• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      海上風電對海洋生態(tài)環(huán)境與海洋生物資源的綜合影響研究進展

      2023-01-31 02:12:15茹小尚張立斌
      海洋科學 2022年7期
      關鍵詞:海洋生物噪音風電場

      王 婷, 茹小尚, 張立斌

      海上風電對海洋生態(tài)環(huán)境與海洋生物資源的綜合影響研究進展

      王 婷1, 2, 3, 4, 6, 7, 茹小尚1, 2, 3, 4, 6, 張立斌1, 2, 3, 4, 5, 6

      (1. 中國科學院海洋生態(tài)與環(huán)境科學重點實驗室, 山東 青島 266071; 2. 青島海洋科學與技術試點國家實驗室海洋生態(tài)與環(huán)境科學功能實驗室, 山東 青島 266237; 3. 中國科學院海洋大科學研究中心, 山東 青島 266071; 4. 中國科學院海洋牧場工程實驗室, 山東 青島 266071; 5. 中國科學院大學, 北京 100049; 6. 山東省實驗海洋生物學重點實驗室, 山東 青島 266071; 7. 青島科技大學環(huán)境與安全工程學院, 山東 青島 266042)

      海上風電具有就近消納方便、發(fā)電效率高和不消耗化石能源等特點, 在低碳經(jīng)濟發(fā)展背景下, 加快海上風電開發(fā)已成為全球各國促進能源結構轉型與可持續(xù)發(fā)展的普遍共識。但海上風電在建設及運營過程中所產(chǎn)生的噪音和磁場對海洋環(huán)境和生物的影響尚不明確。本文系統(tǒng)梳理了全球海上風電發(fā)展現(xiàn)狀, 分析了海上風電開發(fā)對海洋生態(tài)環(huán)境與生物資源的綜合影響, 從生理、行為和分子三個層面重點分析了海上風電所產(chǎn)生的噪音和磁場對海洋生物的潛在影響, 以期為科學利用海上風電提供參考。

      海上風電; 環(huán)境影響; 噪音; 電磁效應; 生態(tài)效應

      在低碳經(jīng)濟背景下, 加速能源結構的清潔化轉型得到了世界各國的普遍重視[1]。清潔能源是指能源在生產(chǎn)和消費的過程中對環(huán)境影響較小且污染風險極小的能源類型, 主要包括風能、水能、太陽能、地熱能和海洋能等[2]。近年來, 風力發(fā)電作為典型的清潔能源, 在全球范圍內(nèi)迅速發(fā)展[3]。據(jù)國際可再生能源署(IRENA)數(shù)據(jù)表明, 2020年全球能源投資為3 830億美元, 其中風能投資占全球能源投資的37.3%, 總金額高達1 428.59億美元[4]。

      與陸地相比, 海洋風力資源更為豐富。海上風電發(fā)電效率比陸地高50%, 年平均使用時間高達2 500 h, 開發(fā)價值和利用潛能更高[5]。全球海上風電開發(fā)以丹麥研發(fā)安裝的第一臺海上風力渦輪機為起點, 歷經(jīng)了初始研究階段(1980—1990)、實驗測試階段(1991—2000)和商業(yè)化階段(2001至今)3個關鍵時期[6]。自2001年海上風電大規(guī)模產(chǎn)業(yè)化技術實現(xiàn)突破以來, 全球海上風電裝機容量以20%的速度出現(xiàn)連年增長。當前, 全球海上風電建設主要集中在英國、荷蘭、丹麥等歐洲各國, 累計裝機占比高達75%, 其次為亞洲和北美洲[7]。

      我國海上風電資源十分豐富, 且我國電力負荷中心位于東部沿海地區(qū), 具有就地消納便捷的優(yōu)勢, 發(fā)展海上風電可減小火電壓力, 為保障電力穩(wěn)定供應提供重要支持[8-9]。與歐美不同, 我國海上風電開發(fā)主要集中于潮間帶或淺海區(qū)域, 開發(fā)成本和技術難度遠低于深海風電開發(fā), 因此近年來裝機規(guī)??焖僭鲩L[10]。根據(jù)國家能源局統(tǒng)計數(shù)據(jù), 截至2021年4月底, 我國海上風電并網(wǎng)容量達到1 042萬千瓦, 已連續(xù)3年高居全球新增裝機容量最多的國家, 正成為全球海上風電產(chǎn)業(yè)發(fā)展的新中心。

      在“十四五”期間, 海上風電作為我國實施能源安全新戰(zhàn)略的重要環(huán)節(jié), 落實碳達峰、碳中和目標的重要落腳點, 發(fā)展前景更為廣闊。可積極推動我國海上風電在近海規(guī)?;l(fā)展、遠海示范化發(fā)展的戰(zhàn)略布局, 實現(xiàn)海上風電“近海—遠?!眳f(xié)同發(fā)展的新局面。

      然而, 海上風電的開發(fā)全過程可能會對海洋生態(tài)造成一定的潛在影響[11]。例如, 在建設階段, 海底工程作業(yè)會產(chǎn)生廢棄污染物, 風機安裝過程中會產(chǎn)生強噪音引起魚類出現(xiàn)應激反應[12-13], 海底電纜的鋪設可能會改變海底原有地形地貌[14], 導致底棲生物棲息環(huán)境喪失或退化; 在運營階段, 風機機組會產(chǎn)生低頻噪音和電磁輻射等可能會對海洋生物造成慢性影響, 而風機葉片轉動可能會誤撞鳥類, 影響鳥類遷徙等[15-18]。目前我國正處于海上風電建設增長的關鍵期, 尤其是提出了將海上風電和海洋牧場的融合發(fā)展的全新理念, 在“綠水青山就是金山銀山”根本前提下, 全面了解海上風電對海洋生態(tài)環(huán)境和海洋生物資源的綜合影響具有重要的研究意義與產(chǎn)業(yè)價值[19]。

      1 海上風電的資源環(huán)境效應

      海上風電產(chǎn)生的資源環(huán)境效應是指風機基礎的淹沒部分可起到人工魚礁的作用, 可為生物增殖提供棲息地, 增加該區(qū)域的生物資源量和多樣性[20-23]。在德國灣5 000個海上風電機組規(guī)模下, 沉積物中生物量與最初相比預計可增加4 000倍[24]。De Mesel等[25]調(diào)查了在比利時北海建造的C-power海上風電場, 并分析了風機基礎上的附著生物群落演替, 演替第一年, 有大量新物種殖民遷入, 附著貝類迅速繁殖, 隨后能夠吸引20多種遷移性生物來此提升該區(qū)域的生物多樣性。Stenberg等[26]對丹麥Horns Rev 1海上風電場進行了10年(2001—2010)的長期跟蹤調(diào)查, 發(fā)現(xiàn)底棲生物及游泳動物數(shù)量保持了基本穩(wěn)定, 但生物多樣性明顯提升; Leonhard等[27]發(fā)現(xiàn)該海上風電場魚類和其他生物的食物供應增加了50倍, 能夠吸引誘集戀礁型生物到此處繁殖, 進而在風機基礎周圍發(fā)揮人工礁效應。Lindeboom等[28]通過對荷蘭Egmond aan Zee海上風電場進行了5年(2004—2009)跟蹤調(diào)查, 發(fā)現(xiàn)風機基礎及四周覆石區(qū)聚集了更多生物, 舌鰨、鱈魚等魚類數(shù)量顯著提升。類似的現(xiàn)象在德國Bight、瑞典Lillgrund海上風電場也有報道[29-30]。

      除長期的跟蹤調(diào)查外, Ecopath with Ecosim(EwE)等生態(tài)模型也被用來預測海上風電場建設后的物種多樣性變化。例如, Wang等[31]分析發(fā)現(xiàn)了江蘇如東風電場建設后風電場內(nèi)浮游動植物、部分底棲生物及魚類等物種的豐度和生物量均呈增加的趨勢。Raoux等[32]對英吉利海峽內(nèi)的Courseulles-sur-mer海上風電場進行模擬預測, 結果表明30年后海上風電場系統(tǒng)內(nèi)總生物量將增加55%, 主要原因是海上風電場建成后, 系統(tǒng)內(nèi)物質(zhì)循環(huán)率提升, 高營養(yǎng)級生物向風電場區(qū)域遷移。以上結果表明, 風機基礎可以作為一種潛在人工礁以達到吸引魚群的目的[33-34]。此外, 德國等國家在海上風電區(qū)域開展生態(tài)漁業(yè)[35], 對海洋資源的修復和養(yǎng)護起到的作用更加明顯[36]。海上風電作為我國大力發(fā)展的產(chǎn)業(yè)之一, 具有海洋生物資源養(yǎng)護作用, 能夠較好地固碳增匯, 未來可以與海洋牧場融合發(fā)展擴大其資源環(huán)境效應的發(fā)揮。

      2 海上風電的潛在負面效應

      海上風電開發(fā)規(guī)模較大, 其建設、運營、退役各個階段都可能會對海洋生態(tài)環(huán)境與生物資源產(chǎn)生潛在負面影響, 系統(tǒng)客觀地掌握并評估海上風電開發(fā)對其影響的研究進展, 對促進海上風電開發(fā)建設有指導作用。

      2.1 海上風電的潛在負面影響因素

      海上風電的潛在負面影響通常包括開發(fā)過程中對沉積環(huán)境的擾動、產(chǎn)生物理能量的排放和對鳥類的視覺干擾等[37]。海上風電選址通常是細沙沉積物區(qū), 其建設過程會改變海底地形地貌, 風機基礎打樁鉆探及海底電纜鋪設都會對海洋沉積環(huán)境造成一定的破壞[38], 導致海底水體濁度上升, 溶解氧降低, 對海洋生物造成缺氧等影響。風機基礎的防腐裝置還會產(chǎn)生重金屬析出等[39]。此外, 風機基礎建設會造成海底基質(zhì)硬化[40], 導致部分底棲生物的生境喪失及惡化, 生物多樣性下降。海上風電場建成后, 海流經(jīng)過風機基礎時, 會產(chǎn)生湍流作用并持續(xù)沖刷樁基下方的沉積物, 導致樁基迎水面及其后方主要呈現(xiàn)淤積趨勢, 而兩側呈現(xiàn)沖刷趨勢, 在海底電纜附近也發(fā)現(xiàn)一定程度的海床侵蝕[41-42]。張晶磊[43]以情景分析法為框架, 運用GIS技術和數(shù)學模型, 對我國江蘇濱海海上風電工程開發(fā)進行環(huán)境累積影響評價。結果表明: 隨著海上風電建設區(qū)域的擴增, 海水污染因子超標率增加, 浮游生物及底棲生物產(chǎn)生一定的損失, 其累積影響會隨著建設規(guī)模的擴大而增加。

      海上風電建設及運營過程會產(chǎn)生噪音、電磁輻射和樁基振動等物理能量的排放[44-46]。其中, 噪音會導致海洋聲景發(fā)生改變, 海上風電建設打樁噪音約226 dB re 1μPa, 距離打樁點80 km才降至背景噪音水平[47]; 運營噪音約為120~140 dB re 1μPa, 頻率為1 kHz以內(nèi), 與風速、風機類型密切相關, 且風機排列具有一定距離, 因此噪音的累加效應尚不明確。但在風機周圍, 會對石首魚科等聲音敏感的生物造成影響[48-51]。海上風電運營期間, 海底電纜的電力傳輸會產(chǎn)生電磁場[46], 產(chǎn)生磁場強度在110~3 200 μT的極低頻電磁場[52]。同時也可能使該區(qū)域磁場傾角發(fā)生改變, 進而對鰻魚等依靠地磁場導航的生物會造成一定影響[53-54]。運營中的海上風電是一個長期存在的振動源[55], Lin等[56]通過不同頻率的水下振動實驗, 研究了樁基振動對仿刺參()運動行為的影響, 結果發(fā)現(xiàn)高頻率的振動可能會誘發(fā)刺參出現(xiàn)的規(guī)避行為。

      海上風電也會對鳥類產(chǎn)生一定影響, 具體表現(xiàn)為風機轉動會對鳥類形成視覺干擾[57], 而磁場的改變又會對依靠地磁場導航的鳥類造成影響[58], 但與陸地風電場經(jīng)常發(fā)生的鳥類、蝙蝠和風機葉片發(fā)生的碰撞事件相比[59], 國內(nèi)外研究普遍認為海上風電場對鳥類的影響較小, 僅發(fā)生在海鳥遷徙期間, “鳥撞”事件發(fā)生概率較低[60]。

      2.2 海上風電噪音對海洋生物的影響

      噪音存在于海上風電開發(fā)的整個過程[61]。建設期產(chǎn)生的打樁聲, 聲級最高, 為急性噪音[62-63]; 運營期的噪音具有累積性, 影響更為長久[64]。噪音會產(chǎn)生聲學干擾, 掩蔽聲學交流[65], 進而改變白鯨等的海洋生物的行為模式, 并影響海洋生物的生理狀況等, 嚴重時還會對其生命造成威脅。

      2.2.1 海上風電噪音對海洋生物行為模式的影響

      噪音會對海洋生物的行為造成影響, 且在不同生物中行為響應差異較大[66]。急性噪音會導致海洋生物出現(xiàn)應激行為, 長期暴露于噪音環(huán)境中則會導致其聽覺系統(tǒng)發(fā)生改變, 削弱其感受環(huán)境的能力[67-69]。

      噪音對海洋生物行為的影響具體表現(xiàn)為埋棲行為、集群行為、捕食行為、求偶行為等發(fā)生改變。例如, 噪音會影響縊蟶()的埋棲行為, 高強度的噪音會導致其埋棲更深, 原因為縊蟶()為了緩沖聲波產(chǎn)生的粒子振動干擾而深埋泥沙中[70]。斑馬魚()在噪音暴露下會出現(xiàn)明顯的行為改變, 具體表現(xiàn)游泳速度短暫增大, 個體間分散距離變大, 進而對集群行為產(chǎn)生干擾[71]。噪音對魚類的捕食行為影響研究較多。例如, 噪音干擾導致歐洲鰻鱺()側化行為變?nèi)? 反捕食性能降低[72], 打樁噪音會導致長鰭近海魷魚()的捕食效率降低[73], 同時也會對其警報行為造成干擾[74], 而三刺魚()在風電噪音回放暴露下, 會出現(xiàn)捕食誤差增加, 捕食效率降低等[75]。此外, 在噪音暴露后, 雙斑蝦虎魚()和彩繪蝦虎魚()均會出現(xiàn)雄魚視覺、聽覺求愛行為降低, 雌魚產(chǎn)卵率降低的現(xiàn)象, 進而對該物種的種群數(shù)量造成一定影響[76]。

      噪音對哺乳動物危害最為嚴重, 大部分海洋哺乳動物對聲音比較敏感[47, 77]。在蘇格蘭Moray Firth海域海上風電打樁近點處擬合打樁噪音水下衰減曲線, 通過和寬吻海豚()的聲學特性曲線對比, 發(fā)現(xiàn)在距離打樁5 m處寬吻海豚()會出現(xiàn)聽覺永久性損傷, 在10 m處會出現(xiàn)短暫的聽力缺失[78]。此外, 海洋哺乳動物多通過聲音進行種間交流, 因此運營期的海上風電可能會對種間交流造成掩蔽效應[79]。但是, 與觀察到結果不同的是, 目前全球海上風電場附近有海洋哺乳動物分布和活動的觀測報道, 原因可能為風機基礎產(chǎn)生的增殖效應和保護地效應, 對大型哺乳動物具有較強吸引和保護作用[32]。但具體機制有待研究。

      2.2.2 海上風電噪音對海洋生物生理狀態(tài)的影響

      海上風電建設對海洋生物生理的影響主要表現(xiàn)在應激生理方面, 并存在明顯的時間效應[80]。例如, 在魚類中, 大吻異線鳚()在高聲壓級的間歇噪音中應激反應最為強烈[81]。在初期噪音暴露中, 尼羅羅非魚()表現(xiàn)出高呼吸頻率, 但暴露超過120天后, 應激反應趨于緩和并表現(xiàn)出正常的生理狀態(tài)[82]。大西洋鱈魚()和青鱈魚()都會在反復的噪音暴露試驗中表現(xiàn)出逐漸適應狀態(tài)[80]。而皮質(zhì)醇是反應噪音對魚類應激生理的關鍵指標[81, 83]。

      在雙殼貝類中, 研究多集中在生物大分子酶的活性方面。例如, 縊蟶()在強噪音下會出現(xiàn)代謝酶活性下降, 新陳代謝降低[70], 高頻噪聲對地中海藍貽貝()消化腺生理有負面影響[84]。此外, 噪音會加劇重金屬對貝類的毒性效應, 例如泥蚶()在70~100 dB的噪音下會通過協(xié)同作用增強對Cd的富集[85]。

      2.2.3 海上風電噪音對海洋生物影響的分子機制

      風電噪音對海洋生物影響的分子機制解析研究極少, 僅在貝類中有相關報道。例如, 當縊蟶()暴露于噪音時, 其糖酵解、脂肪酸合成、色氨酸代謝和三羧酸循環(huán)等10個相關代謝基因的表達發(fā)生改變, 在80 dB re 1μPa的噪音環(huán)境下, 相關基因均被誘導表達升高, 在100 dB re 1μPa的噪音環(huán)境下, 相關基因均被抑制表達[70]。Shi等將泥蚶()暴露在Cd和人為噪音下, 發(fā)現(xiàn)其與神經(jīng)遞質(zhì)分泌的相關基因(MAO、AChE和mAChR3)表達顯著下調(diào), 表明暴露于噪音污染可以抑制其神經(jīng)遞質(zhì)分泌, 進而通過協(xié)同效應加強了Cd對泥蚶()的毒理影響作用影響[85]。

      2.3 海上風電磁場對海洋生物的影響

      海洋環(huán)境中存在自然地磁場, 海鷗等許多電磁感生物依靠地磁場進行導航遷移[54, 86]。而海上風電中風機、升壓站、海底電纜均會產(chǎn)生額外的電磁場[87], 但由于不同介質(zhì)間電磁輻射衰減較快, 因此位于海平面上方的風機和升壓站所產(chǎn)生的磁場對海洋生物影響很小, 海上風電的電磁輻射主要來源于海底電纜, 而最可能受到海底電纜電磁場影響的海洋生物通常為運動能力較弱的底棲生物[88-89]。

      2.3.1 海上風電磁場對海洋生物行為模式的影響

      磁場對不同海洋生物行為的影響差異極大, 相關研究多集中于甲殼類動物。例如, 南極沙蚤()在20 nT及以下的極低頻電磁場暴露1 min后會迷失方向[90], 而歐洲螯龍蝦()在200 μT磁場內(nèi)行為模式未發(fā)現(xiàn)明顯改變[91], 但食用黃道蟹()卻表現(xiàn)出明顯的趨磁行為[92]。此外, 當沙蠶()暴露于磁場干擾后, 其掘洞行為出現(xiàn)顯著加強, 但磁場對海洋動物行為的影響機制仍未得到明確的解析[93]。

      2.3.2 海上風電磁場對海洋生物生理狀態(tài)的影響

      磁場對海洋生物生理影響的野外調(diào)查極少, 多在實驗室開展模擬實驗。沙蠶()暴露于海底電纜典型磁場后, 排氨率出現(xiàn)顯著降低[93]。食用黃道蟹()暴露于磁場后, 會出現(xiàn)L-乳酸鹽和D-葡萄糖的晝夜代謝生理紊亂[92]。磁場對魚類胚胎發(fā)育影響較為復雜, 例如, 虹鱒()受精卵放置在電磁場(50 Hz, 1 mT)內(nèi), 其存活率未發(fā)生顯著降低, 但卵黃的吸收率出現(xiàn)顯著上升[89], 類似的結果在白斑狗魚()中也有報道, 原因為磁場暴露加快了生物的代謝率[94]。但斑馬魚()在磁場干擾下, 孵化周期卻出現(xiàn)了顯著延遲[95]。在棘皮動物中, 研究也發(fā)現(xiàn)磁場暴露下紫海膽()胚胎細胞的有絲分裂受到擾亂, 進而影響正常的分裂與發(fā)育[96]。因此, 當海底電纜釋放的電磁場為1 mT或更高時, 在相應范圍內(nèi)的生物會受到潛在影響[97]。

      2.3.3 海上風電磁場對海洋生物影響的分子機制

      電磁場暴露對海洋生物影響的分子機制的研究也較少, 且多集中在轉錄水平。例如, Zhang等[98]采用轉錄組測序技術, 發(fā)現(xiàn)瘤背石磺()為在極低頻磁場(50 Hz, 100~500 μT)中暴露一周后可誘導免疫應答, 而地中海藍貽貝()在低頻電磁場(50 Hz, 400 μT)中, 熱休克蛋白HSP70和HSP90的表達出現(xiàn)上升[99-100]。在細胞水平, 當虹鱒()、蛤蜊()和沙蠶()暴露于電磁場時, 受試生物均不同程度的出現(xiàn)了微核等染色體畸變等異?,F(xiàn)象, 表明電磁場會導致海洋生物染色體的結構畸變并對遺傳產(chǎn)生進一步的影響[93]。但值得注意的是, 相關研究多集中于室內(nèi)模擬環(huán)境, 在海上風電場中單個海洋可再生能源設備或小陣列電纜所產(chǎn)生的電磁輻射的生態(tài)影響是有限的[101-102], 因此野外調(diào)查和現(xiàn)場研究亟待開展。

      3 研究展望

      海洋生態(tài)系統(tǒng)是一個動態(tài)系統(tǒng), 海上風電使海洋資源利用多重化、海洋空間碎片化, 目前我國海上風電建設方興未艾, 發(fā)展海上風電的同時更需關注其生態(tài)影響。本文系統(tǒng)總結了海上風電對海洋生態(tài)環(huán)境和生物資源的綜合影響。然而, 因海上風電對海洋生態(tài)環(huán)境的影響較為復雜, 需要詳細的野外調(diào)查研究來進一步明確其作用機制。此外, 在剛性環(huán)保要求下, 環(huán)保型海上風電機組裝備研制、生態(tài)型海洋牧場與海上風電融合發(fā)展模式創(chuàng)制, 也是我國未來高效、生態(tài)開發(fā)利用海上風電資源的重要舉措之一。

      3.1 環(huán)保型海上風電機組裝備研發(fā)

      研制低噪音海上風電機組裝備, 通過集成優(yōu)化風機葉片形態(tài)設計、風機葉尖降噪裝置、風機發(fā)電機組降噪設計, 有效減少海洋哺乳動物、海洋魚類等敏感的低頻噪音產(chǎn)生; 研發(fā)海上風機綠色防腐技術, 通過新型海洋防腐涂料的使用, 減少鋅、鋁等犧牲陽極材料的使用, 進而有效減少風機基礎重金屬的析出污染, 并制定環(huán)保型海上風機組件的選材、制造與安裝標準化技術體系, 以標準化保障海上風電的綠色建設和生態(tài)安全。

      3.2 海上風電精準選址和優(yōu)化布局

      研發(fā)海上風電場精準規(guī)劃與選址技術, 采用高精度聲學和遙感等觀測裝備, 保障海上風電場與魚類洄游路線和產(chǎn)卵育幼場、鳥類棲停遷飛路線、海洋哺乳動物領地等生態(tài)紅線區(qū)域不沖突; 創(chuàng)制海上風電場優(yōu)化布局技術, 保障風機基礎的精準投放安裝, 實現(xiàn)風機機組周年運行穩(wěn)定, 提高海上風電的開發(fā)利用效率, 保障海上風機機組的年發(fā)電量, 通過海上風電場的精準選址和優(yōu)化布局, 在保障海洋生物生態(tài)安全的基礎上, 實現(xiàn)海上風電資源的高效開發(fā)。

      3.3 海上風電生物立體監(jiān)測和作用機制解析

      建立海上風電區(qū)域資源環(huán)境立體監(jiān)測和實時生態(tài)安全網(wǎng)絡預警體系, 集成水下多環(huán)境因子、水下魚類和哺乳動物視頻采集、水上鳥類視頻采集、大數(shù)據(jù)集成傳輸分析技術的應用, 實現(xiàn)對海上風電場區(qū)域生態(tài)安全的實時監(jiān)測并及時預警預報; 針對海上風電運營期噪音、磁場對海洋生物影響機理不清、機制不明的研究現(xiàn)狀, 以我國海域常見物種為研究對象, 從行為、生理、分子角度開展系統(tǒng)研究, 全面闡明海上風電對海洋生物生存繁殖的綜合影響, 為大規(guī)模開展海上風電建設提供理論指導。

      3.4 海上風電與海洋牧場融合發(fā)展模式創(chuàng)制

      海上風電是實現(xiàn)“雙碳”目標的重要抓手, 海上風電與海洋牧場融合發(fā)展新模式是實現(xiàn)科學、集約、生態(tài)用海的重要途徑。研制資源增殖型風機基礎, 充分發(fā)揮風機基礎的人工魚礁效應, 增殖養(yǎng)護附著性貝類和仔稚魚等資源; 并利用風電場內(nèi)空置海域, 創(chuàng)制風機基礎與智能網(wǎng)箱、筏架、魚礁等海洋牧場典型構建設施的有機融合模式, 在生產(chǎn)清潔能源的同時, 高效產(chǎn)出優(yōu)質(zhì)水產(chǎn)蛋白, 實現(xiàn)海上風電與海洋牧場的協(xié)同發(fā)展。

      [1] Strunz S. Speeding up the energy transition[J]. Nature Sustainability, 2018, 1(8): 390-391.

      [2] Aydinalp C. Clean energy for better environment[M]. Croatia: InTech publisher, 2012.

      [3] Vargas S A, Esteves G R T, Macaira P M, et al. Wind power generation: A review and a research agen-da[J]. Journal of Cleaner Production, 2019, 218: 850- 870.

      [4] 崔榮國, 崔娟, 程立海, 等. 全球清潔能源發(fā)展現(xiàn)狀與趨勢分析[J]. 地球學報, 2021, 42(2): 179-186.

      Cui Guorong, Cui Juan, Cheng Lihai, et al. Status and trends analysis of global clearn energines[J]. Acta Geoscientica Sinica, 2021, 42(2): 179-186.

      [5] Bosch J, Staffell I, Hawkes A D. Temporally- explicit and spatially-resolved global onshore wind ene-rgy potentials[J]. Energy, 2017, 131: 207-217.

      [6] Sun X J, Huang D G, Wu G Q. The current state of offshore wind energy technology development[J]. Ener-gy, 2012, 41(1): 298-312.

      [7] Joyce Lee, Zhao F. Global offshore wind report 2020[R]. Brussels: Global Wind Energy Council (GWEC), 2020.

      [8] Sherman P, Chen X Y, Mcelroy M. Offshore wind: An opportunity for cost-competitive decarbonization of China’s energy economy[J]. Science Advan-ces, 2020, 6(8): eaax9571.

      [9] Lu X, Mcelroy M B, Chen X Y, et al. Opportunity for offshore wind to reduce future demand for coal- fired power plants in China with consequent savings in emissions of CO2[J]. Environment Science Technology, 2014, 48(24): 14764-14771.

      [10] 謝長軍. “海上風電三峽”工程建設的先行者——記龍源江蘇海上風電開發(fā)歷程[J]. 風能, 2019(6): 18-25.

      Xie Changjun. The forerunner of the construction of off-shore wind power Three Gorges Project-on the develop-ment process of offshore wind power in Longyuan, Jiangsu Province[J]. Wind Energy, 2019(6): 18-25.

      [11] Langhamer O, Dahlgren T G, Rosenqvist G. Effect of an offshore wind farm on the viviparous eelpout: Biometrics, brood development and population studies in Lillgrund, Sweden[J]. Ecological Indicators, 2018, 84: 1-6.

      [12] Nedwell J, Howell D. A review of offshore windfarm related underwater noise sources[J]. Cowrie Rep, 2004, 554: 1-57.

      [13] Nedwell J R, Turnpenny A W H, Lovell J, et al. A validation of the dBht as a measure of the behavioural and auditory effects of underwater noise[R]. UK: Subacoustech Ltd, 2007.

      [14] Soukissian T H, Papadopoulos A. Effects of different wind data sources in offshore wind power assessment[J]. Renewable Energy, 2015, 77: 101-114.

      [15] ?hman M C, Sigray P, Westerberg H. Offshore windmills and the effects of electromagnetic fie-lds on fish[J]. AMBIO: A journal of the Human Environment, 2007, 36(8): 630-633.

      [16] Furness R W, Wade H M, Robbins A M C, et al. Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices[J]. Ices Journal of Marine Science, 2012, 69(8): 1466-1479.

      [17] Furness R W, Wade H M, Masden E A. Assessing vulnerability of marine bird populations to offshore wind farms[J]. Journal of Environmental Management, 2013, 119: 56-66.

      [18] 蘇文, 吳霓, 章柳立, 等. 海上風電工程對海洋生物影響的研究進展[J]. 海洋通報, 2020, 39(3): 291-299.

      Su Wen, Wu Ni, Zhang Liuli, et al. A review of re-search on the effect of offshore wind power project on marine organisms[J]. Marine Science Bulletin, 2020, 39(3): 291-299.

      [19] 楊紅生, 茹小尚, 張立斌, 等. 海洋牧場與海上風電融合發(fā)展: 理念與展望[J]. 中國科學院院刊, 2019, 34(6): 104-111.

      Yang Hongsheng, Ru Xiaoshang, Zhang Libin, et al. Industial convergence of marine ranching and offshore wind power: Concept and prospect[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 104-111.

      [20] Degraer S, Carey D A, Coolen J W P, et al. Off-shore wind farm artificial reefs affect ecosystem structure and functioning[J]. Oceanography, 2020, 33(4): 48-57.

      [21] Paxton A B, Shertzer K W, Bacheler N M, et al. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one- size-fits-all[J]. Frontiers in Marine Science, 2020, 7: 282.

      [22] Bohnsack J A. Are high-densities of fishes at artificial reefs the result of habitat limitation or behavioral preference?[J]. Bulletin of Marine Science, 1989, 44(2): 631-645.

      [23] Andersson M H. Offshore wind farms – ecological effects of noise and habitat alteration on fish[D]. Stoc-k-holm: Stockholm University, 2011.

      [24] Krone R, Gutow L, Brey T, et al. Mobile demersal megafauna at artificial structures in the German Bight– Likely effects of offshore wind farm development[J]. Estuarine, Coastal and Shelf Science, 2013, 125: 1-9.

      [25] De Mesel I, Kerckhof F, Norro A, et al. Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species[J]. Hydro-biologia, 2015, 756(1): 37-50.

      [26] Stenberg C, Deurs M V, St?ttrup J, et al. Effect of the Horns Rev 1 offshore wind farm on fish communities: Follow-up seven years after construction[M]. Denmark: Danish Energy Authority, 2011.

      [27] Leonhard S B, Pedersen J. Benthic communities at Horns Rev before, during and after construction of Horns Rev Offshore Wind Farm[R]. Copenhagen: Vattenfall, 2006.

      [28] Lindeboom H J, Kouwenhoven H J, Bergman M J N, et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation[J]. En-vironmental Research Letters, 2011, 6(3): 35101-35113.

      [29] Krone R, Dederer G, Kanstinger P, et al. Mobile demersal megafauna at common offshore wind turbine foundations in the German Bight (North Sea) two years after deployment - increased production rate of[J]. Marine Environmental Research, 2017, 123: 53-61.

      [30] Langhamer O, Holand H, Rosenqvist G. Effects of an Offshore Wind Farm (OWF) on the common shore Crab: Tagging pilot experiments in the Lillgrund Offshore Wind Farm (Sweden)[J]. PLoS One, 2016, 11(10): e0165096.

      [31] Wang J J, Zou X Q, Yu W W, et al. Effects of established offshore wind farms on energy flow of coastal ecosystems: A case study of the Rudong offshore wind farms in China[J]. Ocean & Coastal Management, 2019, 171: 111-118.

      [32] Raoux A, Tecchio S, Pezy J P, et al. Benthic and fish aggregation inside an offshore wind farm: Which effects on the trophic web functioning?[J]. Ecological Indicators, 2017, 72: 33-46.

      [33] Wilber D H, Carey D A, Griffin M. Flatfish habi-tat use near North America’s first offshore wind farm[J]. Journal of Sea Research, 2018, 139: 24-32.

      [34] Wilhelmsson D, Malm T, ?hman M C. The in-fluence of offshore windpower on demersal fish[J]. Ices Journal of Marine Science, 2006, 63(5): 775-784.

      [35] Griffin R, Buck B, Krause G. Private incentives for the emergence of co-production of offshore wind energy and mussel aquaculture[J]. Aquaculture, 2015, 436: 80-89.

      [36] Russell D J F, Brasseur S, Thompson D, et al. Marine mammals trace anthropogenic structures at sea[J]. Current Biology, 2014, 24(14): R638-R639.

      [37] Thomsen F, Gill A, Kosecka M, et al. MaRVEN – Environmental impacts of noise, vibrations and electro-magnetic emissions from marine renewable energy[M]. Luxembourg: Publications Office of the European Union, 2016.

      [38] Bray L, Reizopoulou S, Voukouvalas E, et al. Expected effects of offshore wind farms on Mediter-ra-nean marine life[J]. Journal of Marine Science and Engineering, 2016, 4(1): 1-17.

      [39] Kirchgeorg T, Weinberg I, H?rnig M, et al. Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment[J]. Marine Pollution Bulletin, 2018, 136: 257-268.

      [40] MANGI S C. The impact of offshore wind farms on marine ecosystems: A review taking an ecosystem services perspective[J]. Proceedings of the IEEE, 2013, 101(4): 999-1009.

      [41] 王陽, 楊紅, 張午. 基于MIKE21的江蘇如東海上風電場泥沙沖淤數(shù)值模擬[J]. 海洋湖沼通報, 2021, 43(2): 48-57.

      Wang Yang, Yang Hong, Zhang Wu. Simulation of sediment erosion and silting on Rudong offshore wind farm project in Jiangsu Province by MIKE21[J]. Transactions of Oceanology and Limnology, 2021, 43(2): 48-57.

      [42] Rivier A, Bennis A C, Pinon G, et al. Parameterization of wind turbine impacts on hydrodynamics and sediment transport[J]. Ocean Dynamics, 2016, 66(10): 1285-1299.

      [43] 張晶磊. 江蘇濱海北區(qū)海上風電工程累積環(huán)境影響評價[D]. 上海: 上海海洋大學, 2018.

      Zhang Jinglei. Cumulative environmental impact assessment of offshore wind power projects in Northern Binhai, Jiangsu[D]. Shanghai: Shanghai Ocean University, 2018.

      [44] Andrulewicz E, Napierska D, Otremba Z. The environmental effects of the installation and functioning of the submarine SwePol Link HVDC transmission line: A case study of the Polish Marine Area of the Baltic Sea[J]. Journal of Sea Research, 2003, 49(4): 337-345.

      [45] Aran M T, H. A M, Jenni S. Acoustic impacts of offshore wind energy on fishery resources[J]. Oceano-graphy, 2020, 33(4): 82-95.

      [46] Hutchison Z L, Secor D H, Gill A B. The intera-ction between resource species an electromagnetic fields associated with electricity production by offshore wind farms[J]. Oceanography, 2020, 33(4): 96-107.

      [47] BaIley H, Senior R, Simmons R, et al. Assessing underwater noise levels during pile-driving at an offsho-re windfarm and its potential effects on marine mamma-ls[J]. Marine Pollution Bulletin, 2010, 60(6): 888-897.

      [48] DEBUSSCHERE E, DE C B, BAJEK A, et al. In situ mortality experiments with juvenile sea bass () in relation to impulsive sound levels caused by pile driving of windmill foundations[J]. PloS One, 2014, 9(10): e109280.

      [49] Hawkins A D, Pembroke A E, Popper A N. Information gaps in understanding the effects of noise on fishes and invertebrates[J]. Reviews in fish biology and fisheries, 2015, 25(1): 39-64.

      [50] Popper A N, Hawkins A D. An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes[J]. Journal of fish biology, 2019, 94(5): 692- 713.

      [51] Shannon G, Mckenna M F, Angeloni L M, et al. A synthesis of two decades of research documenting the effects of noise on wildlife[J]. Biological Reviews of the Cambrige Philosophical Society, 2016, 91(4): 982-1005.

      [52] Taormina B, Bald J, Want A, et al. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions[J]. Renewable & Sustainable Energy Reviews, 2018, 96: 380-391.

      [53] HUTCHISON Z L, GILL A B, PETER S, et al. Anth-ro-po-genic electromagnetic fields (EMF) influence the be-haviour of bottom-dwelling marine species[J]. Scientific reports, 2020, 10(1): 1-15.

      [54] Gill A B, Desender M. 2020 State of the Science Report - Chapter 5: Risk to animals from electromagnetic fields emitted by electric cables and marine renewable energy devices[R]. United States: Ocean Energy Systems (OES), 2020.

      [55] 楊春寶. 近海環(huán)境下風電基礎振動響應的規(guī)律、調(diào)控與評價[D]. 北京: 清華大學, 2017.

      Yang Chunbao. The regulation, control and evaluation of dynamic response for offshore wind turbine foundations[D]. Beijing: Tsinghua University, 2017.

      [56] Lin C G, Zhang L B, Pan Y, et al. Influence of vibration caused by sound on migration of sea cucumber[J]. Aquaculture Research, 2017, 48(9): 5072-5082.

      [57] Mendel B, Schwemmer P, Peschko V, et al. Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (spp.)[J]. Journal of Environmental Management, 2019, 231: 429-438.

      [58] Masden E A, Haydon D T, Fox A D, et al. Barriers to movement: impacts of wind farms on migrating birds[J]. Ices Journal of Marine Science, 2009, 66(4): 746-753.

      [59] Tabassum-Abbasi, Premalatha M, Abbasi T, et al. Wind energy: Increasing deployment, rising envi-ronmental concerns[J]. Renewable & Sustainable Energy Reviews, 2014, 31: 270-288.

      [60] Vanermen N, Onkelinx T, Verschelde P, et al. Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol[J]. Hydrobiologia, 2015, 756(1): 155-167.

      [61] Marx J, Schreiber A, Zapp P. Response to ‘Life-cycle green-house gas emissions of onshore and offshore wind turbines’[J]. Journal of Cleaner Production, 2019, 219: 33-34.

      [62] 張然. 海上風電場水下打樁噪聲研究[D]. 廈門: 廈門大學, 2019.

      ZHANG Ran. Research on underwater pilling noise for offshore wind farm[D]. Xiamen: Xiamen University, 2019.

      [63] Norro A M, Rumes B, Degraer S J. Differentia-ting between underwater construction noise of monopile and jacket foundations for offshore windmills: a case study from the Belgian part of the North Sea[J]. Scientific World Journal, 2013, 2013: 897624.

      [64] Tougaard J, Hermannsen L, Madsen P T. How loud is the underwater noise from operating offshore wind turbines?[J]. Journal of the Acoustical Society of America, 2020, 148(5): 2885.

      [65] ZHANG X G, GUO H Y, CHEN J, et al. Potential effects of underwater noise from wind turbines on the marbled rockfish ()[J]. Journal of Applied Ichthyology, 2021, 37(4): 514-522.

      [66] Pine M K, Jeffs A G, Radford C A. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae[J]. PLoS One, 2012, 7(12): e51790.

      [67] Spiga I, Aldred N, Caldwell G S. Anthropoge-nic noise compromises the anti-predator behaviour of the European seabass,(L.)[J]. Marine Pollution Bulletin, 2017, 122(1/2): 297-305.

      [68] Radford A N, Lebre L, Lecaillon G, et al. Repeated exposure reduces the response to impulsive noise in European seabass[J]. Global Change Biology, 2016, 22(10): 3349-3360.

      [69] Nedelec S L, Mills S C, Lecchini D, et al. Repeated exposure to noise increases tolerance in a coral reef fish[J]. Environmental Pollution, 2016, 216: 428-436.

      [70] Peng C, Zhao X G, Liu S X, et al. Effects of anthropo-genic sound on digging behavior, metabolism, Ca2+/Mg2+ATPase activity, and metabolism-related gene expression of the bivalve[J]. Scientific Reports, 2016, 6(1): 1-12.

      [71] NEO Y Y, PARIE L, BAKKER F, et al. Behavioral changes in response to sound exposure and no spatial avoidance of noisy conditions in captive zebrafish[J]. Frontiers in Behavioral Neuroscience, 2015, 9: 28.

      [72] Simpson S D, Purser J, Radford A N. Anthropogenic noise compromises antipredator behaviour in European eels[J]. Global Change Biology, 2015, 21(2): 586-593.

      [73] Jones I T, Peyla J F, Clark H, et al. Changes in feeding behavior of longfin squid () during laboratory exposure to pile driving noise[J]. Ma-rine Environmental Research, 2021, 165: 105250.

      [74] JONES I T, STANLEY J A, MOONEY T A. Impulsive pile driving noise elicits alarm responses in squid ()[J]. Marine Pollution Bulletin, 2020, 150: 110792.

      [75] Purser J, Radford A N. Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks ()[J]. PLoS One, 2011, 6(2): e17478.

      [76] De Jong K, Amorim M C P, Fonseca P J, et al. Noise can affect acoustic communication and subsequent spawning success in fish[J]. Environmental Pollution, 2018, 237: 814-823.

      [77] Madsen P T, Wahlberg M, Tougaard J, et al. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs[J]. Marine Ecology Progress Series, 2006, 309: 279-295.

      [78] GRAHAM I M, PIROTTA E, MERCHANT N D, et al. Responses of bottlenose dolphins and harbor porpoises to impact and vibration piling noise during harbor construction[J]. Ecosphere, 2017, 8(5): e01793.

      [79] NABI G, Richard W M, Hao Yujiang, et al. The possible effects of anthropogenic acoustic pollution on marine mammals' reproduction: an emerging threat to animal extinction[J]. Environmental Science & Pollution Research, 2018, 25: 19338-19345.

      [80] Davidsen J G, Dong H F, Linne M, et al. Effects of sound exposure from a seismic airgun on heart rate, acce-leration and depth use in free-swimming Atlantic cod and saithe[J]. Conservation Physiology, 2019, 7(1): coz020.

      [81] Nichols T A, Anderson T W, ?irovi? A. Intermittent noise induces physiological stress in a coastal marine fish[J]. PLoS One, 2015, 10(9): e0139157.

      [82] Kusku H, Yigit ü, Yilmaz S, et al. Acoustic effects of underwater drilling and piling noise on growth and physiological response of Nile tilapia ()[J]. Aquaculture Research, 2020, 51(8): 3166- 3174.

      [83] Crovo J A, Mendonca M T, Holt D E, et al. Stress and auditory responses of the otophysan fish,, to road traffic noise[J]. PLoS One, 2015, 10(9): e0137290.

      [84] Vazzana M, Ceraulo M, Mauro M, et al. Effects of acoustic stimulation on biochemical parameters in the digestive gland of Mediterranean mussel(Lamarck, 1819)[J]. Journal of the Acoustical Society of America, 2020, 147(4): 2414-2422.

      [85] SHI W, HAN Y, GUAN X F, et al. Anthropogenic noise aggravates the toxicity of cadmium on some physiological characteristics of the blood clam[J]. Frontiers in Physiology, 2019, 10: 377.

      [86] POLAGYE B, BASSETT C. 2020 State of the Science Report, Chapter 4: Risk to marine animals from under-water noise generated by marine renewable energy devices[R]. United States: Ocean Energy Systems (OES),2020: 67-85. https://doi.org/10. 2172/1633082.

      [87] 蔡靈, 姜尚, 馬麗, 等. 海上風電電磁輻射對海洋生物影響的研究綜述[J]. 海洋開發(fā)與管理, 2019, 36(12): 71-75.

      Cai Ling, Jiang Shang, Ma Li, et al. Review of the research on the effects of electromagnetic radiation from offshore wind power on marine organisms[J]. Ocean De-velopment and Management, 2019, 36(12): 71-75.

      [88] Albert L, Deschamps F, Jolivet A, et al. A cur-rent synthesis on the effects of electric and magnetic fie-l-ds emitted by submarine power cables on invertebrates[J]. Marine Environmental Research, 2020, 159: 104958.

      [89] Fey D P, Jakubowska M, Greszkiewicz M, et al. Are magnetic and electromagnetic fields of anthropogenic origin potential threats to early life stages of fish?[J]. Aquatic Toxicology, 2019, 209: 150-158.

      [90] Tomanova K, Vacha M. The magnetic orientation of the Antarctic amphipodis cancelled by very weak radiofrequency fields[J]. Journal of Experimental Biology, 2016, 219(11): 1717-1724.

      [91] Taormina B, Di Poi C, Agnalt A L, et al. Impact of magnetic fields generated by AC/DC submarine power cables on the behavior of juvenile European lobster ()[J]. Aquatic Toxicology, 2020, 220: 105401.

      [92] Scott K, Harsanyi P, Lyndon A R. Understan-ding the effects of electromagnetic field emissions from Marine Renewable Energy Devices (MREDs) on the commercially important edible crab,(L.)[J]. Marine Pollution Bulletin, 2018, 131: 580-588.

      [93] Jakubowska M, Urban-Malinga B, Otremba Z, et al. Effect of low frequency electromagnetic field on the behavior and bioenergetics of the polychaete[J]. Marine Environment Research, 2019, 150: 104766.

      [94] Fey D P, Greszkiewicz M, Otremba Z, et al. Effect of static magnetic field on the hatching success, growth, mortality, and yolk-sac absorption of larval Northern pike[J]. Science of the Total Environment, 2019, 647: 1239-1244.

      [95] PICCInetti C P C, Leo A D, Cosoli G, et al. Measurement of the 100 MHz EMF radiation in vivo effects on zebrafishembryonic development: A multi-disciplinary study[J]. Ecotoxicology & Environmental Safety, 2018, 154: 268-279.

      [96] A Tenuzzo B, Vergallo C, Dini L. Early develo-p--ment of sea urchinunder static (6 mT) and pul-sed magnetic fields (15 and 72 Hz)[J]. Current Che-mical Biology, 2016, 10(1): 32-42.

      [97] Fey D P, Greszkiewicz M, Jakubowska M, et al. Otolith fluctuating asymmetry in larval trout,Walbaum, as an indication of organism bilateral instability affected by static and alternating magnetic fields[J]. Science of The Total Environment, 2019, 707: 135489.

      [98] Zhang Mingming, Wang Jiawei, Sun Qirui, et al. Immune response of molluskto extre-mely low-frequency electromagnetic fields (ELF-EMF, 50 Hz) exposure based on immune-related enzyme activity and De novo transcriptome analysis[J]. Fish & Shellfish Immunology, 2020, 98: 574-584.

      [99] Davide M, Mauro L, Fabriziomaria G, et al. 50 Hz magnetic fields activate mussel immunocyte p38 MAP kinase and induce HSP70 and 90[J]. Comparative Biochemistry And Physiology Part C: Toxicology & pharmacology, 2004, 137(1): 75-79.

      [100] Malagoli D, Gobba F, Ottaviani E. 50 Hz ma-g-netic fields of constant or fluctuating intensity: effects on immunocyte hsp70 in the mussel[J]. Bioelectromagnetics, 2006, 27(5): 427-429.

      [101] 袁健美, 賁成愷, 高繼先, 等. 海上風電磁場對12種海洋生物存活率與行為的影響[J]. 生態(tài)學雜志, 2016, 35(11): 3051-3056.

      Yuan Jianmei, Ben Chengkai, Gao Jixian, et al. Effects of magnetic field of offshre wind farm on the survival and of marine organism[J]. Chinese Journal of Ecology, 2016, 35(11): 3051-3056.

      [102] NYQVIST D, DURIF C, JOHNSEN M G, et al. Electric and magnetic senses in marine animals, and potential behavioral effects of electromagnetic surveys[J]. Marine Environmental Research, 2020, 155: 104888.

      Research progress on the comprehensive impact of offshore wind farms on the marine ecological environment and biological resources

      WANG Ting1, 2, 3, 4, 6, 7, RU Xiao-shang1, 2, 3, 4, 6, ZHANG Li-bin1, 2, 3, 4, 5, 6

      (1. CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; 3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; 4. Laboratory of Marine Ranching Engineering, Chinese Academy of Sciences, Qingdao 266071, China; 5. University of Chinese Academy of Sciences, Beijing 100049, China; 6. Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; 7. State of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China)

      Offshore wind farms exhibit the characteristics of convenient consumption nearby, high energy generation efficiency and no consumption of fossil energy. In the background of low-carbon economic development, accelerating the growth of offshore wind farms has become a consensus for several countries around the world to promote the transformation and sustainable development of energy infrastructure. However, the impact of noise and magnetic fields generated by such wind farms on the marine environment and organisms remains unclear. This paper systematically reviews the current situation of global offshore wind farm development, analyzes its comprehensive impact on the marine environment and biological resources, and summarizes the potential effects of the noise and magnetic field generated by these wind farms on marine organisms from the physiological, behavioral, and molecular perspectives, thus providing a reference for scientific research on offshore wind farms.

      offshore wind farm; environmental impact; noise; electromagnetic effect; ecological effect

      Nov. 15, 2021

      [The National Key Research and Development Plan, No. 2019YFD0902104]

      P752; X[593]; Q178.53

      A

      1000-3096(2022)07-0095-10

      10.11759/hykx20211115001

      2021-11-15;

      2021-12-14

      國家重點研發(fā)計劃(2019YFD0902104)

      王婷(1997—), 女, 云南保山人, 在讀研究生, 主要從事海上風電的生態(tài)效應相關研究, E-mail: wangting@qdio.ac.cn; 張立斌(1989—),通信作者, 男, 研究員, E-mail: zhanglibin@qdio.ac.cn

      (本文編輯: 趙衛(wèi)紅)

      猜你喜歡
      海洋生物噪音風電場
      神奇的海洋生物
      中外文摘(2022年15期)2022-11-15 11:16:24
      海洋生物動起來
      什么樣的海洋生物會發(fā)光
      噪音,總是有噪音!
      無法逃避的噪音
      海洋生物
      幽默大師(2019年11期)2019-11-23 08:47:42
      基于PSS/E的風電場建模與動態(tài)分析
      電子制作(2018年17期)2018-09-28 01:56:44
      噪音的小把戲
      白噪音的三種用法
      Coco薇(2017年9期)2017-09-07 22:09:28
      含風電場電力系統(tǒng)的潮流計算
      皮山县| 澄迈县| 甘泉县| 滨海县| 和硕县| 西乌珠穆沁旗| 七台河市| 呼伦贝尔市| 阿拉善左旗| 来凤县| 修文县| 浮梁县| 通辽市| 沂源县| 冕宁县| 华池县| 诏安县| 伊宁市| 宁海县| 浦东新区| 仁化县| 德惠市| 杂多县| 阿拉善右旗| 淄博市| 炉霍县| 天水市| 基隆市| 德惠市| 元氏县| 会东县| 剑川县| 车险| 周宁县| 都匀市| 武定县| 灵璧县| 游戏| 磴口县| 炉霍县| 衡阳县|