驗(yàn)系統(tǒng)設(shè)備圖
圖4 展示了模塊中的熱水溫度隨時(shí)間變化的曲線。模塊中加入熱水后,通過管壁的導(dǎo)熱,同時(shí)因?yàn)榧尤氲你y銅粉增大了復(fù)合材料的導(dǎo)熱系數(shù),空腔中的相變材料迅速升溫,達(dá)到熔點(diǎn)以上的溫度后,復(fù)合材料發(fā)生相變,吸收熱水的熱量,導(dǎo)致熱水可以迅速降溫。圖4 展示了熱水從85 ℃左右降溫43 ℃所需的時(shí)間。在同樣工況下,將熱水降溫至42~43 ℃,純石蠟需要3540 s,而40%的銀銅粉/10%膨脹石墨/石蠟定形相變材料僅需要1080 s,時(shí)間縮短了2460 s,20%的銀銅粉/10%膨脹石墨/石蠟定形相變材料僅需要1260 s,時(shí)間縮短了2280 s。從圖中可以看出,熱水最終降溫至42~43 ℃左右,這歸因于定形相變材料的相變溫度發(fā)生了偏移,稍低于純石蠟。隨著銀銅粉質(zhì)量分?jǐn)?shù)的提高,熱水降溫的速率越大。因?yàn)槎ㄐ蜗嘧儾牧现械你y銅粉含量越高,復(fù)合材料的導(dǎo)熱系數(shù)越大,那么定形相變材料相變得越快,水溫下降的也越快。
圖4 裝載不同復(fù)合相變材料的模型中熱水降溫曲線
圖5 展示了熱水的保溫時(shí)間。隨著定形相變蓄熱材料中銀銅粉含量的減少,熱水的保溫時(shí)間逐漸降低,雖然填充40%銀銅粉的定形相變材料將熱水降溫時(shí)間最快,但是卻只能將熱水保溫600 s。而20%銀銅粉的定形相變材料將熱水保溫時(shí)間最長,能夠在3510 s內(nèi)維持熱水在42~43 ℃。
圖5 裝載不同復(fù)合相變材料的模型中熱水保溫曲線
本文研究測試了銀銅粉/石蠟/膨脹石墨新型定形相變蓄熱材料的熱物性參數(shù),并通過實(shí)驗(yàn)對新型蓄熱材料的換熱性能進(jìn)行了分析,得出以下結(jié)論:
1)復(fù)合材料的滲漏率隨著膨脹石墨質(zhì)量分?jǐn)?shù)的提高而降低,當(dāng)膨脹石墨的填充量達(dá)到10%后,復(fù)合材料的滲漏率不高于7%。
2)10%膨脹石墨/石蠟復(fù)合材料中加入銀銅粉雖然會導(dǎo)致潛熱值衰減,但是大幅度提高了導(dǎo)熱系數(shù)。
3)20%銀銅粉/10%膨脹石墨/石蠟新型材料可以有效縮短相變?nèi)诨^程,快速進(jìn)行換熱,同時(shí)大大提高了石蠟的蓄熱能力。