李建坤,羅軍明,蘇宇航,高玉魁,陳同彩,崔世宇
熱噴涂與冷噴涂技術(shù)
等離子噴涂熱障陶瓷涂層冷卻累計(jì)殘余應(yīng)力的有限元模擬與驗(yàn)證
李建坤1,羅軍明1,蘇宇航1,高玉魁2,陳同彩1,崔世宇1
(1.南昌航空大學(xué) 材料科學(xué)與工程學(xué)院,南昌 330063;2.同濟(jì)大學(xué) 材料科學(xué)與工程學(xué)院,上海 200092)
為有效預(yù)測(cè)等離子噴涂熱障涂層冷卻過程中累積的殘余應(yīng)力,降低殘余應(yīng)力對(duì)涂層穩(wěn)定性的影響,需尋求可靠的熱障涂層應(yīng)力檢測(cè)方法。利用有限元分析軟件,采用生死單元法建立了等離子噴涂ZrO2涂層的有限元模型,高斯熱源模擬等離子噴涂熱源工況,研究涂層冷卻至室溫的殘余應(yīng)力及其分布。使用X射線衍射法、拉曼光譜法對(duì)等離子噴涂制備的ZrO2涂層進(jìn)行殘余應(yīng)力檢測(cè)。通過有限元模擬結(jié)果可以看出,噴涂涂層冷卻到室溫后其中心區(qū)域的殘余應(yīng)力與邊緣位置相比較大,主要集中在熱流中心區(qū)域;每層涂層結(jié)合界面處會(huì)產(chǎn)生較大應(yīng)力,致使應(yīng)力沿涂層厚度方向變化明顯。涂層的等效應(yīng)力為160~ 220 MPa。采用X射線衍射法檢測(cè)涂層存在180~185 MPa殘余應(yīng)力。標(biāo)定ZrO2涂層的拉曼-應(yīng)力因子為8.33 (cm·GPa)?1,計(jì)算得到涂層存在殘余應(yīng)力為174~180 MPa。對(duì)噴涂試樣進(jìn)行拉伸試驗(yàn)后,其殘余應(yīng)力有一定程度的釋放。使用有限元能有效模擬等離子噴涂至室溫時(shí)涂層內(nèi)部殘余應(yīng)力,與XRD、拉曼光譜檢測(cè)結(jié)果具有良好的匹配性,涂層冷卻至室溫存在180 MPa左右的殘余應(yīng)力,嚴(yán)重影響涂層的穩(wěn)定性。
殘余應(yīng)力;有限元模擬;熱障涂層;生死單元法;高斯熱源;X射線衍射;拉曼光譜
熱噴涂防護(hù)涂層因其具有制備成本低、工藝簡(jiǎn)單以及可以獲得高附加值等眾多優(yōu)點(diǎn),在諸多工業(yè)領(lǐng)域該方法都有大量應(yīng)用[1]。但熱障涂層本身結(jié)構(gòu)復(fù)雜,服役環(huán)境惡劣,造成熱障涂層失效的因素多種多樣,最終導(dǎo)致涂層剝落失效的原因是熱循環(huán)下涂層的應(yīng)力場(chǎng)和TGO的形成及增厚[2],高溫循環(huán)產(chǎn)生的內(nèi)應(yīng)力以及服役環(huán)境下產(chǎn)生的殘余應(yīng)力對(duì)熱障涂層壽命的影響最為顯著[3],會(huì)降低涂層與基體的結(jié)合強(qiáng)度,最終表現(xiàn)為涂層的開裂、剝落[4]。
目前,涂層殘余應(yīng)力的相關(guān)研究主要集中在計(jì)算機(jī)模擬等方面,利用有限元分析軟件計(jì)算噴涂涂層殘余應(yīng)力的分布趨勢(shì)。黃貞益等[5]針對(duì)這一問題,采用有限元法模擬等離子噴涂沉積過程。張明海等[6]采用有限元分析了梯度材料的層數(shù)對(duì)殘余應(yīng)力的影響,發(fā)現(xiàn)當(dāng)層數(shù)大于等于6層時(shí),應(yīng)力的變化趨于平緩。謝玲玲等[7]采用逐道累積模擬真實(shí)噴涂過程,發(fā)現(xiàn)噴涂涂層內(nèi)部以拉應(yīng)力為主,基體主要為壓應(yīng)力。Abdelgawad等[8]則針對(duì)微觀模型研究,建立了基于SEM圖像的有限元模型,研究熱障涂層在循環(huán)加載過程中殘余應(yīng)力的發(fā)展規(guī)律,結(jié)果表明,涂層粗糙度會(huì)引起噴涂過程中的應(yīng)力集中。Cui等[9]則建立了不同孔隙率的二維涂層有限元模型,研究發(fā)現(xiàn)在1 473 K時(shí)微孔引起的拉伸應(yīng)力可達(dá)周圍區(qū)域的3倍。此外,還有一些研究人員采用有損檢測(cè)方法對(duì)此展開研究,對(duì)于空隙率小的激光熔覆涂層,朱麗娜等[10]采用納米壓痕法精確測(cè)量涂層表面及截面上的殘余應(yīng)力。遲光芳等[11]基于盲孔法檢測(cè)了涂層的殘余應(yīng)力,發(fā)現(xiàn)涂層的平均應(yīng)力隨著熱處理時(shí)間的增加,先增加后減小?,F(xiàn)有大多研究人員主要采用有限元法、有損檢測(cè)方式等來分析涂層應(yīng)力分布情況,像常規(guī)無損檢測(cè)方法,如激光干涉、云紋分析、X射線衍射等方法[12],在涂層應(yīng)力方面鮮有涉及。
為實(shí)現(xiàn)涂層殘余應(yīng)力的預(yù)估與檢測(cè),使用有限元分析模擬預(yù)測(cè)噴涂結(jié)束后涂層內(nèi)部應(yīng)力大小及其分布,并采用試驗(yàn)手段加以驗(yàn)證,對(duì)指導(dǎo)涂層的制備尤為重要。本文使用Ansys軟件建立熱噴涂模型模擬噴涂工況,研究ZrO2涂層冷卻至室溫時(shí)的殘余應(yīng)力;在304不銹鋼表面制備ZrO2涂層,采用X射線衍射法、拉曼光譜法分析陶瓷涂層的殘余應(yīng)力,以探尋準(zhǔn)確檢測(cè)陶瓷涂層內(nèi)部殘余應(yīng)力的方法。
根據(jù)實(shí)際工況建立有限元模型,本模型主要有兩部分構(gòu)成,下方為304不銹鋼基體,上面則為噴涂涂層。涂層噴涂過程中溫度場(chǎng)的變化由軟件傳熱模塊計(jì)算,再將噴涂結(jié)束時(shí)溫度場(chǎng)傳遞給結(jié)構(gòu)力學(xué)場(chǎng)進(jìn)行熱力學(xué)耦合得到應(yīng)力[13]。不銹鋼基體的彈性模量為1.9× 1011Pa,泊松比為0.29,膨脹系數(shù)為1.8×10?5℃?1,涂層的物性參數(shù)如表1所示。
圖1為建立的等離子噴涂有限元模型,涂層的沉積厚度為150 μm,沉積層數(shù)為6層。本文選用SOLID70 3D實(shí)體熱單元,利用ANSYS生死單元方法,在噴涂開始前將涂層單元全部殺死,隨著噴涂的進(jìn)行依次激活單元,完成噴涂過程。
試樣模型與空氣進(jìn)行對(duì)流換熱,噴涂時(shí)與冷卻時(shí)的對(duì)流換熱系數(shù)分別為30 W/(m2·℃)和10 W/(m2·℃),模型左端面做絕熱處理,仿真過程中涂層逐層疊加,疊加到6層厚結(jié)束,然后冷卻至室溫。由于模擬計(jì)算中的有限元模型為軸對(duì)稱模型,因此模型左端和底部節(jié)點(diǎn)的位移固定,以保證邊界節(jié)點(diǎn)軸向位移協(xié)調(diào)變形。
分析中假設(shè)涂層整個(gè)均勻,與基體結(jié)合良好;在忽略基體與涂層之間界面粗糙度的情況下,認(rèn)為二者之間為光滑界面,且在界面處不產(chǎn)生相對(duì)滑動(dòng)[15];涂層與基體、涂層與涂層界面的接觸方式為Bonded接觸類型;ZrO2陶瓷涂層與不銹鋼基體皆為各向同性材料;熱分析過程中,忽略ZrO2相變,不考慮熱輻射以及熱傳導(dǎo)的影響[16];在等離子噴涂之前,試樣模型無應(yīng)力。由于等離子噴涂過程中熱源的溫度分布近似高斯熱源分布,且等離子弧對(duì)基體的沖擊力較小,故采用高斯分布函數(shù)熱源[17],見式(1)。
式中:()為熱源熱流密度;m為最大熱流密度;為熱源作用半徑;為任意點(diǎn)到高溫光斑圓心的距離[18]。噴涂過程中熱源中心處最大熱流密度計(jì)算公式為:
表1 涂層的物性參數(shù)[14]
Tab.1 Physical properties of coating[14]
圖1 等離子噴涂有限元模型
=IU(3)
式中:為高斯熱源有效熱功率;為高斯熱源電流值;為高斯熱源電壓值[19]。
確定噴涂模型的尺寸后,對(duì)模型的網(wǎng)格尺寸進(jìn)行分析,表2為5組不同網(wǎng)格單元尺寸參數(shù)對(duì)比,分別設(shè)置網(wǎng)格單元尺寸為2、1.75、1.5、1.25、1 mm,對(duì)其進(jìn)行計(jì)算時(shí)間和計(jì)算結(jié)果的比較。結(jié)果表明:當(dāng)網(wǎng)格單元尺寸為2 mm時(shí),計(jì)算時(shí)間最少,但模擬得到的最大溫度偏大,隨著網(wǎng)格的細(xì)分,模擬得到的最大溫度逐漸降低并趨于平穩(wěn);當(dāng)網(wǎng)格尺寸低于2 mm時(shí),溫度結(jié)果已無明顯變化。通過比較5組參數(shù),由此確定當(dāng)網(wǎng)格尺寸為1.75 mm時(shí)單元數(shù)量合理且能獲得較短的計(jì)算時(shí)間,且模擬結(jié)果準(zhǔn)確。
表2 網(wǎng)格參數(shù)對(duì)比
Tab.2 Comparison of mesh parameter
圖2為等離子噴涂過程的溫度場(chǎng),可從圖中可以看出在噴涂過程中,熱流溫度最高處在噴涂中心位置附近,隨著噴涂行進(jìn)方向前進(jìn)。隨著噴涂過程的進(jìn)行,高溫ZrO2噴涂粉末撞擊到不銹鋼基體后與基體結(jié)合在一起并迅速降溫冷凝。圖3為噴涂過程的最大溫度曲線,隨著噴涂的進(jìn)行,涂層最大溫度不斷累積,到第6層時(shí)涂層的溫度已經(jīng)累積到1 200 ℃,模擬溫度場(chǎng)最高溫度與試驗(yàn)時(shí)所檢測(cè)溫度一致,且與文獻(xiàn)[20]中的溫度場(chǎng)分布一致;與文獻(xiàn)[20]相比,溫度略高則是由于本模擬噴涂速度較慢,導(dǎo)致熱量累計(jì)而最大溫度有所升高。綜上,本模擬得到的溫度場(chǎng)、最大溫度與實(shí)際工況吻合良好,具有良好的匹配度。
噴涂涂層冷卻至室溫時(shí)截面的應(yīng)力場(chǎng)云圖如圖4所示。從圖4a可看到,冷卻結(jié)束后,涂層的等效應(yīng)力為160~220 MPa。從圖4c得到涂層軸方向?yàn)閴簯?yīng)力,這是因?yàn)殡S著基體與涂層溫度的降低,基體的收縮大于涂層的收縮,在軸方向上對(duì)陶瓷層產(chǎn)生了較大的壓應(yīng)力。
圖2 噴涂溫度場(chǎng)云圖
圖3 噴涂過程中的最大溫度曲線
圖4 涂層截面應(yīng)力場(chǎng)云圖
圖5為冷卻至室溫時(shí)涂層截面應(yīng)力。圖6為圖5中涂層水平方向與厚度方向的應(yīng)力分布曲線。由圖5—6可知,噴涂中心區(qū)域應(yīng)力與邊緣位置相比較大,一方面是因?yàn)檫吘壩恢锰帪樽杂蛇吔鐥l件,會(huì)造成一定的應(yīng)力釋放;另一方面是中心焰流區(qū)域溫度高,導(dǎo)致其與基體的不匹配更加嚴(yán)重。另外,從圖6b可以看到,每層涂層結(jié)合界面處會(huì)產(chǎn)生較大的應(yīng)力,致使應(yīng)力涂層厚度方向的變化。
圖5 涂層截面應(yīng)力
圖6 涂層截面應(yīng)力分布曲線
本文選用ZrO2陶瓷涂層作為研究對(duì)象,在純ZrO2中加入8%的Y2O3作為穩(wěn)定劑來抑制ZrO2在高溫下相變,基體材料為304不銹鋼,本次試驗(yàn)采用大氣等離子噴涂方法制備的涂層厚度為120 μm。使用線切割將不銹鋼基體切割為長150 mm、寬5 mm、厚2 mm的拉伸試樣,制備的ZrO2陶瓷涂層如圖7所示。
圖7 ZrO2陶瓷涂層
XStress3000 X射線應(yīng)力分析儀可將X射線轉(zhuǎn)化為電信號(hào),輻射靶材為Cr靶。采用對(duì)稱側(cè)傾法在衍射角2為146°~160°內(nèi)打點(diǎn)測(cè)試每個(gè)側(cè)傾角的衍射角度2以及晶面間距值。使用sin2法計(jì)算殘余應(yīng)力。
LabRAM HR激光拉曼光譜儀焦長為800 mm,配備的激光器激發(fā)波長為632.8 nm,檢測(cè)試樣時(shí)選取的拉曼頻移范圍為100~1 500 cm?1。
使用電伺服萬能試驗(yàn)機(jī)對(duì)在表面制備有陶瓷涂層的拉伸試樣進(jìn)行拉伸試驗(yàn),直至陶瓷涂層出現(xiàn)裂紋。使用X射線衍射儀以及拉曼光譜儀對(duì)涂層中間位置進(jìn)行檢測(cè)分析,以避免邊緣區(qū)域帶來誤差。重復(fù)拉伸試驗(yàn),直至陶瓷涂層完全從不銹鋼基體剝落,重復(fù)測(cè)試,檢測(cè)其應(yīng)力改變。試驗(yàn)后剝落試樣如圖8所示。
圖8 剝落涂層
2.4.1 X射線衍射法原理
當(dāng)X射線照射的晶體材料中存在應(yīng)力時(shí),被檢測(cè)材料的晶面間距會(huì)相應(yīng)地發(fā)生改變,根據(jù)布拉格定律,見式(4),被檢測(cè)材料的衍射角2也會(huì)相應(yīng)地改變,在衍射圖中表現(xiàn)為衍射峰會(huì)出現(xiàn)向高角度或低角度發(fā)生位移。X射線衍射法即通過測(cè)量衍射角2隨晶面取向不同而發(fā)生的變化來求得應(yīng)力[21]。在平面應(yīng)力狀況下,對(duì)于各向同性的多晶材料,依據(jù)布拉格定律和彈性理論可以推導(dǎo)出應(yīng)力值正比于2隨sin2變化的斜率[22],見式(5)。
2sin==1, 2, 3, (4)
2.4.2 X射線檢測(cè)結(jié)果
圖9為使用Cu靶X射線衍射儀對(duì)噴涂粉末與在304不銹鋼上制備的陶瓷涂層的XRD表征圖。為得到孤立、完整、峰位較高、峰強(qiáng)足夠高的衍射峰來避免織構(gòu)的影響[24],選取多重性因子較高的(331)晶面作為特征峰。
試驗(yàn)裝配Cr靶材的X射線應(yīng)力分析儀,由布拉格公式與已知Cu靶材的波長計(jì)算得到Cr靶材特征峰的位置為2=153.2°。經(jīng)過3次零應(yīng)力標(biāo)定得到涂層零應(yīng)力時(shí)的半高寬為3.48±0.12,特征峰位置2= 153.2°,峰強(qiáng)max=26.7。
圖9 涂層XRD衍射圖
圖10為在側(cè)傾角為0°時(shí)特征峰衍射圖。從圖10a和圖10b中可以看出,A、B兩個(gè)探測(cè)器皆檢測(cè)到涂層衍射峰的位置為2=154°,圖10c和圖10d則表明零應(yīng)力標(biāo)樣衍射峰位置在2=153°附近。所有檢測(cè)結(jié)果皆與上述計(jì)算結(jié)果相同,說明涂層內(nèi)部的殘余應(yīng)力導(dǎo)致噴涂后涂層的特征衍射峰位置向高角度漂移。
圖10 衍射峰曲線
圖11為在涂層上取傾角為0°、±20.7°、±30°、±37.8°、±45°時(shí),各個(gè)角所對(duì)應(yīng)的2角、值根據(jù)公式(6),運(yùn)用最小二乘法原理,將各點(diǎn)的數(shù)據(jù)回歸成直線方程所做的擬合圖。從圖11可以看出,該組的晶面間距依次增大,而2角依次遞減,表明其存在著殘余拉應(yīng)力[25]。
對(duì)噴涂后的涂層、試樣拉伸試驗(yàn)后未剝落黏附在基體上的涂層以及剝落下來的涂層的殘余應(yīng)力進(jìn)行檢測(cè),結(jié)果如圖12所示。計(jì)算結(jié)果表明,噴后的涂層的殘余拉應(yīng)力為180~185 MPa;使用此方法計(jì)算得到的ZrO2陶瓷涂層的殘余應(yīng)力與文獻(xiàn)[26]中使用壓痕法檢測(cè)的殘余應(yīng)力略大,這是由于在不銹鋼基體上制備陶瓷涂層時(shí)沒有在基體與涂層之間加入黏結(jié)層,導(dǎo)致基體與陶瓷涂層直接接觸,而二者熱膨脹系數(shù)差距懸殊,其應(yīng)力相較于存在黏結(jié)層的涂層有較大提升。將噴涂試樣進(jìn)行拉伸試驗(yàn)后,沒有從基體上剝落的涂層殘余應(yīng)力仍為拉應(yīng)力,為112~121 MPa;剝落涂層仍存在52~62 MPa的殘余拉應(yīng)力。
圖12 涂層殘余應(yīng)力值
2.5.1 拉曼光譜法原理
拉曼光譜實(shí)質(zhì)反映了材料晶格振動(dòng)信息,體現(xiàn)了被檢測(cè)材料晶格振動(dòng)的特征。若材料中存在應(yīng)力,反映到光譜則表現(xiàn)為某些對(duì)應(yīng)力敏感的譜帶發(fā)生漂移,通過測(cè)量應(yīng)力應(yīng)變與拉曼峰頻移距離之間的關(guān)系,可以得到拉曼頻移-應(yīng)力系數(shù)Π[27]。涂層的殘余應(yīng)力與涂層應(yīng)力狀態(tài)下的拉曼頻移、零應(yīng)力的基準(zhǔn)拉曼頻移0之間的關(guān)系為:
= (?0)/(2Π)[28](7)
2.5.2 拉曼光譜檢測(cè)結(jié)果
圖13為相同參數(shù)下使用激光拉曼對(duì)原始噴涂粉末以及拉伸試驗(yàn)前后剝落與未剝落涂層的拉曼光譜圖。其中,A為原始噴涂粉末的拉曼光譜圖,B、C、D為拉伸試驗(yàn)后未剝落涂層不同位置處的拉曼光譜圖,E、F、G、H則為拉伸試驗(yàn)前原始涂層不同位置處的拉曼光譜圖。如圖13a所示,ZrO2陶瓷涂層在100~1 500 cm?1拉曼頻移范圍內(nèi)存在多個(gè)特征峰,其中,位于600~700 cm?1內(nèi)的I6峰強(qiáng)度高,且為孤立峰,受其余拉曼峰的影響小,故選取該位置處的I6峰為該光譜圖的特征峰,代表拉曼光譜譜帶的頻移位置。
圖13 涂層拉曼光譜圖
圖14為圖9中拉曼光譜使用Gaussian函數(shù)的擬合圖。通過對(duì)其進(jìn)行擬合,確定了特征峰的光譜波數(shù)。比較圖14a和圖14b中I6峰的位置可以看出:陶瓷涂層相較于原始噴涂粉末,其I6峰的位置發(fā)生了向低頻方向的頻移(紅移),表明涂層冷卻后存在殘余拉應(yīng)力。
圖14 拉曼光譜擬合圖
將圖14a中原始噴涂粉末拉曼光譜擬合圖I6峰的拉曼波數(shù)作為零應(yīng)力標(biāo)樣I6峰的拉曼頻移,即認(rèn)為無應(yīng)力狀態(tài)時(shí)ZrO2的I6峰的拉曼頻移為636.0 cm?1。圖14b為噴涂后涂層的拉曼光譜擬合圖,其I6峰的拉曼頻移為636 cm?1。將2.3.2節(jié)中X射線衍射法測(cè)得的涂層殘余應(yīng)力代入公式(7)可得Π=8.33 (cm·GPa)?1,由此可以確定該ZrO2涂層的拉曼-應(yīng)力因子為8.33 (cm·GPa)?1。
從圖14可以看到,拉伸試驗(yàn)后涂層的拉曼光譜圖(圖14c、圖14d)的I6相與原始噴涂粉末的拉曼光譜圖(圖14a)比較,其特征峰的位置皆向高頻方向發(fā)生漂移,但與圖14b相比,其I6峰仍表現(xiàn)為紅移,表明拉伸試驗(yàn)后,部分涂層剝落導(dǎo)致仍然黏附在基體上的未剝落涂層內(nèi)部拉應(yīng)力得到釋放,即發(fā)生了應(yīng)力松弛,故其光譜譜帶表現(xiàn)為紅移漂移量減小。計(jì)算結(jié)果表明,原始涂層的殘余應(yīng)力為174~180 MPa,拉伸試驗(yàn)后未剝落涂層的殘余應(yīng)力為110~120 MPa。
等離子噴涂陶瓷涂層中的殘余應(yīng)力按照形成原因主要有相變應(yīng)力、熱噴涂過程中熔融和半熔融顆??焖倮鋮s的淬火應(yīng)力、涂層與基體之間熱膨脹系數(shù)不匹配引起的熱失配應(yīng)力[29]。在添加Y2O3抑制熱噴涂過程及冷卻過程中ZrO2中的相變后,考慮涂層的殘余應(yīng)力時(shí),相變應(yīng)力可忽略不計(jì)[30]。
1)計(jì)算機(jī)模擬單層通道等離子噴涂ZrO2涂層,冷卻后其內(nèi)部的殘余應(yīng)力主要集中在熱流中心區(qū)域,涂層內(nèi)部最大的內(nèi)應(yīng)力為徑向拉應(yīng)力,涂層的等效應(yīng)力為160~220 MPa的殘余拉應(yīng)力。
2)使用X射線衍射儀檢測(cè)噴涂冷卻后的涂層,試驗(yàn)表明,噴涂涂層殘余應(yīng)力為180~185 MPa拉應(yīng)力,在計(jì)算機(jī)模擬結(jié)果范圍之內(nèi),且試樣在拉伸試驗(yàn)后涂層應(yīng)力得到一定程度的釋放。
3)通過拉曼光譜法標(biāo)定該涂層的拉曼-應(yīng)力因子Π=8.33 (cm·GPa)?1,涂層應(yīng)力為174~180 MPa 拉應(yīng)力,與計(jì)算機(jī)模擬結(jié)果以及XRD檢測(cè)結(jié)果具有良好的匹配性。
[1] 李紅英. 汽車用316L不銹鋼表面激光/等離子噴涂Co-Cr3C2涂層性能分析[J]. 應(yīng)用激光, 2020, 40(4): 631-635.
LI Hong-ying. Performance Analysis of Laser/Plasma Spraying Co-Cr3C2Coating on Automobile 316L Stai-nless Steel[J]. Applied Laser, 2020, 40(4): 631-635.
[2] 田永生, 陳傳忠, 劉軍紅, 等. ZrO2熱障涂層研究進(jìn)展[J]. 中國機(jī)械工程, 2005, 16(16): 1499-1503.
TIAN Yong-sheng, CHEN Chuan-zhong, LIU Jun-hong, et al. Research and Development of ZrO2Thermal Barrier Coatings[J]. China Mechanical Engineering, 2005, 16(16): 1499-1503.
[3] 張盼盼. 激光仿生耦合改性熱障涂層的組織與性能研究[D]. 長春: 吉林大學(xué), 2019.
ZHANG Pan-pan. Research on Microstructure and Perfo-rmance of Thermal Barrier Coatings Modified by Laser Biomimetic Coupling Technology[D]. Changchun: Jilin University, 2019.
[4] 董志軍, 李軒科, 從野, 等. 碳纖維表面熔鹽反應(yīng)制備TiC涂層[J]. 表面技術(shù), 2011, 40(1): 1-4.
DONG Zhi-jun, LI Xuan-ke, CONG Ye, et al. Preparation of TiC Coating on the Surfaces of Carbon Fibers by Mol-ten Salts Reaction[J]. Surface Technology, 2011, 40(1): 1-4.
[5] KNUTSSON A, JOHANSSON M P, KARLSSON L, et al. Machining Performance and Decomposition of TiAlN/ TiN Multilayer Coated Metal Cutting Inserts[J]. Surface and Coatings Technology, 2011, 205(16): 4005-4010.
[6] 張明海, 張榮發(fā), 戰(zhàn)宇. 銅基體表面鎢功能梯度涂層殘余應(yīng)力有限元分析[J]. 中國高新科技, 2019(4): 28-31.
ZHANG Ming-hai, ZHANG Rong-fa, ZHAN Yu. Finite Element Analysis of Residual Stress of Tungsten Func-tionally Graded Coating on Copper Substrate Surface[J]. China High-Tech, 2019(4): 28-31.
[7] 謝玲玲, 牛亞然, 王亮, 等. 等離子噴涂ZrC基涂層逐道逐層沉積殘余應(yīng)力模擬與實(shí)驗(yàn)驗(yàn)證[J]. 無機(jī)材料學(xué)報(bào), 2019, 34(7): 768-774.
XIE Ling-ling, NIU Ya-ran, WANG Liang, et al. Residual Stresses of Plasma Sprayed ZRC-Based Coatings during Path-by-Path and Layer-by-Layer Deposition: Simulation and Experimental Verification[J]. Journal of Inorganic Materials, 2019, 34(7): 768-774.
[8] ABDELGAWAD A, AL-ATHEL K. Effect of TGO Thic-kness, Pores, and Creep on the Developed Residual Stre-sses in Thermal Barrier Coatings under Cyclic Loading Using SEM Image-Based Finite Element Model[J]. Ceramics International, 2021, 47(14): 20064-20076.
[9] CUI Shi-yu, LIANG Wen-ping, MORA L S, et al. Mec-hanical Analysis and Modeling of Porous Thermal Barrier Coatings[J]. Applied Surface Science, 2020, 512: 145706.
[10] 朱麗娜. 基于納米壓痕技術(shù)的涂層殘余應(yīng)力研究[D]. 北京: 中國地質(zhì)大學(xué)(北京), 2013.
ZHU Li-na. Research on Residual Stresses of Coatings by Nanoindentation Technology[D]. Beijing: China Unive-rsity of Geosciences, 2013.
[11] 遲光芳. 基于鉆孔法和數(shù)字圖像相關(guān)法熱障涂層材料殘余應(yīng)力測(cè)試[D]. 湘潭: 湘潭大學(xué), 2015.
CHI Guang-fang. Residual Stress Measurements of Ther-mal Barrier Coating Systems by Hole-Drilling Method with Digital Image Correlation Technique[D]. Xiangtan: Xiangtan University, 2015.
[12] 高玉魁, 張志剛. 殘余應(yīng)力的測(cè)量與模擬分析方法[J]. 失效分析與預(yù)防, 2009, 4(4): 251-254.
GAO Yu-kui, ZHANG Zhi-gang. Measurement and Simu-lation Methods of Residual Stresses[J]. Failure Analysis and Prevention, 2009, 4(4): 251-254.
[13] 董健, 竇炳勝, 賀飛羽, 等. 不銹鋼表面滲鋁層/ZrO2復(fù)合涂層殘余應(yīng)力模擬[J]. 表面技術(shù), 2019, 48(6): 221-228.
DONG Jian, DOU Bing-sheng, HE Fei-yu, et al. Residual Stress Simulation of Aluminized Layer/ZrO2Composite Coating on Stainless Steel[J]. Surface Technology, 2019, 48(6): 221-228.
[14] 龐銘, 張嘯寒, 劉光. 鋁合金表面等離子噴涂Mo/ 8YSZ復(fù)合涂層殘余應(yīng)力的數(shù)值模擬[J]. 材料熱處理學(xué)報(bào), 2019, 40(10): 124-134.
PANG Ming, ZHANG Xiao-han, LIU Guang. Numerical Simulation of Residual Stress of Plasma Sprayed Mo/8YSZ Composite Coatings on Aluminum Alloy Surface[J]. Tra-nsactions of Materials and Heat Treatment, 2019, 40(10): 124-134.
[15] 朱晨, 劉楊, 陳亞軍, 等. 界面形貌對(duì)熱障涂層殘余應(yīng)力影響的數(shù)值模擬[J]. 焊接技術(shù), 2010, 39(3): 10-13, 5.
ZHU Chen, LIU Yang, CHEN Ya-jun, et al. Numerical Simulation for Effect of Interface Topography Dimension on Residual Stress in Thermal Barrier Coatings[J]. Wel-ding Technology, 2010, 39(3): 10-13, 5.
[16] YANG Jia-sheng, WANG Liang, LI Da-chuan, et al. Stress Analysis and Failure Mechanisms of Plasma-Sprayed Thermal Barrier Coatings[J]. Journal of Thermal Spray Technology, 2017, 26(5): 890-901.
[17] 尹瀛月. 平面等離子噴涂TiO2涂層數(shù)值模擬基礎(chǔ)研究[D]. 烏魯木齊: 新疆大學(xué), 2017.
YIN Ying-yue. Basic Research on Numerical Simulation of Planar Plasmasprayed TiO2Coating[D]. Urumqi: Xinjiang University, 2017.
[18] 趙運(yùn)才, 張佳茹, 何文. 基于ANSYS生死單元法的多層等離子噴涂體系仿真[J]. 金屬熱處理, 2017, 42(12): 225-231.
ZHAO Yun-cai, ZHANG Jia-ru, HE Wen. Simulation of Multi-Layer Plasma Spraying System Based on ANSYS Element Death and Birth Method[J]. Heat Treatment of Metals, 2017, 42(12): 225-231.
[19] 鮑萬輝. 等離子噴涂熱噴涂層殘余應(yīng)力模擬分析研究[D]. 沈陽: 沈陽航空航天大學(xué), 2019.
BAO Wan-hui. Simulation Analysis of Residual Stress in Plasma Sprayed Thermal Spraying Layer[D]. Shenyang: Shenyang Aerospace University, 2019.
[20] 宋洪源. 等離子噴涂Al2O3成型層溫度場(chǎng)及應(yīng)力場(chǎng)的數(shù)值模擬[D]. 烏魯木齊: 新疆大學(xué), 2017.
SONG Hong-yuan. Numerical Simulation of Temperature and Stress Field about Al2O3Forming Layer by Plasma Spraying[D]. Urumqi: Xinjiang University, 2017.
[21] 巴發(fā)海, 劉宇希. 殘余應(yīng)力的表征[J]. 無損檢測(cè), 2020, 42(10): 1-3, 58.
BA Fa-hai, LIU Yu-xi. Characterization of Residual Stress[J]. Nondestructive Testing Technologying, 2020, 42(10): 1-3, 58.
[22] 薛進(jìn)學(xué), 趙波, 焦鋒. 超聲高速研磨陶瓷表面殘余應(yīng)力特性研究[J]. 金剛石與磨料磨具工程, 2009, 29(4): 56-61.
XUE Jin-xue, ZHAO Bo, JIAO Feng. Experimental Research on the Surface Residual Stress in Ultrasonic Lapped Surface of Engineering Ceramics[J]. Diamond & Abrasives Engineering, 2009, 29(4): 56-61.
[23] 張杰, 付雪松, 劉崇遠(yuǎn). X射線衍射法測(cè)量殘余應(yīng)力的相對(duì)誤差及不確定度評(píng)定[J]. 宇航材料工藝, 2018, 48(4): 71-74.
ZHANG Jie, FU Xue-song, LIU Chong-yuan. Analysis on Relative Error and Uncertainty of Measurement of Resi-dual Stress with X-Ray Diffraction Method[J]. Aerospace Materials & Technology, 2018, 48(4): 71-74.
[24] 祝鵬飛. X射線檢測(cè)7N01鋁合金殘余應(yīng)力參數(shù)優(yōu)化[D]. 成都: 西南交通大學(xué), 2018.
ZHU Peng-fei. Optimization of the X-Ray Method Para-meters Measuring Residual Stress in A7N01 Aluminum Alloy[D]. Chengdu: Southwest Jiaotong University, 2018.
[25] BOUMERZOUG Z, DIGHECHE K, JI V. X-Ray Anal-ysis of Residual Stress in Weld Region of X70 Pipeline Steel[J]. Advanced Materials Research, 2014, 936: 2011- 2016.
[26] 毛衛(wèi)國, 楊鵬, 戴翠英, 等. 脆性涂層材料斷裂韌性和殘余應(yīng)力壓痕表征技術(shù)綜述[J]. 材料導(dǎo)報(bào), 2017, 31(13): 1-11.
MAO Wei-guo, YANG Peng, DAI Cui-ying, et al. A Review of Vickers Indentation Measurements for Fracture Toughness and Residual Stress of Brittle Coating Sys-tems[J]. Materials Review, 2017, 31(13): 1-11.
[27] 馮炎青, 沈洋, 游泳. 碳纖維材料殘余應(yīng)力的拉曼光譜試驗(yàn)[J]. 無損檢測(cè), 2019, 41(8): 20-23.
FENG Yan-qing, SHEN Yang, YOU Yong. Raman Spec-tra Testing of Residual Stress in the Carbon Fiber Rein-forced Composites[J]. Nondestructive Testing Technolo-gying, 2019, 41(8): 20-23.
[28] 李秋, 薛凱, 王麗捷, 等. 涂層結(jié)構(gòu)殘余應(yīng)力拉曼光譜測(cè)量方法探討[J]. 天津職業(yè)技術(shù)師范大學(xué)學(xué)報(bào), 2019, 29(2): 7-12.
LI Qiu, XUE Kai, WANG Li-jie, et al. Raman Spectros-copy for Measuring Residual Stress in Coatings[J]. Jou-rnal of Tianjin University of Technology and Education, 2019, 29(2): 7-12.
[29] ZHU W, ZHANG Z B, YANG L, et al. Spallation of Thermal Barrier Coatings with Real Thermally Grown Oxide Morphology under Thermal Stress[J]. Materials & Design, 2018, 146: 180-193.
[30] WIDJAJA S, LIMARGA A M, YIP T H. Modeling of Residual Stresses in a Plasma-Sprayed Zirconia/Alumina Functionally Graded-Thermal Barrier Coating[J]. Thin Solid Films, 2003, 434(1-2): 216-227.
Finite Element Simulation and Verification of Accumulated Cooling Residual Stress in Plasma-sprayed Thermal Barrier Ceramic Coatings
1,1,1,2,1,1
(1. School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China; 2. School of Material Science and Engineering, Tongji University, Shanghai 200092, China)
Plasma sprayed ZrO2ceramic coating has been widely used in many industrial fields due to its simple manufacturing process, low cost, and good heat insulation effect. However, the structure and service conditions of thermal barrier coatings are complex, and residual stresses will inevitably occur during the preparation process as well as application. Residual stress has the most obvious influence on the life of thermal barrier coatings, seriously reducing the bonding strength between the coating and the substrate, and ultimately showing the cracking and spalling of the coating, greatly reducing the service time and stability of the coating during service. To realize the prediction and detection of the residual stress, it is necessary to seek a reliable detection method for thermal barrier coating to effectively predict the accumulated residual stress in the cooling process of coating and reduce the influence of residual stress on the stability of the coating. In this paper, the finite element model of plasma-sprayed ZrO2coating was established by using the birth and death element method. Gauss heat source was used to simulate the heat source condition of plasma spraying, and the residual stress and its distribution of the coating cooling to room temperature were studied. The residual stress of ZrO2coating prepared by plasma spraying was detected by X-ray diffraction and Raman spectroscopy to explore the accurate detection method of residual stress in ceramic coating.
Through the analysis of the finite element results, it is found that the number of elements is reasonable and the calculation time is short when the mesh unit size of the model is 1.75 mm. The maximum temperature of the coating temperature field obtained by simulation is consistent with the test temperature in the experiment, and the simulation results are accurate. It can be concluded that the residual stresses in the central region of the plasma spraying coating after cooling to room temperature are larger than those in the edge region, which are mainly concentrated in the central region of heat flow. There is large stress at the bonding interface of each layer, which causes the stress to change significantly along the thickness direction of the coating. The equivalent stress of the coating is 160-220 MPa. The X-ray method was used to detect the residual stress of plasma sprayed coating. To obtain an isolated, complete, high peak position and high peak intensity with enough diffraction peaks to avoid the influence of texture, (331) crystal plane with a high multiplicity factor was selected as the characteristic peak. The test results show that the residual stress in the coating will make the position of the characteristic diffraction peak shift to a high angle at 2=153°. The residual stresses of 180-185 MPa were detected by X-ray diffraction. The I6 peak in the Raman spectrum of the coating was used as the characteristic peak of the spectrum to represent the frequency shift of the Raman spectrum band. Compared with the original spraying powder, the position of the Raman characteristic peak of the ceramic coating shifted to the low-frequency direction, indicating that there was residual tensile stress after the coating was cooled. The Raman-stress factor of the ZrO2coating was calibrated to be 8.33 (cm·GPa)?1, and the residual stress of the coating was calculated to be 174-180 MPa.
In this paper, the finite element method can effectively simulate the residual stress inside the coating when the plasma spraying reaches room temperature. It has good matching with the XRD and Raman spectrum detection results. There is about 180 MPa residual stress inside the coating when the coating is cooled to room temperature, seriously affecting the stability of the coating.
residual stress; finite element simulation; thermal barrier coating; life-and-death element method; Gauss heat source; X-ray diffraction; raman spectroscopy
TG174.442
A
1001-3660(2023)02-0385-10
10.16490/j.cnki.issn.1001-3660.2023.02.037
2021–12–20;
2022–04–22
2021-12-20;
2022-04-22
國家自然科學(xué)基金項(xiàng)目(52104361)
National Natural Science Foundation of China (52104361)
李建坤(1997—),男,碩士研究生,主要研究方向?yàn)楸砻婀こ獭?/p>
LI Jian-kun (1997-), Male, Postgraduate, Research focus: surface engineering.
羅軍明(1968—),男,博士,教授,主要研究方向?yàn)榻饘倩鶑?fù)合材料、粉末冶金材料、稀土材料、材料熱處理及表面處理等。
LUO Jun-ming (1968-), Male, Doctor, Professor, Research focus: metal matrix composites, powder metallurgy mate-rials, rare earth materials, material heat treatment and surface treatment.
李建坤, 羅軍明, 蘇宇航, 等. 等離子噴涂熱障陶瓷涂層冷卻累計(jì)殘余應(yīng)力的有限元模擬與驗(yàn)證[J]. 表面技術(shù), 2023, 52(2): 385-394.
LI Jian-kun, LUO Jun-ming, SU Yu-hang, et al. Finite Element Simulation and Verification of Accumulated Cooling Residual Stress in Plasma- sprayed Thermal Barrier Ceramic Coatings[J]. Surface Technology, 2023, 52(2): 385-394.
責(zé)任編輯:萬長清