趙溪竹 楊洪 郭冰冰 劉明洋 代龍軍 王立豐
摘??要:源庫關(guān)系研究在作物產(chǎn)量和品質(zhì)形成中具有重要的理論研究和技術(shù)應用價值。隨著作物遺傳育種、植物生理和分子生物學等多學科的交叉融合,源庫關(guān)系研究近年來整合運用分子生物學技術(shù)、植物激素信號轉(zhuǎn)導等眾多新技術(shù)和新方法取得了重要進展。本文綜述了源庫關(guān)系理論和源庫關(guān)系調(diào)控兩方面研究進展,重點闡述了糖代謝、激素調(diào)控源庫關(guān)系的機理,分析通過栽培措施協(xié)調(diào)源庫關(guān)系提高產(chǎn)量的機理。同時結(jié)合熱帶重要經(jīng)濟作物橡膠樹的排膠機理與調(diào)控研究進展,論述乙烯利刺激和割膠處理調(diào)節(jié)源庫分配與橡膠樹產(chǎn)量形成之間的關(guān)系,以期推動天然橡膠源庫關(guān)系理論研究,為排膠調(diào)控技術(shù)創(chuàng)制提供技術(shù)指導。
關(guān)鍵詞:橡膠樹;源庫關(guān)系;激素;排膠;機理中圖分類號:S794.1??????文獻標識碼:A
Research?Status?of?Source/Sink?Relationship?and?Prospect?in?the?Study?of?Latex?Flow?Mechanism?of?Hevea?brasiliensis?Muell.?Arg.
ZHAO?Xizhu,?YANG?Hong,?GUO?Bingbing,?LIU?Mingyang,?DAI?Longjun,?WANG?Lifeng*
Key?Laboratory?of?Biology?and?Genetic?Resources?of?Rubber?Tree,?Ministry?of?Agriculture?and?Rural?Affairs?/?State?Key?Laboratory?Incubation?Base?for?Cultivation?&?Physiology?of?Tropical?Crops?/?Danzhou?Investigation?&?Experiment?Station?of?Tropical?Crops,?Ministry?of?Agriculture?and?Rural?Affairs?/?Rubber?Research?Institute,?Chinese?Academy?of?Tropical?Agricultural?Sciences,?Haikou,?Hainan?571101,?China
Abstract:?The?study?of?source/sink?relationship?has?important?theoretical?research?and?technical?application?value?in?crop?yield?and?quality?formation.?With?the?interdisciplinary?integration?of?crop?genetics?and?breeding,?plant?physiology?and?molecular?biology,?the?study?of?source-sink?relationship?has?made?important?progress?in?recent?years?by?integrating?molecular?biology?techniques,?plant?hormone?signal?transduction?and?many?other?new?technologies?and?methods.?In?this?paper,?the?research?progress?is?reviewed?from?two?aspects:?source/sink?relationship?theory?and?regulation.?The?mechanism?of?glucose?metabolism?and?hormone?regulating?source/sink?relationship?was?emphasized,?and?the?mechanism?of?cultivation?measures?improving?yield?by?coordinating?source/sink?relationship?was?analyzed.?Combined?with?the?research?progress?on?the?mechanism?and?regulation?of?rubber?trees,?an?important?tropical?cash?crop.?This?lay?a?foundation?for?the?theory?of?source/sink?relationship?in?natural?rubber?industry?and?provide?technical?guidance?for?the?creation?of?rubber?latex?flow?control?technology.
Keywords:?Hevea?brasiliensis?Muell.?Arg.;?source/sink?relationship;?hormone;?latex?flow;?mechanism
DOI:?10.3969/j.issn.1000-2561.2023.12.016
巴西橡膠樹(Hevea?brasiliensis?Muell.?Arg.)是天然橡膠(順式-1,4-聚異戊二烯)的主要來源,其制品可為國防戰(zhàn)略物資、航空、汽車等領(lǐng)域提供重要原料。2001年以來,我國已成為全球最大天然橡膠消費國和進口國[1],且隨著經(jīng)濟社會發(fā)展,對天然橡膠消費需求量日益增長,自給需求也持續(xù)增加,其產(chǎn)量的提高可有效解決保障供給問題[2]。我國天然橡膠生產(chǎn)受土地資源和非傳統(tǒng)植膠區(qū)氣候條件等因素制約,因此,膠園高產(chǎn)栽培理論和技術(shù)成為研究熱點[3]。源庫理論由源流庫(Source-Flow-Sink)組成,該理論的提出為植物生理學、作物遺傳育種機制和栽培技術(shù)研究提供了重要指導[4-5]。對模式植物擬南芥的研究表明,源庫調(diào)節(jié)是分析個體水平上同化物生產(chǎn)制造、分配轉(zhuǎn)運和轉(zhuǎn)化積累過程及器官間相互作用規(guī)律的重要理論框架,對作物生長、發(fā)育、抗逆和品質(zhì)形成均具有重要作用[6]。最新的研究也發(fā)現(xiàn),庫強度性狀調(diào)控小麥產(chǎn)量的各個進程[7]。在水稻中依托GWAS揭示流和庫相關(guān)性狀的遺傳基礎(chǔ)等[8]。
橡膠烴在巴西橡膠樹乳管細胞中經(jīng)類異戊二烯途徑合成,是典型的植物次生代謝產(chǎn)物,其前體來自葉片光合作用產(chǎn)生的蔗糖[9]。目前,關(guān)于橡膠樹光合誘導、光合作用、排膠生理等方面的研究不斷取得進展,為建立和闡釋橡膠樹天然橡膠生物合成的“源庫流”機制奠定堅實的基礎(chǔ)[10-11]。然而,橡膠樹葉片光合和膠乳生物合成的源庫關(guān)系理論模型尚未建立,源庫調(diào)控機制不清制約了橡膠樹產(chǎn)膠、排膠機理研究和采收技術(shù)升級。鑒于此,本文重點綜述植物源庫關(guān)系理論及糖代謝、激素調(diào)控源庫關(guān)系的機理,分析栽培措施通過協(xié)調(diào)源庫關(guān)系提高產(chǎn)量的機理,結(jié)合橡膠樹“源流庫”相關(guān)研究進展,提出“葉膠比”源庫關(guān)系模型,分析不同產(chǎn)量差異品種、乙烯利刺激和割膠處理調(diào)節(jié)源庫分配與橡膠樹產(chǎn)量形成之間的關(guān)系,將為解析橡膠樹乳管細胞源庫分配的生理機制、闡明橡膠樹排膠機理和研發(fā)橡膠樹排膠技術(shù)提供理論指導和技術(shù)支持。
1.1??植物源庫概念
1928年MASON等[4]首次提出“源庫理論”(Source-sink?Theory)的概念,認為作物產(chǎn)量形成過程實質(zhì)上是源庫互作的過程。光合作用合成的有機物質(zhì)是植物生長發(fā)育的物質(zhì)基礎(chǔ),源庫理論彌補了光合理論的不足,對認識農(nóng)作物產(chǎn)量、品質(zhì)的形成機理具有重要指導意義[12]。廣義的源庫概念從植物生理代謝的角度定義,作物各器官均可被劃分為源或庫。作物生產(chǎn)和輸出同化物的器官或組織均可稱為“源”,如作物的功能葉和莖(鞘),進行礦物質(zhì)吸收和激素、氨基酸等物質(zhì)合成及轉(zhuǎn)運的根系,以及綠色果皮或種皮、穗軸等非葉器官,充足的源是產(chǎn)量提高的基礎(chǔ);凡是轉(zhuǎn)化或貯藏同化物的器官或組織均可稱為“庫”,如果實、種子,也可能是正在生長或者變態(tài)為貯藏器官的根、莖、葉,這些器官不能產(chǎn)生光合同化物,而是以糖或相關(guān)物質(zhì)的形式輸入碳來維持代謝及生長。狹義的源庫則從產(chǎn)量形成的角度定義,以作物葉片、莖干為主體的全部營養(yǎng)器官均可稱為“源”,接納或最后儲藏養(yǎng)料的器官即為“庫”。“流”是光合產(chǎn)物在源和庫之間的運輸,包括同化物在源端的裝載、庫端的卸載和在源庫間輸導組織內(nèi)的移動[6]。源庫理論及其調(diào)控研究在葡萄等經(jīng)濟作物[13]、玉米[14]和水稻等[7]主要糧食作物的生長發(fā)育及其調(diào)控技術(shù)研發(fā)中發(fā)揮了重要作用。協(xié)調(diào)的源庫關(guān)系能夠有效促進黃瓜葉片的光合作用,提高同化物運輸效率,從而提高黃瓜產(chǎn)量[15]。調(diào)控甘蔗光合產(chǎn)物蔗糖的積累[16],平衡向日葵碳分配和葉片性狀[17],提高作物抗逆性[18]和調(diào)控土壤微生物組成[19]。光合作用僅是作物調(diào)控的一部分,需要對作物綜合的匯活動和不同代謝過程的協(xié)調(diào)進行系統(tǒng)研究[20]。
1.2??源庫性狀及衡量指標
協(xié)調(diào)的源庫關(guān)系是作物產(chǎn)量和品質(zhì)提升的前提,源庫比是源庫協(xié)調(diào)性的量化。農(nóng)業(yè)生產(chǎn)和科研實踐中常用作物源和庫的器官數(shù)目比值表征源庫關(guān)系,如園藝生產(chǎn)與研究中的“葉果比”、棉花的“葉鈴比”、谷類作物的“葉粒比”等[6]。隨著植物生理學和分子生物學不斷取得進展,源庫機理和調(diào)控研究日益精確。精確分析莖葉比、葉片衰老、逆境抗性有助于實現(xiàn)源庫調(diào)控。基于源庫關(guān)系精準修正模型,對評估未來氣候變化情況下熱脅迫對作物生產(chǎn)的影響具有重要意義[21]。近年來,分子生物學和整合生物學技術(shù)在源庫研究中得到廣泛應用。如采用水稻穗粒數(shù)基因調(diào)控高產(chǎn)生理功能[22];采用翻譯后調(diào)控開花基因調(diào)控土豆產(chǎn)量[23];采用過表達蛋白質(zhì)磷酸酶2A催化亞基評估馬鈴薯塊莖的發(fā)芽行為,增加塊莖的源容量和芽的庫強度,以支持其加速生長[24];采用光合產(chǎn)物蔗糖和代謝產(chǎn)物運輸解析源庫互作[25]等。
2.1??糖代謝調(diào)控源庫關(guān)系
糖為植物生長發(fā)育提供碳源和能源,其“感知和信號轉(zhuǎn)導”主要有2種機制,通過具有廣泛親和力和特異性的糖結(jié)合傳感器直接傳感和發(fā)送信號,通過糖源生物能量分子和代謝物調(diào)節(jié)信號蛋白間接傳遞糖信號[26]。水稻莖稈和籽粒間的碳分配受蔗糖轉(zhuǎn)運和代謝的控制[27]。限制葡萄源庫導致果實中積累的代謝產(chǎn)物流失,而糖類高達72%[28]。在非限制條件下,通過對146個重組自交系及其親本和其他商業(yè)化品種進行評價,表明在灌漿過程中小麥籽粒產(chǎn)量受庫所限可能是遺傳改良的結(jié)果,而不是作物種類固有的[29]。摘葉、去果處理提高了靈武長棗葉片中的蔗糖和果糖含量,葉片中碳水化合物的不斷積累提高了果實單果重、可溶性糖、可溶性固形物含量[30]。通過部分落葉或重度遮蔭降低源庫比,反式玉米素核苷從根部傳遞到剩余的葉片,蔗糖輸出基因表達發(fā)生改變,從而提高了光合作用活性[31]。降低源庫比還可提高溫室番茄果實中淀粉、蔗糖和己糖含量,促進己糖運輸[32-33]。
光合作用下的碳同化速率高度依賴于環(huán)境因素,如光照利用率和代謝限制,如碳匯器官對碳的需求,樹木內(nèi)部碳和氮的分配在很大程度上依賴于碳需求,低碳需求引起光合作用的反饋限制,導致樹木內(nèi)部低水平變異[34]。對不同基因型甘薯生長、生物量分配和源庫變化研究表明,缺鉀抑制高鉀吸收效率型甘薯和低鉀利用效率型甘薯葉片的凈光合速率,減少了光合產(chǎn)物的轉(zhuǎn)運,增加了淀粉、己糖和蔗糖的含量,基因型在與光合作用有關(guān)的對缺鉀的反應中存在差異[35]。XU等[36]在2021年確定了對模式植物擬南芥葉的糖輸出率有潛在直接影響的蔗糖轉(zhuǎn)運蛋白和質(zhì)子泵的潛在調(diào)節(jié)單元。海藻糖6-磷酸信號通路調(diào)節(jié)碳水化合物的分配可能是調(diào)控許多作物性狀的關(guān)鍵[37]。
2.2??激素調(diào)控源庫關(guān)系
植物外源激素誘導途徑可調(diào)控源庫積累及分配。植物內(nèi)源激素脫落酸(abscisic?acid,?ABA)在生長發(fā)育過程中增加,外源ABA的施用可促進干物質(zhì)的積累和分配[38]。噴施乙烯利對作物源庫性狀及產(chǎn)量品質(zhì)形成調(diào)控效應,對開花數(shù)量的抑制作用與噴施時期有關(guān)[39]。駿棗坐果15?d后噴施0.1?mmol/L亞精胺+0.25?mmol/L水楊酸+30?mg/L?DA-6的復配劑,能有效調(diào)控源庫內(nèi)源激素和果實品質(zhì),每隔10?d連續(xù)噴施2次,顯著提高駿棗果實第1次快速生長期源葉和庫果間的細胞分裂素(cytokinin,?CTK)含量,增強源葉的供應能力,減緩庫果的生長速度[40]。在外源ABA誘導下,糖代謝路徑碳亦可流向油脂路徑,進而調(diào)控生物量積累[41]。
2.3??栽培措施調(diào)控源庫關(guān)系
在農(nóng)業(yè)生產(chǎn)中,不同的栽培措施可通過延緩植物衰老調(diào)控源庫關(guān)系,進而影響產(chǎn)量品質(zhì)。通過無膜栽培可延緩生育后期葉片衰老,促進光合物質(zhì)生產(chǎn)與同化物向棉鈴分配[42]。整枝留果可通過改變植株的源庫關(guān)系調(diào)控甜瓜的衰老進程,過分增庫會打破體內(nèi)固有的平衡狀態(tài),喪失保護性酶清除活性氧及降低活性氧傷害的功能,質(zhì)膜過氧化程度增高,加劇乙烯釋放量[43]。拔節(jié)期或孕穗期單次灌水可協(xié)調(diào)具有高庫容和源供應能力特征的源庫關(guān)系,從而提高冬小麥的籽粒產(chǎn)量和水分利用效率[44]。油茶結(jié)果數(shù)多的年份,增庫會抑制花芽分化,葉片的生長類激素質(zhì)量分數(shù)增加,而花芽和葉芽的生長類激素降低、ABA質(zhì)量分數(shù)升高[45]。土壤有效持水量通過影響碳的運輸、分配及利用影響樹木的莖稈脆弱性[46]。氮肥對促進作物生長、提高產(chǎn)量具有重要意義,植物源庫組織的氮轉(zhuǎn)移過程是決定種子產(chǎn)量的關(guān)鍵因素,可影響源庫轉(zhuǎn)換過程中初級代謝的完全重組[47]。
橡膠樹可以作為研究源庫關(guān)系的新型模式植物,主要有以下3個方面原因:
3.1??橡膠樹的源及其特征
橡膠樹的“源”是指進行光合作用的功能葉片。橡膠樹葉片的凈光合速率(net?photosynthetic?rate,?Pn)在不同品種之間存在顯著差異,主要是受到胞內(nèi)CO2擴散的氣孔阻力(Rs')變化影響,而非變化程度更大的胞間阻力(Ri)[48-49]。NATARAJA等[50]對12?個橡膠樹品種的葉片PN、氣孔導度(stomatal?conductance,?Gs)和葉肉細胞固碳能力間的關(guān)系研究表明,不同品種間的葉片Pn在較低光照強度和飽和光照強度下存在顯著差異,低光強下的Pn變化幅度比飽和光強下的Pn變化幅度更大,在低光強下具有較高Pn和較低(intercellular?CO2?concentration,?Ci)的品種耐蔭,而在高輻射光能條件下具有高羧化效率,較低Gs和CO2補償濃度的品種,其光合作用主要依賴葉肉細胞,而受氣孔開度的影響較小,這樣的品種會具有較高的生物量和水分利用效率。采用700?mg/cm3?CO2處理橡膠樹幼苗60?d,可以顯著提升幼苗的生長發(fā)育和光合活性[51]。這些研究結(jié)果說明橡膠樹中存在潛力巨大且可調(diào)控的“源”。
3.2??橡膠樹的源庫流調(diào)節(jié)作用
橡膠樹中具有高效的“源-庫-流”轉(zhuǎn)運體系。通過對橡膠樹葉片糖含量的研究發(fā)現(xiàn),在4個發(fā)育階段(Ⅰ~Ⅳ)中主要檢測到蔗糖、果糖和葡萄糖,淀粉和角豆糖醇為次要糖類,其中,蔗糖在葉片發(fā)育過程中持續(xù)增加,果糖和葡萄糖含量在第Ⅲ期前不斷增加,但在第Ⅳ期(成熟葉)顯著下降[9]。在橡膠樹種子組織分化過程中,還原糖濃度高,蔗糖濃度低,細胞分裂次數(shù)明顯增加,此后,蔗糖的濃度增加,淀粉粒的數(shù)量和大小增加,還原糖的濃度減少[52]。在蔗糖轉(zhuǎn)運機制方面,相繼鑒定了橡膠樹蔗糖轉(zhuǎn)運基因HbSUT1、HbSUT3、HbSUT5等。乙烯對膠乳產(chǎn)量的刺激依賴于橡膠樹中蔗糖轉(zhuǎn)運蛋白HbSUT1B的表達[53]。HbSUT3是主要在乳管細胞中表達的蔗糖轉(zhuǎn)運基因,其表達受刺激劑乙烯的誘導,并與膠乳增產(chǎn)效應有關(guān),割膠也能顯著增加HbSUT3基因的表達[54]。橡膠樹的液泡蔗糖轉(zhuǎn)運蛋白HbSUT5通過調(diào)節(jié)樹皮和乳管中的細胞內(nèi)蔗糖轉(zhuǎn)運參與膠乳生產(chǎn)[55]。除蔗糖外,橡膠樹中還存在草酸轉(zhuǎn)運因子HbOT。HbOT1和HbOT2均是穩(wěn)定的疏水蛋白,具有跨膜結(jié)構(gòu)和SNARE_assoc結(jié)構(gòu)域,可能屬于SNARE超家族的SNARE_assoc亞家族蛋白,HbOT1在根、莖、樹皮和膠乳中呈高表達,HbOT2在膠乳中呈高表達,HbOT1和HbOT2在鋁脅迫下表達上調(diào),且受銅、錳等金屬誘導[56]。
3.3??橡膠樹的庫是合成膠乳的乳管細胞
橡膠樹的乳管包括初生乳管和次生乳管,次生乳管是商用天然橡膠生物合成與儲存的主要場所,天然橡膠生產(chǎn)即是通過切斷樹皮中的乳管收集膠乳,樹干和樹皮中的乳管數(shù)量與天然橡膠產(chǎn)量呈顯著正相關(guān)。位于橡膠樹樹干韌皮部的次生乳管即為“庫”,其數(shù)量和膠乳產(chǎn)量則可作為衡量庫容的指標。目前,越南等國的高產(chǎn)膠園平均每畝干膠產(chǎn)量可達100~110?kg。我國培育的熱研879品種干膠產(chǎn)量可達160?kg以上。說明橡膠樹的“庫”容巨大。與其他植物常見的果實、根莖作為庫相比,橡膠樹膠乳是典型的次生代謝產(chǎn)物,更具研究特色。橡膠樹次生乳管細胞經(jīng)類異戊二烯路徑進行合成,其前體是由光合作用產(chǎn)物蔗糖轉(zhuǎn)化而成的異戊烯基二磷酸(IPP),經(jīng)甲羥戊酸(MVA)路徑或甲基赤蘚醇4-磷酸(MEP)路徑合成。橡膠樹的乳管細胞是天然橡膠生物合成部位,橡膠粒子是合成天然橡膠的特殊細胞器,橡膠分子在橡膠粒子表面合成[57]。天然橡膠生物合成關(guān)鍵酶橡膠延伸因子(REF)、小橡膠粒子蛋白(SRPP)和順式異戊烯基轉(zhuǎn)移酶(cPT)就位于橡膠粒子上[58-59]。其中,REF在膠乳中是一種與橡膠粒子緊密結(jié)合的蛋白,是天然橡膠生物合成途徑中異戊二烯基轉(zhuǎn)移酶催化異戊二烯單體添加到橡膠分子中不可缺少的成分。SRPP是橡膠小粒子中含量最為豐富的膜蛋白之一,緊密結(jié)合在小橡膠粒子膜上,起著橡膠聚合的作用或類似于REF的作用[60-61]。天然橡膠生物合成還需脂類參與,SRPP結(jié)合磷脂(PL)、糖脂(GL)和中性脂(NL)[62-63],而REF只結(jié)合中性脂[58]。
橡膠樹“庫”活性受死皮病和割膠影響。與健康樹相比,死皮病通過影響橡膠樹的天然橡膠生物合成活性降低庫活性,而割膠則通過增加6-磷酸海藻糖合成酶活性提高庫活性。通過轉(zhuǎn)錄組測序和基于iTraq的蛋白質(zhì)組分析,發(fā)現(xiàn)HbFPS1是橡膠生物合成的關(guān)鍵基因,其表達產(chǎn)物在受死皮影響的橡膠樹膠乳中下調(diào),HbSRPP1可通過蛋白-蛋白相互作用將法尼酯二磷酸合酶HbFPS1招募到小橡膠顆粒中,催化法尼酯二磷酸(FPP)的合成,促進橡膠生物合成的啟動,隨著HbFPS1的下調(diào),受死皮影響的橡膠樹膠乳中FPP含量顯著降低,最終導致橡膠顆粒發(fā)育異常,橡膠生物合成活性降低[64]。ZHOU等[10]鑒定了橡膠樹乳管中6-磷酸海藻糖合成酶的14個TPS基因,其中Ⅱ類TPS基因HbTPS5具有乳管特異性功能,割膠使6-磷酸海藻糖合成酶活性和海藻糖含量均增加,且編碼基因HbTPS1的表達一致,另一方面,SnRK1活性的降低說明T6P升高對SnRK1有抑制作用,從而在轉(zhuǎn)錄水平、酶學和代謝等方面獲得支持T6P/SnRK1信號通路參與橡膠合成的證據(jù)。
綜上所述,關(guān)于橡膠樹光合作用、轉(zhuǎn)運和天然橡膠生物合成方面的最新研究進展,筆者提出了橡膠樹“葉膠比”源庫流模型,即橡膠園光照強度等環(huán)境因子調(diào)控橡膠樹葉片光合作用,其產(chǎn)物蔗糖調(diào)控膠乳中碳源和氮源的比例及內(nèi)源激素含量,進而調(diào)控膠乳產(chǎn)量和質(zhì)量,導致橡膠樹品種間排膠特異性差異。在該模型中,由于分布于葉片和初生生長莖稈皮組織的初生乳管所產(chǎn)橡膠不能作為標準膠使用,僅可在生產(chǎn)中作普通膠料[65],未將橡膠樹初生乳管產(chǎn)量納入庫容。為驗證這一科學理論模型,將對排膠特性差異品種采用刺激和割膠處理調(diào)節(jié)源庫分配,進而調(diào)控橡膠樹產(chǎn)量形成,為解析橡膠樹乳管細胞源庫分配的生理機制和揭示不同品種橡膠樹排膠特性,闡明橡膠樹排膠機理和研發(fā)橡膠樹排膠技術(shù)提供理論指導和技術(shù)支持。
建立橡膠樹“葉膠比”模型解析源庫調(diào)節(jié)橡膠樹排膠特性的生理機制,將為篩選產(chǎn)量潛力品種和排膠特性差異品種提供綜合參考。通過激素刺激和割膠處理等措施調(diào)節(jié)源庫分配關(guān)系,進而調(diào)控橡膠樹產(chǎn)量形成,為解析橡膠樹乳管細胞源庫分配的生理機制奠定堅實的基礎(chǔ)。在理論研究方面,將證明割膠后膠乳庫與葉片源之間的調(diào)節(jié)關(guān)系和調(diào)控閾值;在實際應用方面,闡明橡膠樹源庫調(diào)節(jié)排膠特性的生理機制將為研發(fā)橡膠樹新型產(chǎn)量刺激劑和割面保護劑提供重要的理論依據(jù)和技術(shù)指導。
參考文獻
[4]?MASON?T?G,?MASKELL?E?J.?Studies?on?the?transport?of?carbohydrates?in?the?cotton?plant1:?I.?a?study?of?diurnal?variation?in?the?carbohydrates?of?leaf,?bark,?and?wood,?and?of?the?effects?of?ringing[J].?Annals?of?Botany,?1928,?42(1):?189-253.
[5]?MASON?T?G,?MASKELL?E?J.?Studies?on?the?transport?of?carbohydrates?in?the?cotton?plant:?II.?the?factors?determining?the?rate?and?the?direction?of?movement?of?sugars[J].?Annals?of?Botany,?1928,?42(167):?571-636.
[6]?陳年來.?作物庫源關(guān)系研究進展[J].?甘肅農(nóng)業(yè)大學學報,?2019,?54(1):?1-10.CHEN?N?L.?Research?advances?on?source-sink?interaction?of?the?crops[J].?Journal?of?Gansu?Agricultural?University,?2019,?54(1):?1-10.?(in?Chinese)
[14]?CHEAH?Z?X,?OHARE?T?J,?HARPER?S?M,?BELL?M?J.?Variation?in?zinc?concentration?of?sweetcorn?kernels?reflects?source-sink?dynamics?influenced?by?kernel?number[J].?Journal?of?Experimental?Botany,?2020,?71(16):?4985-4992.
[15]?張惠敏.?多聚腺苷酸化和DNA甲基化調(diào)控黃瓜(Cucumis?sativus?L.)庫源關(guān)系研究[D].?揚州:?揚州大學,?2022.ZHANG?H?M.?Polyadenylation?and?DNA?methylation?regulate?the?sink-source?relationship?in?cucumber?(Cucumis?sativus?L.)[D].?Yangzhou:?Yangzhou?University,?2022.?(in?Chinese)
[16]?SAEZ?J?V,?MARIOTTI?J?A,?VEGA?C?R?C.?Source-sink?relationships?during?early?crop?development?influence?earliness?of?sugar?accumulation?in?sugarcane[J].?Journal?of?Experimental?Botany,?2019,?70(19):?5157-5171.
[17]?PINCOVICI?S,?COCHAVI?A,?KAMIELI?A,?EPHRATH?J,?RACHMILEVITCH?S.?Source-sink?relations?of?sunflower?plants?as?affected?by?a?parasite?modifies?carbon?allocations?and?leaf?traits[J].?Plant?Science,?2018,?271:?100-107.
[18]?RODRIGUES?J,?INZE?D,?NELISSEN?H,?SAIBO?N?J?M.?Source-sink?regulation?in?crops?under?water?deficit[J].?Trends?in?Plant?Science,?2019,?24(7):?652-663.
[19]?HALL?J?P,?WOOD?A?J,?HARRISON?E,?BROCKHURST?M?A.?Source-sink?plasmid?transfer?dynamics?maintain?gene?mobility?in?soil?bacterial?communities[J].?Proceedings?of?the?National?Academy?of?Sciences,?2016,?113(29):?8260-8265.
[20]?MURCHIE?E?H,?REYNOLDS?M,?SLAFER?G?A,?FOULKES?M?J,?ACEVEDO-SIACA?L,?MCAUSLAND?L,?SHARWOOD?R,?GRIFFITHS?S,?FLAVELL?R?B,?GWYN?J,?SAWKINS?M,?CARMO-SILVA?E.?A?‘wiring?diagram?for?source?strength?traits?impacting?wheat?yield?potential[J].?Journal?of?Experimental?Botany,?2023,?74(1):?72-90.
[21]?ABDELRAHMAN?M,?BURRITTt?D?J,?GUPTA?A,?TSUJIMOTO?H,?TRAN?L?P.?Heat?stress?effects?on?source-?sink?relationships?and?metabolome?dynamics?in?wheat[J].?Journal?of?Experimental?Botany,?2020,?71(2):?543-554.
[22]?翟來圓,?王峰,?閆安,?王韻,?徐建龍.?水稻穗粒數(shù)基因GNP1對庫、源、流的生理機制剖析[C]//中國作物學會.?第十九屆中國作物學會學術(shù)年會論文摘要集,?2022:?199.?ZHAI?L?Y,?WANG?F,?YAN?A,?WANG?Y,?XU?J?L.?Physiological?mechanism?analysis?of?sink,?source?and?flow?induced?by?GNP1?gene?affecting?grain?number?per?panicle?in?rice[C]//Chinese?Crop?Society.?Abstracts?of?the?19th?Annual?Conference?of?Chinese?Crop?Society,?2022:?199.?(in?Chinese)
[23]?LEHRETZ?G?G,?SONNEWALD?S,?HOMYIL?C,?CORRAL?J?M,?SONNEWALD?U.?Post-transcriptional?Regulation?of?flowering?lucus?T?modulates?heat-dependent?source-sink?development?in?potato[J].?Current?Biology,?2019,?29(10):?1614-1624.
[24]?MUNIZIZ?GARCIA?M?N,?CORTELEZZI?J?I,?CAPIATI?D?A.?The?protein?phosphatase?2A?catalytic?subunit?StPP2Ac2b?is?involved?in?the?control?of?potato?tuber?sprouting?and?source-sink?balance?in?tubers?and?sprouts[J].?Journal?of?Experimental?Botany,?2022,?73(19):?6784-6799.
[25]?GRIFFITHS?C?A,?PAUL?M?J,?FOYER?C?H.?Metabolite?transport?and?associated?sugar?signalling?systems?underpinning?source/sink?interactions[J].?Biochimica?et?Biophyssica?Acta,?2016,?1857(10):?1715-1725.
[26]?單建偉,?柳俊,?索海翠,?王麗,?安康,?劉計濤,?景晟林,?李成晨,?宋波濤,?李小波.?糖信號調(diào)控馬鈴薯塊莖發(fā)育的研究進展[J].?華中農(nóng)業(yè)大學學報,?2021,?40(4):?27-35.SHAN?J?W,?LIU?J,?SUO?H?C,?WANG?L,?AN?K,?LIU?J?T,?JING?S?L,?LI?C?C,?SONG?B?T,?LI?X?B.?Progress?on?sugar?signal?regulating?potato?tuber?development[J].?Journal?of?Huazhong?Agricultural?University,?2021,?40(4):?27-35.?(in?Chinese)
[27]?MATHAN?J,?SINGH?A,?RANJAN?A.?Sucrose?transport?and?metabolism?control?carbon?partitioning?between?stem?and?grain?in?rice[J].?Journal?of?Experimental?Botany,?2021,?72(12):?4355-4372.
[28]?ALEM?H,?OJEDA?H,?RIGOU?P,?SCHNEEDER?R,?TORREGROSA?L.?The?reduction?of?plant?sink/source?does?not?systematically?improve?the?metabolic?composition?of?Vitis?vinifera?white?fruit[J].?Food?Chemistry,?2020,?345:?128825.
[29]?ALONSO?M?P,?ABBATE?P?E,?MIRABELLA?N?E,?MERLOS?F?A,?PANELO?J?S,?PONTAROLI?A?C.?Analysis?of?sink/source?relations?in?bread?wheat?recombinant?inbred?lines?and?commercial?cultivars?under?a?high?yield?potential?environment[J].?European?Journal?of?Agronomy,?2018,?93:?82-87.
[30]?趙思明.?源庫調(diào)節(jié)對靈武長棗光合作用及果實品質(zhì)的影響[D].?銀川:?寧夏大學,?2021.ZHAO?S?M.?Effects?of?source?and?sink?regulation?on?photosynthesis?and?fruit?quality?of?Ziziphus?jujuba?Mill.?cv.?‘Lingwuchangzao[D].?Yinchuan:?Ningxia?University,?2021.?(in?Chinese)
[31]?GLANZ-IDAN?N,?TARKOWSKI?P,?TURECKOVA?V,?WOLF?S.?Root-shoot?communication?in?tomato?plants:?cytokinin?as?a?signal?molecule?modulating?leaf?photosynthetic?activity[J].?Journal?of?Experimental?Botany,?2020,?71(1):?247-257.
[32]?ASLANI?L,?GHOLAMI?M,?MOBLI?M,?EHSANZADEH?P,?BERTIN?N.?Decreased?sink/source?ratio?enhances?hexose?transport?in?the?fruits?of?greenhouse?tomatoes:?integration?of?gene?expression?and?biochemical?analyses[J].?Physiology?Plant,?2020,?170(1):?120-131.
[33]?ASLANI?L,?GHOLAMI?M,?MOBLI?M,?SABZALIAN?M?R.?The?influence?of?altered?sink-source?balance?on?the?plant?growth?and?yield?of?greenhouse?tomato[J].?Physiology?and?Molecular?Biology?of?Plants,?2020,?26(11):?2109-2123.
[34]?NGAO?J,?MARTINEZ?S,?MARQUIER?A,?BLUY?S,?SAINT-JOANIS?B,?COSTES?E,?PALLAS?B.?Spatial?variability?in?carbon-?and?nitrogen-related?traits?in?apple?trees:?the?effects?of?the?light?environment?and?crop?load[J].?Journal?of?Experimental?Botany,?2021,?72(5):?1933-1945.
[35]?WANG?J?D,?ZHU?G?P,?DONG?Y,?ZHANG?H,?RENGEL?Z,?AI?Y?C,?ZHANG?Y?C.?Potassium?starvation?affects?biomass?partitioning?and?sink–source?responses?in?three?sweet?potato?genotypes?with?contrasting?potassium-use?efficiency[J].?Crop?and?Pasture?Science,?2018,?69(5):?506-514.
[36]?XU?Q,?LIESCHE?J.?Sugar?export?from?Arabidopsis?leaves:?actors?and?regulatory?strategies[J].?Journal?of?Experimental?Botany,?2021,?72(15):?5275-5284.
[37]?PAUL?M?J,?WATSON?A,?GRIFFITHS?C?A.?Trehalose?6-phosphate?signalling?and?impact?on?crop?yield[J].?Biochemical?Society?Transactions,?2020,?48(5):?2127-2137.
[38]?JIA?L?G,?WU?L,?SUYALA?Q,?SHI?X?H,?QIN?Y?L,?FAN?M?S.?Promotion?of?potato?yield?under?moderate?water?deficiency?at?the?seedling?stage?by?modifying?sink-source?relationship[J].?Plant?Production?Science,?2022,?25(1):?95-104.
[39]?高芳.?不同源庫類型花生品種產(chǎn)量品質(zhì)形成機理及調(diào)控[D].?泰安:?山東農(nóng)業(yè)大學,?2021.????GAO?F.?Mechanism?of?yield?and?quality?formation?and?regulation?in?different?source-sink?types?of?peanut[D].?Taian:?Shandong?Agricultural?University,?2021.?(in?Chinese)
[40]?鄭強卿,?陳奇凌,?王晶晶,?支金虎.?基于棗品質(zhì)提升的庫源激素調(diào)控[J].?貴州農(nóng)業(yè)科學,?2019,?47(7):?105-109.ZHENG?Q?Q,?CHEN?Q?L,?WANG?J?J,?ZHI?J?H.?Sink-source?hormone?regulation?for?improvement?of?jujube?quality[J].?Guizhou?Agricultural?Sciences,?2019,?47(7):?105-109.?(in?Chinese)
[41]?郝麗陽.?外源植物激素調(diào)控食源性膠球藻油脂積累機制[D].?湘潭:?湘潭大學,?2021.HAO?L?Y.?Regulatory?mechanisms?of?exogenous?phytohormone?on?lipid?accumulation?in?foodborne?Coccomyxa?subellipsoidea[D].?Xiangtan:?Xiangtan?University,?2021?(in?Chinese).
[42]?祁杰.?無膜栽培短季棉葉片衰老和產(chǎn)量形成的研究[D].?泰安:?山東農(nóng)業(yè)大學,?2022.QI?J.?Leaf?senescence?and?yield?formation?of?field-grown?short-season?cotton?without?plastic?mulching[D].?Taian:?Shandong?Agricultural?University,?2022.?(in?Chinese)
[43]?趙衛(wèi)星,?康利允,?高寧寧,?常高正,?梁慎,?李海倫,?王慧穎,?徐小利,?李曉慧.?整枝留果對甜瓜植株衰老的調(diào)控效應及生理機制[J].?江蘇農(nóng)業(yè)科學,?2022,?50(9):?154-159.ZHAO?W?X,?KANG?L?Y,?GAO?N?N,?CHANG?G?Z,?LIANG?S,?LI?H?L,?WANG?H?Y,?XU?X?L,?LI?X?H.?Regulation?effects?and?physiological?mechanism?of?pruning?and?fruit?retention?on?plant?senescence?of?muskmelon[J].?Jiangsu?Agricultural?Sciences,?2022,?50(9):?154-159.?(in?Chinese)
[44]?XU?X?X,?ZHANG?Y?H,?LI?J?P,?ZHANG?M,?ZHOU?X?N,?ZHOU?S?L,?WANG?Z?M.?Optimizing?single?irrigation?scheme?to?improve?water?use?efficiency?by?manipulating?winter?wheat?sink-source?relationships?in?northern?China?plain[J].?PloS?One,?2018,?13(3):?e0193895.
[45]?賈婷婷,?蘇淑釵,?馬履一,?蘇倩葳.?不同庫源關(guān)系對油茶花芽分化的影響[J].?東北林業(yè)大學學報,?2018,?46(9):?50-53.JIA?T?T,?SU?S?C,?MA?L?Y,?SU?Q?W.?Response?of?flower?bud?differentiation?to?different?sink-source?relationships?in?Camellia?oleifera[J].?Journal?of?Northeast?Forestry?University,?2018,?46(9):?50-53.?(in?Chinese)
[46]?HUSSAIN?A,?CLASSENS?G,?SYDNE?G?R,?JONATHAN?A?C,?RAHMATOLLAN?R,?BROSNON?R?P,?NADIR?E.?Spatial?variation?in?soil?available?water?holding?capacity?alters?carbon?mobilization?and?allocation?to?chemical?defenses?along?jack?pine?stems[J].?Environmental?and?Experimental?Botany,?2020,?171(C):?103902-103902.
[47]?YOUN?S?D,?MAUD?H,?NATHALIE?M,?FLORIANT?B,?PIERRE?M,?ALAIN?B.?Sink/source?balance?of?leaves?influences?amino?acid?pools?and?their?associated?metabolic?fluxes?in?winter?oilseed?rape?(Brassica?napus?L.)[J].?Metabolites,?2020,?10(4):?150.
[48]?SAMSUDDIN?Z,?IMPENS?I.?Water?vapour?and?carbon?dioxide?diffusion?resistances?of?four?Hevea?brasiliensis?clonal?seedlings[J].?Experimental?Agriculture,?1978,?14(2):?173-177.
[49]?SAMSUDDIN?Z,?IMPENS?I.?Photosynthetic?rates?and?diffusion?resistances?of?seven?Hevea?brasiliensis?Muell.?Arg.?clones[J].?Biologia?Plantarum,?1979,?21(2):?154-156.
[50]?NATARAJA?K?N,?JACOB?J.?Clonal?differences?in?photosynthesis?in?Hevea?Brasiliensis?Müll.?Arg.[J].?Photosynthetica,?1999,?36(1/2):?89-98.
[51]?DEVAKUMAR?A?S,?SHAYEE?M?S?S,?UDAYAKUMAR?M,?PRASAD?T?G.?Effect?of?elevated?CO2?concentration?on?seedling?growth?rate?and?photosynthesis?in?Hevea?brasiliensis[J].?Journal?of?Biosciences,?1998,?23(1):?33-36.
[52]?SOUZA?G?A?D,?DIAS?D?C?F?D?S,?PIMENTA?T?M,?ALMEIDA?A?L,?PICOLI?E?A?D?T,?ALVARENGA?D?P?A,?SILVA?J?C?F?D.?Sugar?metabolism?and?developmental?stages?of?rubber?tree?(Hevea?brasiliensis?L.)?seeds[J].?Physiology?Plant,?2018,?162(4):?495-505.
[53]?DUSOTOIT-COUCAUD?A,?KONGSAWADWORAKUL?P,?MAUROUSSET?L,?VIBOONJUN?U,?BRUNEL?N,?PUJADE-RENAUD?V,?CHRESTIN?H,?SAKR?S.?Ethylene?stimulation?of?latex?yield?depends?on?the?expression?of?a?sucrose?transporter?(HbSUT1B)?in?rubber?tree?(Hevea?brasiliensis)[J].?Tree?Physiology,?2010,?30(12):?1586-1598.
[54]?TANG?C,?HUANG?D,?YANG?J,?LIU?S,?SAKR?S,?LI?H,?ZHOU?Y,?QIN?Y.?The?sucrose?transporter?HbSUT3?plays?an?active?role?in?sucrose?loading?to?laticifer?and?rubber?productivity?in?exploited?trees?of?Hevea?brasiliensis?(para?rubber?tree)[J].?Plant?Cell?and?Environment,?2010,?33(10):?1708-?1720.
[55]?LONG?X?Y,?LI?H?P,?YANG?J?H,?XIN?L?S,?FANG?Y?J,?HE?B,?HUANG?D?B,?TANG?C?R.?Correction?to:?characterization?of?a?vacuolar?sucrose?transporter,?HbSUT5,?from?Hevea?brasiliensis:?involvement?in?latex?production?through?regulation?of?intracellular?sucrose?transport?in?the?bark?and?laticifers[J].?BMC?Plant?Biology,?2021,?21:?46.
[56]?YANG?Z,?ZHAO?P,?PENG?W,?LIU?Z,?XIE?G,?MA?X,?AN?Z,?AN?F.?Cloning,?expression?analysis,?and?functional?characterization?of?candidate?oxalate?transporter?genes?of?HbOT1?and?HbOT2?from?rubber?tree?(Hevea?brasiliensis)[J].?Cells,?2022,?11(23):?3793.
[57]?DENG?X,?GUO?D,?YANG?S,?SHI?M,?CHAO?J,?LI?H,?PENG?S,?TIAN?W.?Jasmonate?signalling?in?the?regulation?of?rubber?biosynthesis?in?laticifer?cells?of?rubber?tree,?Hevea?brasiliensis[J].?Journal?of?Experimental?Botany,?2018,?69(15):?3559-3571.
[58]?WADEESIRISAK?K,?CASTANO?S,?BERTHELOT?K,?VAYSSE?L,?BONFILS?F,?PERUCH?F,?RATTANAPOM?K,?LIENGPRAYOON?S,?LECOMTE?S,?BOTTIER?C.?Rubber?particle?proteins?REF1?and?SRPP1?interact?differently?with?native?lipids?extracted?from?Hevea?brasiliensis?latex[J].?Biochimica?et?Biophysica?Acta,?Biomembranes,?2017,?1859(2):?201-210.
[59]?NIEPHAUS?E,?M?LLER?B,?DEENEN?N?V,?LASSOWSKAT?I,?BONIN?M,?FINKEMEIER?I,?PR?FER?D,?GRONOVER?C?S.?Uncovering?mechanisms?of?rubber?biosynthesis?in?Taraxacum?koksaghyz?role?of?cis-prenyltransferase-like?1?protein[J].?Plant?Journal,?2019,?100(3):?591-609.
[60]?SANDO?T,?TAKAOKA?C,?MUKAI?Y,?YAMASHITA?A,?HATTORI?M,?OGASAWARA?N,?FUKUSAKI?E,?KOBAYASHI?A.?Cloning?and?characterization?of?mevalonate?pathway?genes?in?a?natural?rubber?producing?plant,?Hevea?brasiliensis[J].?Bioscience,?Biotechnology?and?Biochemistry,?2008,?72(8):?2049-2060.
[61]?SANDO?T,?TAKENO?S,?WATANABE?N,?OKUMOTO?H,?KUZUYAMA?T,?YAMASHITA?A,?HATTORI?M,?OGASAWARA?N,?FUKUSAKI?E,?KOBAYASHI?A.?Cloning?and?characterization?of?the?2-C-methyl-D-erythritol?4-phosphate?(MEP)?pathway?genes?of?a?natural-rubber?producing?plant,?Hevea?brasiliensis[J].?Bioscience,?Biotechnology?and?Biochemistry,?2008,?72(11):?2903-2917.
[62]?LAIBACH?N,?HILLEBRAND?A,?TWYMAN?R?M,?PR?FER?D,?GRONOVER?C?S.?Identification?of?a?Taraxacum?brevicorniculatum?rubber?elongation?factor?protein?that?is?localized?on?rubber?particles?and?promotes?rubber?biosynthesis[J].?Plant?Journal,?2015,?82(4):?609-620.
[63]?LAIBACH?N,?SCHMIDL?S,?M?LLER?B,?BERGMANN?M,?PR?FER?D,?GRONOVER?C?S.?Small?rubber?particle?proteins?from?Taraxacum?brevicorniculatum?promote?stress?tolerance?and?influence?the?size?and?distribution?of?lipid?droplets?and?artificial?poly?(cis-1,4-isoprene)?bodies[J].?Plant?Journal,?2018,?93(6):?1045-1061.
[64]?NIE?Z?Y,?KANG?G?J,?YAN?D,?QIN?H?D,?YANG?L?F,?ZENG?R?Z.?Downregulation?of?HbFPS1?affects?rubber?biosynthesis?of?Hevea?brasiliensis?suffering?from?tapping?panel?dryness[J].?Plant?Journal,?2022:?16063.
[65]?姚行成,?涂寒奇,?周珺,?陳先紅,?陳青,?林位夫,?王軍.?橡膠樹初生乳管橡膠的產(chǎn)量性狀與橡膠特性研究[J].?熱帶作物學報,?2022,?43(11):?2207-2214.YAO?X?C,?TU?H?Q,?ZHOU?J,?CHEN?X?H,?CHEN?Q,?LIN?W?F,?WANG?J.?Quantification?and?characterization?of?rubber?from?primary?laticifers?of?Hevea?brasiliensis[J].?Chinese?Journal?of?Tropical?Crops,?2022,?43(11):?2207-2214.?(in?Chinese)