古麗旦,劉洋,李方向,成衛(wèi)寧
小麥吸漿蟲(chóng)小熱激蛋白基因的克隆及在滯育過(guò)程與溫度脅迫下的表達(dá)特性
古麗旦1,劉洋1,李方向2,成衛(wèi)寧1
1西北農(nóng)林科技大學(xué)植物保護(hù)學(xué)院/農(nóng)業(yè)農(nóng)村部西北黃土高原作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100;2西安市農(nóng)業(yè)技術(shù)推廣中心,西安 710061
【】小麥吸漿蟲(chóng)()是最重要的小麥害蟲(chóng)之一,滯育使其度過(guò)酷暑和嚴(yán)寒。本研究旨在探討小麥吸漿蟲(chóng)小熱激蛋白(small heat shock protein,sHsp)基因在滯育中的作用?!尽坷肦ACE和RT-PCR技術(shù)從小麥吸漿蟲(chóng)滯育前幼蟲(chóng)中克隆全長(zhǎng)cDNA序列;利用生物信息學(xué)軟件對(duì)其核苷酸和編碼蛋白特性進(jìn)行分析;采用RT-qPCR技術(shù)分析在滯育進(jìn)程(滯育前、滯育、滯育后靜息期和滯育后發(fā)育)不同階段幼蟲(chóng)及夏滯育幼蟲(chóng)在短期(≤120 min)極端高溫(35—50℃) 和越冬幼蟲(chóng)在短期(≤120 min)極端低溫(0—-15℃)脅迫下的表達(dá)模式;通過(guò)大腸桿菌原核表達(dá)系統(tǒng)誘導(dǎo)表達(dá)及純化其編碼蛋白,采用吸光值法測(cè)定重組蛋白抑制豬心蘋(píng)果酸脫氫酶(malate dehydrogenase,MDH)熱聚沉的能力?!尽靠寺~@得了cDNA全長(zhǎng)為1 087 bp的小麥吸漿蟲(chóng),命名為(GenBank登錄號(hào):KT749988),其開(kāi)放閱讀框長(zhǎng)度為582 bp,編碼193個(gè)氨基酸,其中谷氨酸含量最高(12.4%),半胱氨酸含量最低(0.5%);預(yù)測(cè)的蛋白分子量為21.9 kD,等電點(diǎn)為5.67。SmHsp21.9氨基酸序列具有小熱激蛋白家族典型的-晶體結(jié)構(gòu)域,該結(jié)構(gòu)域由6個(gè)-折疊組成,其在空間上形成-三明治結(jié)構(gòu)。蛋白序列相似性和系統(tǒng)進(jìn)化分析表明,SmHsp21.9蛋白與長(zhǎng)角亞目昆蟲(chóng)搖蚊()Hsp27的相似性最高、親緣關(guān)系最近。RT-qPCR分析結(jié)果表明,小麥吸漿蟲(chóng)滯育不同時(shí)期幼蟲(chóng)表達(dá)量存在顯著差異,進(jìn)入滯育后表達(dá)量顯著降低,10月后逐漸升高,滯育后靜息階段的12月和翌年1月顯著高于其他季節(jié)。與未處理的對(duì)照相比,35—45℃高溫、-5—-10℃低溫處理可顯著誘導(dǎo)越夏、越冬幼蟲(chóng)的表達(dá),以30—60 min處理誘導(dǎo)效果較明顯;高于50℃或低于-15℃誘導(dǎo)效果不明顯。獲得的SmHsp21.9重組蛋白可顯著抑制MDH在高溫(43℃)下聚集,具有顯著的分子伴侶活性?!尽啃←溛鼭{蟲(chóng)的表達(dá)不僅受滯育發(fā)育影響,而且受環(huán)境溫度的調(diào)控,其可能參與滯育的啟動(dòng)和終止,且與滯育期間的耐熱和耐寒性相關(guān)。
小麥吸漿蟲(chóng);Hsp21.9;基因克隆;滯育;溫度脅迫;基因表達(dá)
【研究意義】小麥吸漿蟲(chóng)()是北半球小麥生產(chǎn)中的重要害蟲(chóng)[1-2],同時(shí)是一種典型的專(zhuān)性滯育昆蟲(chóng)。老熟幼蟲(chóng)脫離麥穗后鉆入土中結(jié)繭進(jìn)入滯育,直至12月大部分個(gè)體終止滯育后進(jìn)入靜息期,翌年3月小麥拔節(jié)后破繭恢復(fù)發(fā)育[3-4],即滯育不僅使小麥吸漿蟲(chóng)生活史與小麥物候保持一致,同時(shí)使其度過(guò)酷暑和嚴(yán)寒。探討小麥吸漿蟲(chóng)滯育進(jìn)程中熱激蛋白(heat shock protein,Hsp)基因表達(dá)與滯育發(fā)育與溫度耐受性之間的關(guān)系,對(duì)闡釋其滯育的分子機(jī)理及滯育過(guò)程中對(duì)逆境的適應(yīng)機(jī)制具有重要意義?!厩叭搜芯窟M(jìn)展】面對(duì)各種環(huán)境脅迫,幾乎所有的生物能夠合成Hsp。Hsp主要通過(guò)幫助蛋白質(zhì)正確折疊,促進(jìn)變性蛋白降解而發(fā)揮分子伴侶的功能。根據(jù)分子量大小,Hsp可分為Hsp90、Hsp70、Hsp60和小分子熱激蛋白(small heat shock protein,sHsp)4個(gè)主要家族[5-6]。sHsp分子量一般在12—43 kD,是Hsp超家族中分子量變化最大、種類(lèi)和功能最多樣化的家族[7]。目前從人類(lèi)和家蠶()基因組中分別鑒定了10個(gè)和16個(gè)[8-9]。近年來(lái)的研究表明,sHsp不僅參與生物對(duì)熱/冷[10-11]、干旱[12]和重金屬[13]等的脅迫,而且與昆蟲(chóng)發(fā)育[14-15]和滯育密切相關(guān),其在滯育中的作用因昆蟲(chóng)種類(lèi)和同家族成員的不同有較大差異。例如紅尾肉蠅()滯育期表達(dá)水平顯著高于滯育前和滯育后,與滯育維持及滯育期間的抗寒性有關(guān)[16];其他昆蟲(chóng)如蔥蠅()[17]、棉鈴蟲(chóng)()和梨小食心蟲(chóng)()、也發(fā)現(xiàn)了相似結(jié)果。然而與之不同,棉鈴蟲(chóng)和梨小食心蟲(chóng)進(jìn)入滯育后下調(diào)表達(dá)[18-19],絲光綠蠅()和叔白顏果蠅()的表達(dá)與滯育無(wú)關(guān)[20-21]。【本研究切入點(diǎn)】前期研究了小麥吸漿蟲(chóng)和在滯育進(jìn)程及極端高、低溫脅迫下的表達(dá)特點(diǎn)[22]。由于不同成員在昆蟲(chóng)滯育[18-19]或抵抗溫度脅迫[10]時(shí)的作用機(jī)制不同,有關(guān)小麥吸漿蟲(chóng)其他成員在滯育發(fā)育或極端溫度脅迫中的作用還有待探究?!緮M解決的關(guān)鍵問(wèn)題】克隆小麥吸漿蟲(chóng),分析其在滯育進(jìn)程與極端高、低溫脅迫下的mRNA表達(dá)模式;通過(guò)原核表達(dá)系統(tǒng)和蘋(píng)果酸脫氫酶(malate dehydrogenase,MDH)熱聚沉試驗(yàn)研究Hsp21.9重組蛋白的分子伴侶活性,為探明Hsp21.9在小麥吸漿蟲(chóng)滯育中的作用及適應(yīng)溫度響應(yīng)的機(jī)制提供理論依據(jù)。
供試蟲(chóng)源為小麥吸漿蟲(chóng)滯育前、滯育、滯育后靜息和滯育后發(fā)育幼蟲(chóng),均采自田間,參考Cheng等[23]的方法獲得。2020年5月,在陜西省興平市大量采集被小麥吸漿蟲(chóng)嚴(yán)重危害的麥穗,剝穗獲得3齡幼蟲(chóng)作為滯育前樣本,其余麥穗放入在陜西楊凌構(gòu)建的養(yǎng)蟲(chóng)圃(34°16′N(xiāo),108°4′E),為使蟲(chóng)體快速脫離麥穗和鉆入土中結(jié)繭進(jìn)入滯育,適度澆水。前期研究發(fā)現(xiàn),12月以后從田間采集的結(jié)繭幼蟲(chóng)轉(zhuǎn)入25℃后,幾乎全部羽化,說(shuō)明此后它們已終止滯育進(jìn)入滯育后靜息期[4]。從6月下旬大部分幼蟲(chóng)進(jìn)入滯育至翌年2月,每月定期淘土采集滯育(6—11月)和滯育后靜息(12月至翌年2月)幼蟲(chóng),3月幼蟲(chóng)離開(kāi)繭后采集發(fā)育幼蟲(chóng)。收集的幼蟲(chóng)每20頭放入2 mL凍存管中液氮速凍,-80℃保存。
自然條件下,小麥吸漿蟲(chóng)幼蟲(chóng)主要在地下3—10 cm滯育[24],陜西楊凌此范圍夏季最高和冬季最低溫度分別為30℃和0℃左右,而夏季地表極端溫度常超過(guò)50℃,冬季達(dá)-15℃。為明確小麥吸漿蟲(chóng)對(duì)極端高、低溫脅迫的響應(yīng),將8月采集的滯育幼蟲(chóng)放入2 mL離心管,分別置于不同溫度(35、40、45和50℃)水浴中處理 1 h和40、45℃水浴中處理不同時(shí)間(0、15、30、60和120 min);12月采集的幼蟲(chóng)在低溫培養(yǎng)箱中進(jìn)行不同低溫(0、-5、-10和-15℃)處理1 h和-5、-10℃處理不同時(shí)間(0、15、30、60和120 min)。處理結(jié)束后樣本液氮速凍,-80℃保存。每處理20頭試蟲(chóng),重復(fù)3次。
1.3.1 總RNA提取和cDNA合成 以采集的麥穗幼蟲(chóng)為樣本,參照RNA simple Total RNA Kit說(shuō)明書(shū)(TIANGEN,北京)提取總RNA,用核酸蛋白濃度測(cè)定儀檢測(cè)其濃度(OD260/OD280),1.0%瓊脂糖凝膠電泳檢測(cè)其完整性。取1 μg總RNA,按照PrimeScriptTMRT Reagent Kit with gDNA Eraser(Perfect Real Time)(Takara,大連)反轉(zhuǎn)錄試劑盒說(shuō)明書(shū)除去基因組DNA后反轉(zhuǎn)錄合成cDNA第1鏈,-20℃保存?zhèn)溆谩?/p>
1.3.2 RACE擴(kuò)增 基于本實(shí)驗(yàn)室獲得的小麥吸漿蟲(chóng)幼蟲(chóng)轉(zhuǎn)錄組中Unigene序列分別設(shè)計(jì)5′和3′ RACE特異引物(表1),按照3′-Full RACE Core Set with PrimeScriptTMRTase和5′-Full RACE Kit with TAP(Takara,大連)說(shuō)明進(jìn)行5′和3′ RACE擴(kuò)增。Outer PCR反應(yīng)程序?yàn)?4℃預(yù)變性3 min;94℃ 30 s,55℃ 30 s,72℃60 s,25個(gè)循環(huán);最后72℃延伸10 min。Inner PCR反應(yīng)程序除循環(huán)數(shù)為35外,其余同Outer PCR。PCR產(chǎn)物用1%瓊脂糖凝膠電泳檢測(cè),將符合預(yù)期大小的條帶用DNA純化回收試劑盒(TIANGEN,北京)回收后連接到克隆pMDTM-19T載體,然后轉(zhuǎn)化DH5感受態(tài)細(xì)胞,藍(lán)白斑篩選后隨機(jī)挑選3個(gè)陽(yáng)性克隆在LB培養(yǎng)基中37℃振蕩培養(yǎng),菌液PCR鑒定后送英濰捷基()貿(mào)易有限公司測(cè)序。
1.3.3 全長(zhǎng)序列驗(yàn)證 將獲得的5′和3′末端序列與轉(zhuǎn)錄組中的序列用DNAMAN 6.0軟件進(jìn)行拼接,根據(jù)拼接獲得的序列設(shè)計(jì)特異引物(表1)進(jìn)行PCR擴(kuò)增,擴(kuò)增程序?yàn)?4℃ 2 min;94℃ 30 s,56℃ 30 s,72℃ 30 s,35個(gè)循環(huán);最后72℃延伸5 min。PCR產(chǎn)物克隆測(cè)序步驟同上。
應(yīng)用在線(xiàn)軟件Expasy(http://www.expasy.org)將克隆獲得的小麥吸漿蟲(chóng)核苷酸序列翻譯成氨基酸序列并進(jìn)行分子量和等電點(diǎn)預(yù)測(cè),在線(xiàn)程序ORF finder(http://www.ncbi.nlm.nih.gov/gorf/gorf. html)預(yù)測(cè)開(kāi)放閱讀框,在線(xiàn)工具Conserved Domains(http:// www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)進(jìn)行蛋白功能域預(yù)測(cè),SWISS-MODEL服務(wù)器(https://www. swissmodel.expasy.org/)進(jìn)行蛋白三維結(jié)構(gòu)預(yù)測(cè)。應(yīng)用Blastp(https://blast.ncbi.nlm.nih.gov/Blast.cgi)進(jìn)行蛋白序列相似性分析,用MEGA6.0軟件中的鄰接法(neighbor-joining,NJ)構(gòu)建系統(tǒng)進(jìn)化樹(shù)(Bootstrap:1 000 次)。
1.5.1 RNA提取和cDNA模板的合成 取滯育進(jìn)程不同階段和高、低溫處理的小麥吸漿蟲(chóng)幼蟲(chóng)各20頭,按照1.3.1節(jié)的方法提取總RNA并反轉(zhuǎn)錄合成cDNA。每處理重復(fù)3次。
1.5.2 RT-qPCR分析 根據(jù)獲得的全長(zhǎng)cDNA序列設(shè)計(jì)定量引物(表1),以小麥吸漿蟲(chóng)(GenBank登錄號(hào):KR733066)為內(nèi)參,合成的cDNA為模板,按照SuperReal熒光定量預(yù)混試劑增強(qiáng)版(SYBR Green)(TIANGEN,北京)試劑盒說(shuō)明,在QuantStudio?5實(shí)時(shí)熒光定量PCR儀(Bio-Rad,Hercules,CA)上進(jìn)行PCR擴(kuò)增。20 μL反應(yīng)體系包括2×SuperReal PreMix Plus 10 μL,上下游引物(10 μmol·L-1)各0.8 μL,模板1.0 μL,其余為ddH2O。反應(yīng)程序?yàn)?5℃預(yù)變性15 min;95℃變性30 s,55℃退火30 s,72℃延伸 30 s,40個(gè)循環(huán);最后從55℃開(kāi)始,以每循環(huán)增加0.5℃后停留10 s,81次循環(huán)進(jìn)行熔解曲線(xiàn)擴(kuò)增。
1.5.3 數(shù)據(jù)分析 qPCR反應(yīng)結(jié)束后讀取Ct值,分別以小麥吸漿蟲(chóng)滯育前和未處理的越夏/越冬幼蟲(chóng)轉(zhuǎn)錄水平為基準(zhǔn),采用2-ΔΔCt法[25]計(jì)算滯育進(jìn)程不同階段和高、低溫處理下的相對(duì)表達(dá)水平,所得數(shù)據(jù)進(jìn)行單因素方差分析(<0.05)和Duncan氏多重比較。
表1 本研究所用引物
酶切位點(diǎn)用下劃線(xiàn)標(biāo)記 Restriction sites are underlined
以合成的cDNA為模板,利用帶R Ⅰ和dⅢ酶切位點(diǎn)的特異引物(表1)擴(kuò)增目的基因編碼區(qū),擴(kuò)增產(chǎn)物連接至pMD-19T載體并轉(zhuǎn)化DH5感受態(tài)細(xì)胞,白色菌落振蕩培養(yǎng)后提取質(zhì)粒并測(cè)序驗(yàn)證。將pMD19-T/SmHsp21.9重組質(zhì)粒和表達(dá)載體pET28a (+)分別進(jìn)行雙酶切,純化后用T4連接酶連接,轉(zhuǎn)化DH5感受態(tài)細(xì)胞,陽(yáng)性克隆培養(yǎng)后測(cè)序。測(cè)序正確的重組表達(dá)質(zhì)粒轉(zhuǎn)化BL21 (DE3)感受態(tài)細(xì)胞,陽(yáng)性克隆培養(yǎng)、測(cè)序驗(yàn)證后于含100 μg·mL-1卡那霉素的LB培養(yǎng)基中振蕩培養(yǎng)(37℃、220 r/min);取5 μL過(guò)夜培養(yǎng)的菌液接種至50 mL新鮮的LB培養(yǎng)基中繼續(xù)培養(yǎng),當(dāng)菌液OD600達(dá)到0.6—0.8時(shí),加入終濃度為0.5 mmol·L-1的IPTG誘導(dǎo)蛋白表達(dá),5 h后離心收集菌體;菌體用含0.5 mmol·L-1PMSF的20 mmol·L-1Tris-HCl(pH 7.4)懸浮,0.4 mg·mL-1溶菌酶裂解,液氮反復(fù)凍融后在1 200×離心30 min,收集上清和沉淀,15% SDS-PAGE檢測(cè)蛋白的表達(dá)情況。重組蛋白的變性、復(fù)性、純化和濃度測(cè)定等參照文獻(xiàn)[26]。
為明確Hsp21.9重組蛋白是否具有分子伴侶活性,參照Pérez-Morales等[27]的方法分析其抑制豬心蘋(píng)果酸脫氫酶(MDH,Sigma,美國(guó))熱聚沉的能力。目的蛋白、牛血清蛋白(BSA,對(duì)照)和MDH用1×PBS緩沖液(pH 7.0)分別稀釋至1 μmol·L-1,設(shè)3個(gè)處理組,即100 μL MDH+100 μL Hsp21.9重組蛋白、100 μL MDH+100 μL BSA和200 μL MDH。各處理置于溫度為43℃的酶標(biāo)儀中,分析360 nm處70 min內(nèi)吸光值的變化。重復(fù)3次。
通過(guò)RACE-PCR技術(shù)克隆獲得了cDNA全長(zhǎng)為1 087 bp的小麥吸漿蟲(chóng)(,GenBank登錄號(hào):KT749988)(圖1)。開(kāi)放閱讀框(ORF)長(zhǎng)度為582 bp,編碼193個(gè)氨基酸,預(yù)測(cè)的蛋白分子量為21.9 kD,等電點(diǎn)為5.67;5′和3′非編碼區(qū)(UTR)長(zhǎng)度分別為100 和405 bp,其中3′-UTR具有真核生物典型的多聚腺苷酸信號(hào)(AATAAA)和PolyA結(jié)構(gòu)。氨基酸組成分析表明,該蛋白由19種氨基酸組成,其中谷氨酸(Glu,E)含量最高(24個(gè)),占12.4%;半胱氨酸(Cys,C)含量最低(1個(gè)),占0.5%。保守結(jié)構(gòu)域搜索顯示,SmHsp21.9具有sHsp家族典型的-晶體結(jié)構(gòu)域(第59—137位氨基酸)和IXI基序(第149—151位氨基酸)。
起始密碼子和終止密碼子用方框標(biāo)注,多聚腺苷酸位點(diǎn)用下劃線(xiàn)表示,α-晶體結(jié)構(gòu)域用陰影表示,IXI基序用橢圓標(biāo)注
二級(jí)結(jié)構(gòu)預(yù)測(cè)顯示,SmHsp21.9-晶體結(jié)構(gòu)域由6個(gè)-折疊和2個(gè)-螺旋組成,它們分別包含46和6個(gè)氨基酸,各占58.2%和7.6%。利用SWISS-MODEL同源建模服務(wù)器,以斑馬魚(yú)()-晶體蛋白(PDB ID: 3n3e.1A)為模板對(duì)其三維結(jié)構(gòu)進(jìn)行預(yù)測(cè),發(fā)現(xiàn)該蛋白以二聚體形式存在,每個(gè)單體中6個(gè)反向平行的-折疊構(gòu)成-三明治結(jié)構(gòu)(圖2)。
將SmHsp21.9與來(lái)自于雙翅目、鱗翅目和膜翅目昆蟲(chóng)的其他20種sHsp氨基酸序列進(jìn)行Blastp比對(duì),發(fā)現(xiàn)SmHsp21.9與同目長(zhǎng)角亞目搖蚊()Hsp27(AGJ98435.1)一致性最高,為59.0%,與地中海實(shí)蠅()Hsp23(XP_ 004523813.1)橘小實(shí)蠅()Hsp23(XP_011198111.1)銅綠蠅()Hsp23(KNC34287.1)、黑腹果蠅()Hsp26(XP_017121953.1)和蔥蠅Hsp23(ADX36150.1)的一致性為50.9%—53.9%,與其他昆蟲(chóng)同源蛋白(包括同亞目的岡比亞按蚊()Hsp20.9)的一致性為36.2%—49.6%。基于鄰接法構(gòu)建SmHsp21.9與20種同源蛋白的進(jìn)化關(guān)系,結(jié)果(圖3)顯示系統(tǒng)樹(shù)分為4支,即雙翅目、鱗翅目、膜翅目和包含不同目昆蟲(chóng)(包括岡比亞按蚊家蠅()家蠶和大蜜蜂())sHsp的直系同源族,雙翅目中,SmHsp21.9與搖蚊親緣關(guān)系最近,與氨基酸序列比對(duì)和昆蟲(chóng)傳統(tǒng)分類(lèi)結(jié)果一致;同時(shí)發(fā)現(xiàn)同目中,同物種sHsp間的親緣關(guān)系比與其他物種間的近。
N和C分別表示N端和C端,藍(lán)色和綠色片層表示兩個(gè)單體的β-折疊結(jié)構(gòu),箭頭表示氨基酸序列由N端到C端,紅色部分為α-螺旋
圖3 SmHsp21.9與其他昆蟲(chóng)sHsp系統(tǒng)進(jìn)化關(guān)系
對(duì)小麥吸漿蟲(chóng)滯育前(5月)、滯育(6—11月)、滯育后靜息(12月至翌年2月)和滯育后發(fā)育(翌年3月)幼蟲(chóng)的表達(dá)量分析結(jié)果(圖4)表明,滯育進(jìn)程中表達(dá)量存在顯著差異。滯育前較高,入土進(jìn)入滯育后(6月)顯著降低,僅為滯育前的12%;9月之前維持在較低水平,但是10月后逐漸升高,大部分幼蟲(chóng)終止進(jìn)入滯育后靜息期的12月和1月達(dá)到最高(滯育前的2.89—3.27倍),顯著高于其他階段;2月后表達(dá)量顯著降低,恢復(fù)發(fā)育后降到滯育前的水平。
由圖5-A可知,35—45℃高溫處理1 h可顯著誘導(dǎo)越夏幼蟲(chóng)的表達(dá),以40℃處理的誘導(dǎo)效果最明顯,表達(dá)量為對(duì)照(未處理幼蟲(chóng))的4.43倍,其次為45℃處理,表達(dá)量為對(duì)照的3.22倍;然而50℃處理的表達(dá)量與對(duì)照差異不顯著。同時(shí)分析了40℃和45℃處理不同時(shí)間對(duì)表達(dá)的影響,結(jié)果(圖5-B)表明,15—120 min處理均顯著誘導(dǎo)的表達(dá),但不同處理時(shí)間之間表達(dá)量差異顯著。60 min處理范圍內(nèi),隨著時(shí)間的延長(zhǎng),表達(dá)量逐漸升高,60 min處理的表達(dá)量顯著高于其他處理。
由圖6-A可知,不同低溫處理1 h的越冬幼蟲(chóng)表達(dá)量差異顯著,其中-5℃處理的表達(dá)量最高,為對(duì)照(未處理幼蟲(chóng))的5.85倍,顯著高于其他處理;其次為-10℃,表達(dá)量為對(duì)照的3.41倍;0℃和-15℃處理與對(duì)照差異不顯著。同時(shí)分析了-5℃和-10℃處理不同時(shí)間對(duì)表達(dá)的影響,結(jié)果(圖6-B)表明,-5℃下,30和60 min 處理的表達(dá)量顯著高于其他處理,其次為15 min處理,90 min處理的表達(dá)量與對(duì)照差異不顯著;-10℃下,60 min處理的表達(dá)量顯著高于對(duì)照和15 min處理,其他處理間差異不顯著。
圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤,柱上不同小寫(xiě)字母表示經(jīng)Duncan氏多重比較后差異顯著(P<0.05)。圖5、圖6同
CK:未處理的對(duì)照The untreated control。圖6同The same as Fig. 6
圖6 不同低溫處理1 h(A)和-5、-10℃處理不同時(shí)間(B)的小麥吸漿蟲(chóng)越冬幼蟲(chóng)SmHsp21.9相對(duì)表達(dá)量
將成功構(gòu)建的原核表達(dá)重組質(zhì)粒pET28a(+)/ SmHsp21.9轉(zhuǎn)入BL21感受態(tài)細(xì)胞,經(jīng)IPTG誘導(dǎo)表達(dá)后用15% SDS-PAGE檢測(cè)(圖7),發(fā)現(xiàn)重組蛋白以包涵體形式存在(泳道3);重組蛋白經(jīng)變性、復(fù)性和純化后在約25 kD(包括His標(biāo)簽)處出現(xiàn)單一條帶(泳道4),表明獲得了較高純度的融合蛋白。
為明確SmHsp21.9蛋白是否具有保護(hù)細(xì)胞免遭高溫脅迫的分子伴侶功能,應(yīng)用吸光值法測(cè)定了其抑制豬心蘋(píng)果酸脫氫酶(MDH)熱聚沉的能力(圖8)。MDH在43℃孵育時(shí),360 nm處吸光值不斷升高,表明發(fā)生明顯的熱聚沉反應(yīng)[26],當(dāng)與無(wú)分子伴侶活性的牛血清蛋白(BSA)等摩爾濃度混合時(shí)吸光值快速上升,熱聚沉速度更快。但當(dāng)混入等摩爾濃度的SmHsp21.9時(shí),吸光值非常低,說(shuō)明其顯著抑制MDH熱聚沉,具有顯著的分子伴侶功能。
M:蛋白分子量標(biāo)準(zhǔn)molecular weight marker;1:未誘導(dǎo)的蛋白復(fù)合物un-induced pET28a (+) /SmHsp21.9;2:IPTG誘導(dǎo)的蛋白上清supernatant of pET28a (+) /SmHsp21.9 after induction by IPTG;3:IPTG誘導(dǎo)的蛋白包涵體inclusion body of pET28a(+) /SmHsp21.9 after induction by IPTG;4:純化后的融合蛋白purified pET28a (+)/SmHsp21.9
圖8 蘋(píng)果酸脫氫酶熱聚沉分析中SmHsp21.9的分子伴侶活性
本研究成功克隆了小麥吸漿蟲(chóng)全長(zhǎng)序列,其編碼蛋白僅含有1個(gè)半胱氨酸,但富含谷氨酸,這與已報(bào)道的多數(shù)伴侶蛋白半胱氨酸含量較少的結(jié)論相一致[28];研究表明谷氨酸能夠提供額外的靜電引力維持蛋白質(zhì)在高溫下的穩(wěn)定性[29]。SmHsp21.9蛋白不僅與同目長(zhǎng)角亞目昆蟲(chóng)sHsp序列相似性最高,親緣關(guān)系最近,而且與已報(bào)道的多數(shù)昆蟲(chóng)sHsp一樣,包含-晶體結(jié)構(gòu)域[30],且其富含-折疊,在空間上形成-三明治結(jié)構(gòu)。-結(jié)構(gòu)對(duì)sHsp的分子伴侶及對(duì)底物蛋白的特異性結(jié)合是十分重要的,-三明治結(jié)構(gòu)對(duì)于低聚物的形成十分必要[31],說(shuō)明該基因?qū)儆?晶體/sHsp家族,在進(jìn)化中結(jié)構(gòu)高度保守,即具備在高溫下發(fā)揮分子伴侶作用的條件。
小麥吸漿蟲(chóng)的表達(dá)與滯育進(jìn)程相關(guān)。滯育啟動(dòng)后表達(dá)量顯著下調(diào),9月前的滯育維持期表達(dá)量一直很低,10月后隨著田間溫度的降低,滯育終止率的提高表達(dá)量逐漸升高,所有個(gè)體終止滯育進(jìn)入滯育后靜息(低溫靜息)階段的初期(12月至翌年1月)[4]表達(dá)量達(dá)到最高,即該基因表達(dá)量變化與滯育的啟動(dòng)和終止緊密相關(guān)。該結(jié)論與蛀莖夜蛾()在滯育期表達(dá)量較低,滯育終止后表達(dá)量顯著升高[32]的結(jié)論相一致。小麥吸漿蟲(chóng)滯育和滯育后靜息幼蟲(chóng)均以結(jié)繭形式存在[4],二者在形態(tài)上無(wú)法區(qū)分,故可以表達(dá)量變化作為判斷滯育終止、區(qū)分兩種狀態(tài)的分子指標(biāo)。
昆蟲(chóng)發(fā)育和滯育受激素調(diào)控,而20E是調(diào)控昆蟲(chóng)發(fā)育和滯育最重要的激素之一。有研究表明,在昆蟲(chóng)發(fā)育中發(fā)揮作用,其在發(fā)育中的表達(dá)受20E的調(diào)控,如地中海實(shí)蠅[33]、中華蜜蜂()[34]和甜菜夜蛾()、[35]。本實(shí)驗(yàn)室前期研究發(fā)現(xiàn),小麥吸漿蟲(chóng)進(jìn)入滯育后20E滴度顯著降低,12月和翌年1月的低溫靜息階段顯著高于滯育前、后和滯育期其他階段[36],即與該蟲(chóng)滯育進(jìn)程表達(dá)變化趨勢(shì)相一致,故此認(rèn)為在小麥吸漿蟲(chóng)滯育中的表達(dá)可能受20E調(diào)控。
大量研究表明,昆蟲(chóng)受到極端環(huán)境尤其熱、冷脅迫后表達(dá)量會(huì)迅速提高,在昆蟲(chóng)抵抗熱、冷脅迫中發(fā)揮著重要作用。如40℃以上高溫處理(≤2 h)可迅速提高中華稻蝗()/[37]和赤擬谷盜()[38]的表達(dá)量,說(shuō)明在中華稻蝗和赤擬谷盜抵抗高溫脅迫中起到一定作用。-10℃低溫處理1 h可誘導(dǎo)白蠟蟲(chóng)()的表達(dá)[39];紅尾肉蠅在低溫下的上調(diào)表達(dá)提高了越冬蛹的存活率[16]。本研究發(fā)現(xiàn),短期(≤ 2 h)極端高溫(≥35℃)、低溫(≤-5℃)脅迫可顯著誘導(dǎo)小麥吸漿蟲(chóng)越夏、越冬幼蟲(chóng)的表達(dá),但隨著溫度的進(jìn)一步升高、降低或者暴露時(shí)間的延長(zhǎng),誘導(dǎo)效果不明顯或者下降,說(shuō)明夏季、冬季通過(guò)農(nóng)事操作(如翻地)將吸漿蟲(chóng)幼蟲(chóng)從地下翻到地表時(shí),可能在機(jī)體抵御一定程度的短期極端地面溫度脅迫中發(fā)揮作用,SmHsp21.9抑制MDH熱聚沉的能力說(shuō)明其具有保護(hù)細(xì)胞免遭高溫脅迫的分子伴侶功能。
小麥吸漿蟲(chóng)的表達(dá)不僅受滯育發(fā)育影響,而且受環(huán)境溫度的調(diào)控,其在滯育中的表達(dá)與滯育啟動(dòng)和終止相關(guān);極端高、低溫脅迫可誘導(dǎo)越夏、越冬幼蟲(chóng)的表達(dá),可顯著抑制MDH熱聚沉,說(shuō)明該基因與滯育期的耐熱和耐寒性相關(guān)。
[1] Shrestha G, Reddy G V P. Field efficacy of insect pathogen, botanical, and jasmonic acid for the management of wheat midgeand the impact on adult parasitoidpopulations in spring wheat. Insect Science, 2019, 26(3): 523-535.
[2] Wang Q, Liu X B, Liu H, Fu Y, Cheng Y M, Zhang L J, Shi W P, Zhang Y, Chen J L. Transcriptomic and metabolomic analysis of wheat kernels in response to the feeding of orange wheat blossom midges () in the field. Journal of Agricultural and Food Chemistry, 2022, 70(5): 1477-1493.
[3] 王越, 龍治任, 馮安榮, 成衛(wèi)寧. 蟲(chóng)口基數(shù)、小麥品種和降水對(duì)麥紅吸漿蟲(chóng)危害程度的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2015, 24(10): 165-171.
Wang Y, Long Z R, Feng A R, Cheng W N. Effects of initial population number, wheat varieties and precipitation on infestation of(Diptera: Cecidomyiidae). Acta Agriculture Boreali-occidentalis Sinica, 2015, 24(10): 165-171. (in Chinese)
[4] Cheng W N, Long Z R, Zhang Y D, Liang T T, Zhu- Salzman K Y. Effects of temperature, soil moisture and photoperiod on diapause termination and post-diapause development of the wheat blossom midge,(Géhin) (Diptera: Cecidomyiidae). Journal of Insect Physiology, 2017, 103: 78-85.
[5] Gu J, Huang L X, Shen Y, Huang L H, Feng Q L. Hsp70 and small hsps are the major heat shock protein members involved in midgut metamorphosis in the common cutworm,. Insect Molecular Biology, 2012, 21(5): 535-543.
[6] Shen Q D, Zhao L N, Xie G Q, Wei P, Yang M M, Wang S G, Zhang F, Tang B. Cloning three(Coleoptera: Coccinellidae) heat shock protein 70 family genes: regulatory function related to heat and starvation stress. Journal of Entomological Science, 2015, 50(3): 168-185.
[7] Franck E, Madsen O, van Rheede T, Ricard G, Huynen M A, de Jong W W. Evolutionary diversity of vertebrate small heat shock proteins. Journal of Molecular Evolution, 2004, 59(6): 792-805.
[8] Kappé G, Franck E, Verschuure P, Boelens W C, Leunissen J A, de Jong W W. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress & Chaperones, 2003, 8(1): 53-61.
[9] Li Z, Li X, Yu Q Y, Xiang Z H, Kishino H, Zhang Z. The small heat shock protein (sHSP) genes in the silkworm,, and comparative analysis with other insect sHSP genes. BMC Evolutionary Biology,2009, 9: 215.
[10] 汪慧娟, 趙靜, 施佐堃, 邱玲玉, 王甦, 張帆, 王世貴, 唐斌. 異色瓢蟲(chóng)3個(gè)小分子熱激蛋白序列及低溫誘導(dǎo)表達(dá)分析. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(16): 3145-3154.
WANG H J, ZHAO J, SHI Z K, QIU L Y, WANG S, ZHANG F, WANG S G, TANG B. Sequence analysis and induced expression of three novel small heat shock proteins mediating cold-hardiness in. Scientia Agricultura Sinica, 2017, 50(16): 3145-3154. (in Chinese)
[11] Zhang Y Y, Liu Y L, Guo X L, Li Y L, Gao H R, Guo X Q, Xu B H., an intronless small heat shock protein gene, is involved in stress defence and development in. Insect Biochemistry and Molecular Biology, 2014, 53: 1-12.
[12] Zahur M, Maqbool A, Irfan M, Barozai M Y K, Qaiser U, Rashid B, Husnain T, Riazuddin S. Functional analysis of cotton small heat shock protein promoter region in response to abiotic stresses in tobacco using-mediated transient assay. Molecular Biology Reports, 2009, 36(7): 1915-1921.
[13] Zhang A G,?Lu Y L,?Li C H,?Zhang P, Su X R,?Li Y,?Wang C L, Li T W. A small heat shock protein (sHSP) fromagainst heavy metals stresses. Fish & Shellfish Immunology, 2013, 34(6): 1605-1610.
[14] Huang L H, Wang C Z, Kang L. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer,. Journal of Insect Physiology, 2009, 55(3): 279-285.
[15] Xie J, Hu X X, Zhai M F, Yu X J, Song X W, Gao S S, Wu W, Li B. Characterization and functional analysis ofgene in the red flour beetle,. Insect Science, 2019, 26(2): 263-273.
[16] Rinehart JP, LiAQ, YocumGD,Robich RM, HaywardSAL, Denlinger DL.Up-regulation of heat shock proteins is essential for cold survival during insect diapause.Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11130-11137.
[17] Si FL, He ZB, ChenB.Cloning and expression profiling of heat shock protein DaHSP23 gene in the winter and summer diapause pupae of the onion maggot,(Diptera: Anthomyiidae). Acta Entomologica Sinica, 2016, 59(4): 402-410.
[18] Lu Y X, Xu W H. Proteomic and phosphoproteomic analysis at diapause initiation in the cotton bollworm,. Journal of Proteome Research, 2010, 9(10): 5053-5064.
[19] Zhang B, Zheng JC, Peng Y, Liu XX, Hoffmann AA, Ma CS.Stress responses of small heat shock protein genes in lepidoptera point to limited conservation of function across phylogeny. PLoS ONE, 2015,10(7): e0132700.
[20] Tachibana S I, Numata H, Goto S G. Gene expression of heat-shock proteins (,and) during and after larval diapause in the blow flyJournal of Insect Physiology, 2005, 51(6): 641-647.
[21] GOTO SG, KIMURA MT.Heat-shock-responsive genes are not involved in the adult diapause of. Gene, 2004,326(1): 117-122.
[22] Zhao J J, Huang Q T, Zhang G J, Zhu-Salzman K Y, Cheng W N. Characterization of two small heat shock protein genes (and) from, and their expression regulation during diapause. Insects, 2021, 12: 119.
[23] Cheng W N, Li D, Wang Y, Liu Y, Zhu-Salzman K Y. Cloning of heat shock protein genes (,and) and their expression in response to larval diapause and thermal stress in the wheat blossom midge,. Journal of Insect Physiology, 2016, 95: 66-77.
[24] Doane J F, Olfert O. Seasonal development of wheat midge,(Géhin) (Diptera: Cecidomyiidae), in Saskatchewan, Canada. Crop Protection, 2008, 27(6): 951-958.
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.
[26] Cheng W N, Zhang Y D, Liu W, Li G W, Zhu-Salzman K Y. Molecular and functional characterization of three odorant-binding proteins from the wheat blossom midge,. Insect Science, 2020, 27(4): 721-734.
[27] Pérez-Morales D, Ostoa-Saloma P, Espinoza B.SHSP16: Characterization of an-crystallin small heat shock protein. Experimental Parasitology, 2009, 123: 182-189.
[28] Fu X, Li W, Mao Q, Chang Z. Disulfide bonds convert small heat shock protein Hsp16.3 from a chaperone to a non-chaperone: implications for the evolution of cysteine in molecular chaperones. Biochemical and Biophysical Research Communications, 2003, 308(3): 627-635.
[29] Jacobsen J V, Shaw D C. Heat-stable proteins and abscisic acid action in barley aleurone cells.Plant Physiology, 1989, 91(4): 1520-1526.
[30] Bagneris C, Bateman O A, Naylor C E, Cronin N, Boelens W C, Keep N H, Slingsby C. Crystal structures of-crystallin domain dimers ofB-crystallin and Hsp20. Journal?of?Molecular Biology, 2009, 392: 1242-1252.
[31] Sun Y, Macrae T H. Small heat shock proteins: molecular structure and chaperone function. Cellular and Molecular Life Sciences, 2005, 62(21): 2460-2476.
[32] Gkouvitsas T, Kontogiannatos D, Kourti A. Differential expression of two small Hsps during diapause in the corn stalk borer(Lef.).Journal of Insect Physiology, 2008, 54(12): 1503-1510.
[33] Kokolakis G, Tatari M, Zacharopoulou A, Mintzas AC.Thegene of the Mediterranean fruit fly,: structural characterization, regulation and developmental expression. Insect Molecular Biology, 2008, 17(6): 699-710.
[34] Liu Z H, Yao P B, Guo X Q, Xu B H. Two small heat shock protein genes in: characterization, regulation, and developmental expression. Gene, 2014, 545(2): 205-214.
[35] Shen Y, Gu J, Huang L H, Zheng S C, Liu L, Xu W H, Feng Q L, Kang L. Cloning and expression analysis of six small heat shock protein genes in the common cutworm,. Journal of Insect Physiology, 2011, 57(7): 908-914.
[36] 成衛(wèi)寧, 李建軍, 李怡萍, 李修煉, 仵均祥, 王洪亮. 小麥吸漿蟲(chóng)成蟲(chóng)和幼蟲(chóng)滯育過(guò)程中蛻皮激素的定量分析. 植物保護(hù)學(xué)報(bào), 2009, 36(2): 163-167.
Cheng W N, Li J J, Li Y P, Li X L, Wu J X, Wang H L. Quantitative analysis of ecdysteroid in adults and the pre-diapause, diapause and post-diapause larvae of wheat blossom midge,Gehin. Acta Phytophylacica Sinica, 2009, 36(2): 163-167. (in Chinese)
[37] 史學(xué)凱, 寇利花, 張育平, 馬恩波, 張建珍, 吳?;? 溫度對(duì)中華稻蝗小分子熱休克蛋白基因表達(dá)的影響. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2016, 53(6): 1267-1273.
SHI X K, KOU L H, ZHANG Y P, MA E B, ZHANG J Z, WU H H. Effects of temperature on the expression patterns ofgenes in. Chinese Journal of Applied Entomology, 2016, 53(6): 1267-1273. (in Chinese)
[38] Garcia-Reina A, Rodriguez-Garcia M J, Ramis G, Galian J. Real-time cell analysis and heat shock protein gene expression in the TcAcell line in response to environmental stress conditions. Insect Science, 2017, 24(3): 358-370.
[39] 劉魏魏, 楊璞, 陳曉鳴. 白蠟蟲(chóng)熱激蛋白基因在低溫脅迫下的表達(dá)分析. 林業(yè)科學(xué)研究, 2013, 26(6): 681-685.
LIU W W, YANG P, CHEN X M. Expression analysis of heat shock protein genes inunder cold stress. Forest Research, 2013, 26(6): 681-685. (in Chinese)
Cloning of Small Heat Shock Protein Geneand its Expression Characteristics during Diapause and Under Temperature Stresses
GU LiDan1, Liu Yang1, Li FangXiang2, CHENG WeiNing1
1College of Plant Protection,Northwest A&F University/Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling712100, Shaanxi;2Xi’an Agricultural Technology Extension Centre, Xi’an 710061
【】The wheat blossom midge(Diptera: Cecidomyiidae), one of the most important wheat pests, undergoes obligatory larval diapause to survive adverse temperature extremes during hot summers and cold winters. This study aims to explore the potential roles of small heat shock protein (sHsp) gene.【】 RACE and RT-PCR technologies were used to clone the full-length cDNA offrompre-diapause larvae. Bioinformatics programs were used to characterize the nucleotide and amino acid sequence of cloned. Real-time quantitative PCR (RT-qPCR) was used to determine the mRNA expression level of, as well as over-summering larvae exposed to short-term (≤120 min) heat stress (35-50℃) and over-wintering larvae exposed to short-term (≤120 min) cold stress (0 to -15℃). The recombinant Hsp21.9 proteinwas expressed byprokaryotic expression technology, and then purified. The activity of bacterially expressed recombinant proteins to suppress thermal aggregation of pig heart mitochondrial malate dehydrogenase (MDH) was determined by colorimetry.【】The full-length cDNA of() obtained was 1 087 bp (GenBank accession number: KT749988), which contained a 582 bp open reading frame (ORF). The predicted ORF encoded a protein of 193 amino acids of which the content of glutamic acid (12.4%) was the most, and the content of cysteine (0.5%) was the least. The estimated molecular weight and isoelectric point were 21.9 kD and 5.67, respectively. The amino acid sequence of SmHsp21.9 contains typical-crystallin domain of the sHsp family. The domain consists of six-sheets, which forms a-sandwich structure. Sequence alignment and phylogenetic analysis suggested that SmHsp21.9 displayed the highest amino acid identity and the closest relationship to Hsp27 from the Nematocera. RT-qPCR indicated thatexpression differed significantly among different diapause stages. The expression level was decreased after the initiation of diapause, gradually increased in October, and peaked in early-to-mid phase of post-diapause (December and January). Compared with the untreated control, the expression level ofwas significantly induced in over-summering larvae exposed to heat stress (35-45℃) or over-wintering larvae exposed to cold stressed (-5 to -10℃), but temperature extremes i.e. as high as 50℃ or as low as -15℃ failed to do so. The treatment duration also affected transcript levels of, with the maximum value at 30-60 min. Recombinant SmHsp21.9 proteins obtained significantly prevented heat-induced (43℃) aggregation of MDH, suggesting its significant molecular chaperone functionality.【】The expressionofis regulated not only by diapause development, but also by environmental temperature.might be involved in initiation and termination of diapause, and heat/cold tolerance during diapause in.
; Hsp21.9; gene cloning; diapause; temperature stress; gene expression
2022-07-25;
2022-09-08
國(guó)家自然科學(xué)基金(31371933)、陜西省重點(diǎn)研發(fā)計(jì)劃(2020NY-059)
古麗旦,E-mail:826185856@qq.com。通信作者成衛(wèi)寧,E-mail:cwning@126.com
(責(zé)任編輯 岳梅)