• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      位錯密度演化模型的研究進(jìn)展

      2023-04-29 00:44:03雷明雨溫斌
      燕山大學(xué)學(xué)報(bào) 2023年1期
      關(guān)鍵詞:塑性變形再結(jié)晶微觀

      雷明雨 溫斌

      摘 要:

      作為材料微觀結(jié)構(gòu)狀態(tài)的一個內(nèi)部變量,位錯密度與材料組織結(jié)構(gòu)演化和力學(xué)性能密切相關(guān)。金屬材料在塑性變形過程中,其位錯密度會發(fā)生演化。因此,位錯密度演化模型的建立是材料組織結(jié)構(gòu)和力學(xué)性能研究領(lǐng)域的一個重要課題。本文簡要介紹了位錯密度的演化規(guī)律及其物理機(jī)制,綜述了當(dāng)前位錯密度演化模型的研究進(jìn)展,總結(jié)了位錯密度演化數(shù)值計(jì)算方法的研究現(xiàn)狀,介紹了位錯密度對組織結(jié)構(gòu)演化和力學(xué)性能的影響規(guī)律,探討了位錯密度演化研究的發(fā)展趨勢。

      關(guān)鍵詞:

      塑性變形;位錯密度演化模型;數(shù)值計(jì)算方法;微觀組織結(jié)構(gòu);力學(xué)性能

      中圖分類號:TU313.2? 文獻(xiàn)標(biāo)識碼: A? DOI:10.3969/j.issn.1007-791X.2023.01.001

      0 引言

      材料的性能取決于材料的微觀組織結(jié)構(gòu),材料的微觀組織結(jié)構(gòu)又與其前期的加工歷程緊密相關(guān)。因此,材料加工過程中微觀組織結(jié)構(gòu)演化的研究[1-3]不僅對材料性能的研究具有重要的意義[4],而且對指導(dǎo)材料加工工藝的開發(fā)研究也具有重要的意義[5-6]。

      塑性變形是一種重要的金屬材料加工方法[7],而塑性變形的主要載體是位錯。在塑性變形過程中,位錯會發(fā)生增殖等一系列的行為,從而使位錯的數(shù)量、類型和空間分布等發(fā)生演化,進(jìn)而影響材料的微觀組織結(jié)構(gòu)和力學(xué)行為。位錯密度可以定量反映材料的微觀組織結(jié)構(gòu)和力學(xué)性能,所以位錯密度演化的研究就成為金屬材料組織和性能研究的一個關(guān)鍵。因此,許多研究者對位錯密度演化進(jìn)行了研究,并建立了很多位錯密度演化模型。例如,K-M模型[8-14]、L-J模型[15-18]、E-K模型[19-21]和位錯胞結(jié)構(gòu)模型[22-27]等。除位錯密度演化模型外,研究者還通過數(shù)值計(jì)算的方法對位錯密度演化模型進(jìn)行了研究,例如,有限元模擬方法(Finite Element Method,F(xiàn)EM)[28-32]、元胞自動機(jī)模擬方法(Cellular Automata,CA)[33-39]、分子動力學(xué)模擬方法(Molecular Dynamic,MD)[40-43]和離散位錯動力學(xué)模擬方法(Discrete Dislocation Dynamics,DDD)[44-50]等。

      無論在位錯密度演化模型的建立方面,還是在位錯密度數(shù)值計(jì)算方面,目前的研究已經(jīng)取得了很大的進(jìn)展。為了對位錯密度演化模型有一個更全面的認(rèn)識,本文對位錯密度演化模型和數(shù)值計(jì)算方法的研究進(jìn)展進(jìn)行系統(tǒng)的綜述,對位錯密度對組織結(jié)構(gòu)演化和力學(xué)性能的影響規(guī)律進(jìn)行總結(jié),并對位錯密度演化研究的發(fā)展趨勢進(jìn)行探討。

      1 位錯密度的定義及實(shí)驗(yàn)測定方法

      1934年,Taylor,Orowan和Polanyi幾乎同時提出了位錯的概念[51-54]。隨后,位錯缺陷被透射電鏡實(shí)驗(yàn)所證實(shí)[55]。作為晶體中的一維缺陷,位錯可以認(rèn)為是已滑移區(qū)與未滑移區(qū)之間的分界。

      1.1 位錯密度的定義

      為了定量反映材料單位體積內(nèi)位錯的多少,研究者提出了位錯密度的概念[56]。位錯密度通常被定義為單位體積晶體中位錯線的總長度,或單位面積中位錯線的數(shù)量,因此,位錯密度可以表示為

      ρ=LV=NlSl=NS,

      式中,L為體積為V的晶體中位錯線的總長度,V為晶體體積,N為面積為S的晶體截面中的位錯數(shù)(位錯線與觀察表面的交點(diǎn)),l為垂直于晶體截面方向的晶體尺寸。

      1.2 位錯密度的實(shí)驗(yàn)測量方法

      比較常用的測量位錯密度的實(shí)驗(yàn)方法是表面腐蝕法(圖1(a)[57])。由于位錯處的原子處于亞穩(wěn)態(tài),腐蝕處理后,很容易在位錯露頭處出現(xiàn)腐蝕坑。所以,將試樣切割和打磨后,進(jìn)行腐蝕,然后統(tǒng)計(jì)晶體單位面積內(nèi)腐蝕坑的數(shù)量即可得到位錯密度。該方法雖然在操作上簡單且成本較低,但是一般僅適用于單晶體位錯的測量。此外,表面腐蝕法只能表征特定滑移面的平均位錯密度行為,不能解釋微觀結(jié)構(gòu)的不均勻性,導(dǎo)致測量結(jié)果具有隨機(jī)性,精度較差。

      針對宏觀區(qū)域范圍位錯密度的測量,還可以采用X射線衍射線性分析法(圖1(b)[58]、1(c)[58])。作為一種間接分析方法,因其統(tǒng)計(jì)性強(qiáng)的特點(diǎn),適用范圍更廣。但當(dāng)材料的位錯密度較低時,由于衍射線寬不明顯,會導(dǎo)致結(jié)果誤差較大。 為此,可通過透射電鏡分析法(圖1(d)[59])對微觀區(qū)域的位錯密度進(jìn)行測量。該方法不僅能直觀地觀測到位錯的組態(tài)和數(shù)量,而且能夠解釋微觀結(jié)構(gòu)的不均勻性。此外,出于操作的簡單和便捷性,電子背散射衍射分析法(圖1(e)[60]、1(f)[60])也常被應(yīng)用于測量材料的位錯密度。該方法的另一個特點(diǎn)在于能直觀地觀測并對比不同試樣間的位錯密度,且精度更高。

      2 影響位錯密度演化的因素

      位錯密度作為微觀組織狀態(tài)的內(nèi)部變量,影響其演化的因素較多,例如應(yīng)變量[61-63]、溫度[64-68]、應(yīng)變速率[67,69-70]、晶粒尺度[21,71-79]和加載方式等。下面就這些因素對位錯密度演化行為的影響做以總結(jié)。

      2.1 應(yīng)變量

      應(yīng)變量是影響材料位錯密度演化的一個重要因素。在塑性變形開始階段,金屬內(nèi)部的位錯密度較低。初始位錯隨應(yīng)變量的增加不斷增殖,并與其他位錯纏結(jié),直到堆積到材料表面。此時, 由于應(yīng)變量較小,堆積和纏結(jié)的位錯很難動態(tài)回復(fù),使得位錯密度越來越大[61,63]。隨應(yīng)變量的進(jìn)一步增大,大量塞積的位錯會形成很高的形變儲能,促進(jìn)位錯的動態(tài)回復(fù)。回復(fù)過程可分為兩個方面:一方面是螺型位錯的交滑移;另一方面是刃型位錯的攀移。因此,當(dāng)交滑移活躍時,螺型位錯密度不再增加,刃型位錯密度仍然增加,位錯密度的增殖速率減慢。由于塑性變形處于小應(yīng)變區(qū)域,整體的位錯密度仍舊處于增加階段。但是,當(dāng)達(dá)到臨界應(yīng)變量和較高溫度條件時,刃型位錯攀移作用增加,在晶界及亞晶界處發(fā)生動態(tài)再結(jié)晶[80],使得整體的位錯密度降低。此后,塑性變形進(jìn)入大應(yīng)變區(qū)域,位錯密度的增殖速率和回復(fù)速率趨于平衡,位錯密度進(jìn)入穩(wěn)態(tài)階段。

      除了軋制、循環(huán)變形以外,人們對蠕變過程中的位錯組態(tài)演化也進(jìn)行了研究。研究人員發(fā)現(xiàn),由于高溫下刃型位錯能夠攀移,此外蠕變速率一般較低,這就使得蠕變過程中易于形成位錯胞結(jié)構(gòu)。因此,位錯模式的形成和演化將為蠕變塑性過程的建模提供指導(dǎo)。從位錯動力學(xué)角度出發(fā),蠕變和塑性變形常被視為一個統(tǒng)一的熱激活過程[87]。塑性變形期間位錯堆積引起的內(nèi)應(yīng)力集中,在隨后的蠕變期間以位錯攀移的形式釋放。隨著亞晶粒的形成,變形的阻力逐漸由亞晶界提供。然而,在本質(zhì)上,蠕變和塑性變形存在差異[94],只是二者存在共同的內(nèi)在微觀機(jī)制,這就需要對位錯滑移模式和微觀物理機(jī)制進(jìn)行更深入的研究。

      4.2 元胞自動機(jī)模擬方法

      元胞自動機(jī)是一種廣泛使用的數(shù)值計(jì)算方法,該方法[34,120]通過模擬每個晶粒的微觀組織演變,搭建離散的網(wǎng)格動力學(xué)模型。變形過程按照固定的規(guī)則進(jìn)行更新,從而預(yù)測變形過程中的顯微組織演化[121]。如上節(jié)所述,有限元模擬方法有效考慮了位錯間的相互作用,但未能捕獲動態(tài)再結(jié)晶過程的形態(tài)特征。為了解決這些問題,Li等提出了如圖6(a)所示的模型構(gòu)建概念[38],將動態(tài)再結(jié)晶視為本構(gòu)行為的一部分,通過元胞自動機(jī)與晶體塑性有限元的完全耦合,充分考慮了動態(tài)再結(jié)晶過程的微觀結(jié)構(gòu)演化和多尺度非均勻變形的塑性變形行為,建立了三維的元胞自動機(jī)晶體塑性有限元模型,并成功應(yīng)用于TA15合金。在變形初期,位錯主要集中在晶界處。模擬結(jié)果表明,隨變形量的增加,晶粒內(nèi)部的位錯密度增加。但由于晶粒取向不同,大部分晶粒仍處在位錯密度較低的階段,與實(shí)驗(yàn)結(jié)果符合得很好。結(jié)合K-M模型,Qian和Guo[34]

      利用元胞自動機(jī)方法研究了HY-100鋼的微觀組織,成功模擬了塑性變形中的動態(tài)再結(jié)晶行為,其預(yù)測與實(shí)驗(yàn)結(jié)果吻合得很好。出于元胞自動機(jī)方法對高溫變形下動態(tài)再結(jié)晶行為模擬的優(yōu)勢性,通過建立合理的可視化模型(圖6(b)[122-123]),能夠有效評估再結(jié)晶條件下相應(yīng)的微觀結(jié)構(gòu)形態(tài)演化和位錯密度變化,為揭示材料高溫下的變形機(jī)制提供了高效途徑。

      4.3 分子動力學(xué)模擬方法

      分子動力學(xué)模擬方法是以牛頓運(yùn)動方程和應(yīng)用力場為基礎(chǔ)的計(jì)算機(jī)模擬方法,可對體系中微觀粒子之間的相互作用進(jìn)行模擬[40]。該方法將位錯作為原子動力學(xué)的介質(zhì),解釋了位錯介導(dǎo)的塑性極限的原子機(jī)制[41]。通過模擬不同變形條件下的應(yīng)變響應(yīng),為材料變形機(jī)理的微觀尺度研究提供了有效手段。分子動力學(xué)模擬方法的優(yōu)勢在于通過建立3D原子模型,能夠模擬特定的加工工藝。文獻(xiàn)[127]模擬了超細(xì)晶納米鎳在三種不同溫度下的非對稱循環(huán)加載變形,如圖7所示。

      不難看出,溫度的變化對位錯密度有顯著的影響。隨溫度的升高,原子的擴(kuò)散增加了位錯的運(yùn)動速率。這有助于相反符號位錯的湮滅,使得位錯密度降低,材料的流動應(yīng)力降低。由于其變形過程的復(fù)雜性,通過控制原子水平上的結(jié)構(gòu)演化和潛在的變形機(jī)制,對納米鎳材料的性能研究具有重要意義。有時,為了得到力學(xué)性能良好的工程材料,需要量化材料微觀結(jié)構(gòu)在變形中的演化行為[4]。例如,在高位錯密度下的加工硬化效應(yīng)和位錯演化導(dǎo)致的晶粒細(xì)化,能有效提高材料的強(qiáng)度。但是對于成分復(fù)雜的合金材料和相對多道次的加工工藝而言,實(shí)驗(yàn)上尚且無法直接觀察到其位錯的演化過程,這就使得分子動力學(xué)模擬方法應(yīng)用范圍更加廣泛[6]。分子動力學(xué)模擬方法的優(yōu)勢在于能夠有效描述微觀結(jié)構(gòu)的演化過程,并對小尺寸模型中位錯介導(dǎo)的塑性流動的原子尺度觀察非常有效。例如:在低溫的塑性變形條件下,螺型位錯的交滑移作為位錯軟化行為的重要回復(fù)機(jī)制,一直是研究的重點(diǎn)問題。Li等[125]利用分子動力學(xué)模擬方法,通過模擬原子尺度的熱激活過程,直觀地觀察到了純銅在低溫下的交滑移行為,為理論研究提供了合理的支撐。Yashiro等[126]采用分子動力學(xué)方法,對鎳基高溫合金進(jìn)行單軸拉伸模擬,通過對自由表面形核的刃型位錯、沉淀物對位錯的釘扎以及位錯間的相互作用等具體細(xì)節(jié)的分析,揭示了位錯成核的新機(jī)制,這是實(shí)驗(yàn)上很難觀測到的。但是由于時間與原子尺度的限制,要在分子動力學(xué)模擬中實(shí)現(xiàn)與實(shí)驗(yàn)過程相近的加載條件幾乎是不可能的,這需要非常充裕的計(jì)算資源。此外,對于具體化的位錯模型搭建、定量插入各種類型的初始位錯密度以及位錯相互作用機(jī)制的調(diào)控,分子動力學(xué)模擬便很難實(shí)現(xiàn),而離散位錯動力學(xué)方法的優(yōu)勢便得到了有效地發(fā)揮。

      4.4 離散位錯動力學(xué)模擬方法

      離散位錯動力學(xué)模擬是基于Peach-Koehler力的數(shù)值計(jì)算方法,能夠直觀地預(yù)測位錯間的相互作用,進(jìn)而揭示位錯微觀結(jié)構(gòu)與塑性行為間的物理聯(lián)系[127]。Bulatov和Cai[128]對離散位錯動力學(xué)模擬方法作出了詳細(xì)的理論解釋,對比了各種離散位錯動力學(xué)數(shù)值計(jì)算軟件,并列舉了位錯演化現(xiàn)象的相應(yīng)代碼。其中離散位錯動力學(xué)模擬平臺ParaDis因其高效的計(jì)算能力,是現(xiàn)階段較為完善的離散位錯動力學(xué)模擬軟件[44-45]。對于金屬材料而言,塑性變形離不開位錯之間的相互作用。然而,傳統(tǒng)的數(shù)值方法很難實(shí)現(xiàn)對位錯行為的可視化模擬,尤其對于很難定量判斷的位錯源而言,離散位錯動力學(xué)方法能夠很容易地搭建出滿足材料本身特性的位錯源條件,使位錯主導(dǎo)的變形機(jī)制建立在一定的物理基礎(chǔ)之上。因此,離散位錯動力學(xué)方法為微觀尺度位錯介導(dǎo)的塑性研究提供了橋梁[74]。熊健等[47]提出使用離散位錯動力學(xué)模擬方法解決位錯密度梯度結(jié)構(gòu)的演化過程,并以Cu單晶微柱作為模擬對象,指出了加載方向?qū)ξ诲e密度梯度材料力學(xué)性能的影響。Sills等[129]利用離散位錯動力學(xué)模擬了面心立方Cu的應(yīng)變硬化行為,圖8(a)[129]為離散位錯動力學(xué)模擬中典型的位錯微觀結(jié)構(gòu)。由于不同連接類型對位錯間相互作用的強(qiáng)度貢獻(xiàn)存在差異[130],使得塑性變形過程中位錯密度的演化速率不同,進(jìn)而導(dǎo)致剪切應(yīng)力應(yīng)變曲線的不同(圖8(b)[129]),這對揭示位錯密度演化對材料力學(xué)性能的影響提供了有效手段。此外,該方法的另一個優(yōu)勢在于:可對不同滑移系內(nèi)位錯密度的演化給出合理預(yù)測(圖8(c)[131]),有效解決了大部分本構(gòu)模型由于忽略了滑移系開動的先后順序而導(dǎo)致的初始應(yīng)變硬化速率過大的問題。

      5 材料組織微觀結(jié)構(gòu)和力學(xué)性能

      位錯作為金屬材料塑性變形的介質(zhì),與材料的強(qiáng)度、屈服、塑性等力學(xué)性能密切相關(guān)[132]。在金屬材料的塑性變形過程中,位錯會發(fā)生增殖和湮滅等一系列交互作用[106,133],從而使材料中的位錯密度發(fā)生演化,進(jìn)而影響材料的微觀組織結(jié)構(gòu)和力學(xué)行為。通過對位錯運(yùn)動與材料的微觀組織結(jié)構(gòu)演化關(guān)系的研究,有助于從本質(zhì)上解釋材料的組織和性能變化的物理機(jī)制,揭示材料的力學(xué)行為[134]。通過對材料微觀組織結(jié)構(gòu)的分析,可以有效確定材料的熱力學(xué)特征、指導(dǎo)材料的加工工藝并保證材料的使用質(zhì)量。正如上文L-J模型所提到的,在高堆垛層錯能材料中,隨應(yīng)變量的增加,加工硬化與動態(tài)軟化表現(xiàn)出相互競爭的關(guān)系。動態(tài)回復(fù)過程伴隨可動位錯與弗蘭克位錯網(wǎng)絡(luò)中儲存的位錯相互作用使得位錯間發(fā)生湮滅,最終導(dǎo)致二者趨于動態(tài)平衡。Serajzadeh等[135]給出了熱變形期間由于動態(tài)回復(fù)過程對應(yīng)的流動應(yīng)力變化關(guān)系:

      σ2=[σ2Rec+(σ20-σ2Rec)e-Ωε],

      式中,σ,σ0,σRec分別為流動應(yīng)力,屈服應(yīng)力和穩(wěn)態(tài)應(yīng)力,Ω為動態(tài)回復(fù)系數(shù)。

      在中等至低堆垛層錯能的材料中,位錯易發(fā)生分解,位錯密度降低[136]。新的晶粒在驅(qū)動力的作用下逐漸形核長大,表現(xiàn)出動態(tài)軟化的特征,我們稱之為動態(tài)再結(jié)晶現(xiàn)象。其中,每個動態(tài)再結(jié)晶晶粒的位錯密度和晶粒長大動力學(xué)都與動態(tài)再結(jié)晶過程密切相關(guān)。流動應(yīng)力通過泰勒關(guān)系[137],由基體和全部動態(tài)再結(jié)晶晶粒的平均位錯密度值估算得到。動態(tài)再結(jié)晶對流動應(yīng)力的影響,可由Avrami方程[138]進(jìn)行評估,形式如下:

      σ=σP-XD(σP-σRex),

      其中,σP=αMGbρ為動態(tài)再結(jié)晶引起的峰值應(yīng)力,σ為位錯的強(qiáng)化因子,

      XD=1-exp[-k·(ε-εc/εp)nd]為動態(tài)再結(jié)晶的體積分?jǐn)?shù),k和nd為動態(tài)再結(jié)晶材料參數(shù),εc為發(fā)生動態(tài)再結(jié)晶時的臨界應(yīng)變,εp為峰值應(yīng)變。

      值得注意的是,隨應(yīng)變量的增加,無論動態(tài)回復(fù)是否同時發(fā)生,動態(tài)再結(jié)晶的開始都對應(yīng)一個臨界的位錯密度值[139]。一旦位錯密度到達(dá)該臨界值時,將在晶界或其他內(nèi)部晶體缺陷處形成新晶粒。因此,對于這種形核機(jī)制,臨界位錯密度的關(guān)系式[140]如下:

      ρ0c=20S3blmτ21/3,

      其中,S為晶界能,l為位錯移動的平均自由程,m為晶界的遷移率,τ為位錯線的能量。

      位錯密度為金屬材料微觀組織演化過程的分析提供了內(nèi)部條件。通過位錯密度演化過程對回復(fù)和再結(jié)晶過程影響的研究,將微觀組織演化與位錯的運(yùn)動聯(lián)系起來,從而建立材料力學(xué)性能與其微觀組織結(jié)構(gòu)的相關(guān)性。借助于預(yù)測得到的微觀組織結(jié)構(gòu)和塑性流動行為,可以為實(shí)際的生產(chǎn)加工工藝提供合理的參考依據(jù)。

      此外,為了保證工程構(gòu)件的安全性,強(qiáng)度是其中一個重要的研究課題。在工業(yè)生產(chǎn)中,人們常將關(guān)注點(diǎn)放在比原子尺寸范圍大的其他缺陷,如雜質(zhì)、裂縫和疏松等,通過改善這些缺陷提高材料強(qiáng)度。工程中用屈服強(qiáng)度和抗拉強(qiáng)度作為強(qiáng)度指標(biāo),但是很難針對強(qiáng)度給出定量精確的預(yù)測。因此,有必要從微觀尺度出發(fā)揭示金屬材料應(yīng)變硬化過程的強(qiáng)度來源,指導(dǎo)材料的加工工藝。從位錯理論出發(fā),金屬材料的強(qiáng)度與材料中的位錯密度狀態(tài)或位錯亞結(jié)構(gòu)直接相關(guān)。眾所周知,晶粒細(xì)化可以有效提高多晶金屬的強(qiáng)度。晶粒尺寸作為影響位錯密度重要因素之一,可將晶粒尺寸、位錯密度和材料強(qiáng)度聯(lián)系起來?;诰Я3叽缦嚓P(guān)的位錯介導(dǎo)塑性研究,El-Awady[72]建立了一個能夠反映和預(yù)測金屬材料機(jī)械性能的模型,表達(dá)式為

      τ/μ=βDρ+αbρ,

      式中,β和α為無量綱的常數(shù),D為晶粒尺寸,ρ為位錯密度,μ為剪切模量。

      圖9(a)[72]為四種不同鎳單晶尺寸的無量綱解析剪切強(qiáng)度與位錯密度的關(guān)系圖。從圖中不難看出,由于完美晶體的位錯密度很低,因此其初始強(qiáng)度很高。隨可動位錯的移動和增殖,材料的強(qiáng)度表現(xiàn)出下降的趨勢。但當(dāng)位錯密度達(dá)到某一臨界值時,變形機(jī)制轉(zhuǎn)變?yōu)榱钟不J剑^高的位錯密度使得位錯纏結(jié)阻礙運(yùn)動,持續(xù)的變形會增加材料強(qiáng)度,所以位錯密度和材料強(qiáng)度之間存在非常大的相關(guān)性[141]。

      此外,材料強(qiáng)度還可通過位錯密度、應(yīng)變速率建立起聯(lián)系。在可動位錯密度的演化過程中,由于加載路徑和應(yīng)變速率的差異,很難給出合理的預(yù)測。為此,F(xiàn)an等[142]采用離散位錯動力學(xué)模擬和分子動力學(xué)模擬,揭示了應(yīng)變率和位錯密度對銅及鋁單晶強(qiáng)度的影響。如圖9(b)[142]所示,在高應(yīng)變率(或低位錯密度)下,材料的強(qiáng)度主要受到應(yīng)變率硬化行為的影響,在低應(yīng)變率(或高位錯密度下)主要受到林位錯硬化行為的控制。通過模擬結(jié)果得到了無量綱屈服應(yīng)力的最小值點(diǎn),由于林位錯硬化應(yīng)力正好是應(yīng)變率硬化應(yīng)力的二倍,通過解析關(guān)系推導(dǎo)出了二者轉(zhuǎn)變的臨界位錯密度公式,如下:

      ρc=2BαMfaGb32/3

      式中,B為阻尼系數(shù),為應(yīng)變速率,fa為比例系數(shù)。

      在工程實(shí)際中,尤其是材料加工過程中,如何在較大程度上保證金屬材料具有一定強(qiáng)度的前提下,依然兼?zhèn)淞己玫乃苄裕恢笔侨藗冴P(guān)注的焦點(diǎn)[143]。圖10[144]為金屬材料強(qiáng)度和延展性間的權(quán)衡關(guān)系圖。不難看出,相對較高的應(yīng)變硬化能力是避免強(qiáng)度-延展性協(xié)調(diào)作用的關(guān)鍵。在試樣受到機(jī)械應(yīng)力作用時,材料通常先表現(xiàn)為彈性變形。當(dāng)應(yīng)力達(dá)到屈服極限后,材料出現(xiàn)塑性變形現(xiàn)象。這將導(dǎo)致試樣在最薄弱處出現(xiàn)頸縮[104],截面面積減少直至斷裂。該點(diǎn)的應(yīng)變稱為斷裂應(yīng)變,即為對材料延展性的測量。這是由塑性不均勻造成的,發(fā)生頸縮的不穩(wěn)定性始于:

      dσdε+mσ≤σ,

      式中,σ為真實(shí)應(yīng)力,ε為真實(shí)應(yīng)變,m為應(yīng)變率敏感系數(shù)。

      金屬材料的塑性行為與晶體中位錯的運(yùn)動相關(guān),這些位錯在非彈性變形過程中產(chǎn)生、儲存和移動。當(dāng)施加的外力超過屈服點(diǎn)后,材料進(jìn)入塑性變形階段,晶體材料的流動應(yīng)力由各部分貢獻(xiàn)[5],如下:

      τ=τ0+τR+τρ+τ*,

      其中,τ0,τR,τ*,τρ分別為晶格摩擦應(yīng)力,位錯源激活應(yīng)力,應(yīng)變速率相關(guān)的有效應(yīng)力和位錯間的相互作用力。

      綜上所述,位錯密度作為材料微觀結(jié)構(gòu)狀態(tài)的一個內(nèi)部變量,與材料組織結(jié)構(gòu)演化和力學(xué)性能密切相關(guān)。因此,有必要對位錯密度演化的全過程有一個總體的理解,建立合理的位錯密度演化模型,指導(dǎo)材料的制備工藝。

      6 總結(jié)與展望

      闡明位錯密度演化規(guī)律及其物理機(jī)制,建立可定量描述位錯密度演化的模型,對材料性能的研究和材料加工工藝的開發(fā)具有重要的意義。本文綜述了當(dāng)前位錯密度演化模型的研究進(jìn)展,總結(jié)了位錯密度演化數(shù)值計(jì)算方法的研究現(xiàn)狀,特別介紹了位錯密度對材料組織結(jié)構(gòu)演化和力學(xué)性能的影響因素。

      到目前為止,位錯密度演化模型的研究已經(jīng)取得了很大的進(jìn)展,但仍然存在許多問題。在理論方面,現(xiàn)有的位錯密度演化模型不僅在物理過程的考慮角度存在差異,而且在狀態(tài)參數(shù)的選擇和數(shù)量方面也存在差異。這就導(dǎo)致模型僅適

      用于特定的材料和

      加載條件,模型中的材料常數(shù)嚴(yán)重依賴于實(shí)驗(yàn)數(shù)據(jù)的擬合參考值。雖然結(jié)合數(shù)值模擬手段,為一些特定的“經(jīng)驗(yàn)參數(shù)”提供了較為合理的參考值,但是從本質(zhì)上講,由于缺少對位錯密度演化全過程較為綜合的微觀物理機(jī)制的研究,絕大多數(shù)已建立的模型仍處于定性和半定量階段。潛在的物理過程大大限制了模型的有效范圍,也阻礙和影響了新材料力學(xué)性能的設(shè)計(jì)。

      實(shí)際上,金屬材料的塑性變形是位錯滑移、位錯交互和位錯湮滅在以滑移平面和伯氏矢量為特征的特定滑移系統(tǒng)上相互作用的結(jié)果。因此,位錯密度的變化決定了金屬的應(yīng)力-應(yīng)變行為。為了解決這一問題,需要從微觀尺度出發(fā),探索位錯密度演化過程的物理機(jī)制,建立適用于更廣泛加工條件范圍的統(tǒng)一模型。在此,我們提出對現(xiàn)有模型的改進(jìn)建議如下:

      1) 基于應(yīng)用范圍較為廣泛的位錯胞結(jié)構(gòu)模型,首先按空間分布將總的位錯密度劃分為可動位錯密度、胞內(nèi)不可動位錯密度和胞壁不可動位錯密度三個內(nèi)部狀態(tài)變量。此外,由于刃型位錯在高溫下受擴(kuò)散攀移機(jī)制控制,而螺型位錯在低溫下受交滑移機(jī)制影響,二者在具體計(jì)算中存在差異,故而有必要在這種復(fù)合結(jié)構(gòu)模型中,額外劃分螺型位錯分量和刃型位錯分量,并具體分析不同位錯類型對位錯密度演化行為的影響。

      2) 層錯作為金屬和合

      金中的面缺陷,很大程度上決定了它們的力學(xué)行為。層錯能的大小直接影響擴(kuò)展位錯間的距離,從而改變位錯交滑移的概率。對于低層錯能材料,擴(kuò)展位錯寬度大,當(dāng)位錯遇到勢壘(空位、位錯、晶界等)時,位錯很難通過交滑移和攀移繼續(xù)移動,從而減緩了因交滑移而導(dǎo)致的位錯湮滅。此時,位錯的回復(fù)速率較低,總位錯密度能夠達(dá)到動態(tài)再結(jié)晶的臨界位錯密度值,演化曲線表現(xiàn)出動態(tài)再結(jié)晶趨勢。相反,材料表現(xiàn)出回復(fù)趨勢。因此,通過考慮層錯能的直接影響,可以進(jìn)一步改進(jìn)位錯密度演化模型。

      3) 對于通常表現(xiàn)為非均勻相的合金材料而言,固溶體基體中包含的第二相會阻礙到位錯的運(yùn)動,因此有必要考慮固溶體硬化和沉淀硬化對位錯密度演化行為的影響。

      4) 在金屬材料的塑性變形初期,金屬內(nèi)部的滑移系統(tǒng)不一定全部開動,先開動的滑移面上的位錯密度較大。隨應(yīng)變量的增加,晶體發(fā)生轉(zhuǎn)動、位錯間的交滑移機(jī)制導(dǎo)致其他滑移系相繼開動,最終使得整個晶體內(nèi)部的位錯密度升高到相同的水平。因此考慮滑移系開動的先后順序,有助于模擬出更符合實(shí)驗(yàn)結(jié)果的位錯密度演化曲線。

      5) 金屬材料在疲勞、剪切、拉伸、軋制、蠕變和循環(huán)等變形過程中的位錯組態(tài)存在差異。大致表現(xiàn)為高低位錯密度相間出現(xiàn)的空間有序結(jié)構(gòu),即脈、墻、迷宮和位錯胞。在材料的變形過程中,位錯解離、結(jié)合、滑移、交滑移和攀移等機(jī)制都是活躍的。因此,通過不同加載方式分析不同類型位錯模式的形成機(jī)制,有助于揭示位錯密度演化過程的微觀物理機(jī)制和最終形成的微觀結(jié)構(gòu)。

      參考文獻(xiàn)

      [1] BONTCHEVA N,PETZOV G.Microstructure evolution during metal forming processes [J].Computational Materials Science,2003,28(3/4):563-573.

      [2] SU J Q,NELSON T W,STERLING C J.Microstructure evolution during FSW/FSP of high strength aluminum alloys [J].Materials Science and Engineering:A,2005,405(1/2):277-286.

      [3] KIM S D,PARK J Y,PARK S J,et al.Direct observation of dislocation plasticity in high-Mn lightweight steel by in-situ TEM [J].Scientific Reports,2019,9(1):1-13.

      [4] LI J,F(xiàn)ANG Q,LIU B,et al.Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation [J].RSC Advances,2016,6(80):76409-76419.

      [5] ZHOU W,REN X,YANG Y,et al.Dislocation behavior in nickel and iron during laser shock-induced plastic deformation [J].The International Journal of Advanced Manufacturing Technology,2020,108(4):1073-1083.

      [6] VIJAY REDDY K,PAL S.Structural evolution and dislocation behaviour during nano-rolling process of FCC metals:a molecular dynamics simulation based investigation [J].Journal of Applied Physics,2019,125(9):095101.

      [7] KOVCS I,ZSOLDOS L.Dislocations and plastic deformation [M].Oxford:Pergamon Press,2016:252-281.

      [8] MECKING H,KOCKS U F.Kinetics of flow and strain-hardening [J].Acta Metallurgica,1981,29(11):1865-1875.

      [9] KOCKS U F.Laws for work-hardening and low-temperature creep [J].Journal of Engineering Materials and Technology,1976,98(1):76-85.

      [10] KOCKS U F,MECKING H.A mechanism for static and dynamic recovery [M].Oxford:Pergamon Press,1979:345-350.

      [11] MECKINGS H,KOCKS U F.Kinecits of flow and strain-hardening [J].Acta Metallurgica,1981,29(11):1865-1875.

      [12] ESTRIN Y,MECKING H.A unified phenomenological description of work hardening and creep based on one-parameter models [J].Acta Metallurgica,1984,32(1):57-70.

      [13] MALYGIN G A.Dislocation density evolution equation and strain hardening of f.c.c crystals [J].Physica Status Solidi (A),1990,119(2):423-436.

      [14] KOCKS U F,MECKING H.Physics and phenomenology of strain hardening:the FCC case [J].Progress in Materials Science,2003,48(3):171-273.

      [15] LAASRAOUI A,JONAS J J.Prediction of steel flow stresses at high temperatures and strain rates [J].Metallurgical Transactions A,1991,22(7):1545-1558.

      [16] YOSHIE A,MORIKAWA H,ONOE Y.Formulation of static recrystallizatio of austenite in hot rolling process of steel plate [J].Transactions of the Iron and Steel Institute of Japan,1987,27(6):425-431.

      [17] BERGSTRM Y.A dislocation model for stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocation [J].Materials Science and Engineering,1970,5(4):193-200.

      [18] GOURDET S,MONTHEILLET F.A model of continuous dynamic recrystallization [J].Acta Materialia,2003,51(9):2685-2699.

      [19] ESTRIN Y,KUBIN L P.Local strain hardening and onuniformity of plastic deformation [J].Acta Merallurgica,1986,34(12):2455-2464.

      [20] SCHLIPF J.Stable and unstable modes in tensile deformation [J].Materials Science and Engineering,1986,77(1):19-26.

      [21] ESTRIN Y.Unified constitutive laws of plastic deformation [M].New York:Academic Press,1996:69-106.

      [22] ROTERS F,RAABE D,GOTTSTEIN G.Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables [J].Acta Materialia,2000,48(17):4181-4189.

      [23] ROTERS F.A new concept for the calculation of the mobile dislocation density in constitutive models of strain hardening [J].Physica Status Solidi (B),2003,240(1):68-74.

      [24] ESTRIN Y,TTH L S,MOLINARI A,et al.A dislocation-based model for all hardening stages in large strain deformation [J].Acta Materialia,1998,46(15):5509-5522.

      [25] PRINZ F B,ARGON A S.The evolution of plastic resistance in large strain plastic flow of single phase subgrain forming metals [J].Acta Metallurgica,1984,32(7):1021-1028.

      [26] NIX W D,GIBELING J C,HUGHES D A.Time-dependent deformation of metals [J].Metallurgical Materials Transactions A,1985,16(12):2215-2226.

      [27] TTH L S,MOLINARI A,ESTRIN Y,et al.Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model [J].Journal of Engineering Materials and Technology,2002,124(1):71-77.

      [28] BAIK S C,ESTRIN Y,KIM H S,et al.Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing [J].Materials Science and Engineering: A,2003,351(1/2):86-97.

      [29] MA A,ROTERS F,RAABE D.A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations [J].Acta Materialia,2006,54(8):2169-2179.

      [30] MA A,ROTERS F,RAABE D.A dislocation density based constitutive law for BCC materials in crystal plasticity FEM [J].Computational Materials Science,2007,39(1):91-95.

      [31] ALANKAR A,MASTORAKOS I N,F(xiàn)IELD D P.A dislocation-density-based 3D crystal plasticity model for pure aluminum [J].Acta Materialia,2009,57(19):5936-5946.

      [32] LEE D J,YOON E Y,AHN D H,et al.Dislocation density-based finite element analysis of large strain deformation behavior of copper under high-pressure torsion [J].Acta Materialia,2014,76(1):281-293.

      [33] 李殿中,杜強(qiáng),胡志勇,等.金屬成形過程組織演變的Cellular Automaton模擬技術(shù) [J].金屬學(xué)報(bào),1999,35(11):1201-1205.

      LI D Z,DU Q,HU Z Y,et al.Simulation of the microstructure evolution in metal forming by using cellular automation method [J].Acta Metallurgica Sinica,1999,35(11):1201-1205.

      [34] QIAN M,GUO Z X.Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel [J].Materials Science and Engineering:A,2004,365(1/2):180-185.

      [35] 何燕,張立文,牛靜,等.元胞自動機(jī)方法對動態(tài)再結(jié)晶過程的模擬 [J].材料熱處理學(xué)報(bào),2005,26(4):120-124.

      HE Y,ZHANG L W,NIU J,et al.Simulation of dynamic recrystallization process using cellular automata [J].Transactions of Materials and Heat Treatment,2005,26(4):120-124.

      [36] 劉筱,朱必武,李落星.Laasraoui-Jonas 位錯密度模型結(jié)合元胞自動機(jī)模擬AZ31鎂合金動態(tài)再結(jié)晶 [J].中國有色金屬學(xué)報(bào),2013,23(1):898-904.

      LIU X,ZHU B W,LI L X.Dynamic recrystallization of AZ31 magnesium alloy simulated by Laasraoui-Jonas dislocation equation coupled cellular automata method [J].The Chinese Journal of Nonferrous Metals,2013,23(1):898-904.

      [37] 韓亞瑋,蘇娟華,任鳳章,等.應(yīng)用Laasraoui-Jonas 位錯密度模型模擬工業(yè)純鈦微觀組織演變 [J].材料熱處理學(xué)報(bào),2014,35(1):210-214.

      HAN Y W,SU J H,REN F Z,et al.Simulation of microstructure evolution of hot-deformed commercial pure titanium by Laasraoui-Jonas dislocation density model [J].Transactions of Materials and Heat Treatment,2014,35(1):210-214.

      [38] LI H,SUN X,YANG H.A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation,DRX microstructural evolution and mechanical responses in titanium alloys [J].International Journal of Plasticity,2016,87:154-80.

      [39] 陳學(xué)文,張亞東,王納納,等.基于 L-J 位錯密度模型及CA 法的45Cr4NiMoV合金動態(tài)再結(jié)晶行為 [J].材料熱處理學(xué)報(bào),2017,38(7):167-172.CHEN X W,ZHANG Y D,WANG N N,ZHANG X D.Dynamic recrystallization behavior of 45Cr-4NiMoV alloy based on L-J dislocation density model and CA? method[J].Journal of Material Heat Treatment,2017,38(7):167-172.

      [40] ANDERSEN H C.Molecular dynamics simulations at

      constant pressure and/or temperature [J].The Journal of Chemical Physics,1980,72(4):2384-2393.

      [41] ZEPEDA-RUIZ L A,STUKOWSKI A,OPPELSTRUP

      T,et al.Probing the limits of metal plasticity with molecular dynamics simulations [J].Nature,2017,550(7677):492-495.

      [42] TEMITOPE OYINBO S T,JEN T C.Molecular

      dynamics simulation of dislocation plasticity mechanism of nanoscale ductile materials in the cold gas dynamic spray process [J].Coatings,2020,10(11):1079.

      [43] ZHANG Y,JIANG S,ZHU X,et al.Influence of void

      density on dislocation mechanisms of void shrinkage in nickel single crystal based on molecular dynamics simulation [J].Physica E:Low-dimensional Systems and Nanostructures,2017,90:90-97.

      [44] BULATOV V V,HSIUNG L L,TANG M,et al.

      Dislocation multi-junctions and strain hardening [J].Nature,2006,440(7088):1174-1178.

      [45] ARSENLIS A,CAI W,TANG M,et al.Enabling strain

      hardening simulations with dislocation dynamics [J].Modelling and Simulation in Materials Science and Engineering,2007,15(6):553-595.

      [46] LIN B,HUANG M,ZHAO L,et al.3D DDD modelling of dislocation-precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation [J].Philosophical Magazine,2018,98(17):1550-1575.

      [47] 熊健,魏德安,陸宋江,等.位錯密度梯度結(jié)構(gòu)Cu

      單晶微柱壓縮的三維離散位錯動力學(xué)模擬 [J].金屬學(xué)報(bào),2019,55(11):1477-86.

      XIONG J,WEI D A,LU S J,et al.A three-dimensional discrete dislocation dynamics simulation on micripillar compression of single crystal copper with dislocation density gradient [J].Acta Metallurgica Sinica,2019,55 (11):1477-1486.

      [48] SUDMANNS M,STRICKER M,WEYGAND D,et al.

      Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity [J].Journal of the Mechanics and Physics of Solids,2019,132:103695.

      [49] MINSHENG H,SONG H,SHUANG L,et al.Discrete

      dislocation dynamics algorithms and their application in modeling of plastic behaviors of crystalline materials [J].Chinese Science Bulletin,2019,64(18):1864-1877.

      [50] LI D,ZBIB H,SUN X,et al.Predicting plastic flow

      and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics [J].International Journal of Plasticity,2014,52:3-17.

      [51] OROWAN E. Zur kristallplastizitt. i[J]. Zeitschrift für Physik, 1934, 89(9): 605-613.

      [52] OROWAN E. Zur kristallplastizitt. iii[J].Zeitschrift für Physik, 1934, 89(9):634-659.

      [53] TAYLOR G I. The mechanism of plasticdeformation of crystals. Part I—Theoretical[J]. Proceedings of theRoyal Society of London, 1934, 145(855): 362-387.

      [54] POLANYI M.ber eine Art Gitterstrung, die einen Kristall plastisch machen knnte[J]. Zeitschrift für Physik,1934, 89(9): 660-664.

      [55] WHELAN M J,HIRSCH P B,HORNE R W,et al.

      Dislocations and stacking faults in stainless steel [J].Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences,1957,240(1223):524-538.

      [56] HAM R K.The determination of dislocation densities

      in thin films [J].Philosophical Magazine,1961,6(69):1183-1184.

      [57] LU D,WU M.Observation of etch pits in Fe-36wt%

      Ni Invar alloy [J].International Journal of Minerals,Metallurgy and Materials,2014,21(7):682-686.

      [58] 張鵬,陳誠,袁武華.應(yīng)變速率對7050鋁合金性能

      的影響及強(qiáng)化機(jī)理 [J].鍛壓技術(shù),2021,46(10):225-232.

      ZHANG P,CHEN C,YUAN W H.Influence of strain rate on properties for 7050 aluminum alloy and strengthening mechanism [J].Forging and Stamping Technology,2021,46 (10):225-232.

      [59] PEICˇKA J,KUEL R,DRONHOFER A,et al.The

      evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels [J].Acta Materialia,2003,51(16):4847-4862.

      [60] BERECZ T,JENEI P,CSRA,et al.Determination

      of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite [J].Materials Characterization,2016,100(113):117-124.

      [61] 何進(jìn),何建麗,陳飛.應(yīng)變量對WE43鎂合金微觀

      組織演變及力學(xué)性能的影響 [J].鍛壓技術(shù),2020,45(6):182-189.

      HE J,HE J L,CHEN F.Influence of strain on microstructure evolution and mechanical properties for WE43 magnesium alloy [J].Forging and Stamping Technology,2020,45(6):182-189.

      [62] 陳歡,孫新軍,王小江.晶粒尺寸與應(yīng)變量對高錳

      奧氏體鋼加工硬化行為的影響 [J].金屬熱處理,2018,43(11):31-37.

      CHEN H,SUN X J,WNAG X J.Effect of grain size and strain on work hardening behavior of high manganese austenitic steel [J].Heat Treatment of Metals,2018,43(11):31-37.

      [63] 陳銘森,韓靖,陳霞,等.不同應(yīng)變量對7A04鋁

      合金包申格效應(yīng)的影響 [J].熱加工工藝,2015,44(6):53-55.

      CHEN M S,HAN J,CHEN X,et al.Effect of strain capacities on Bauschinger effect of 7A04 aluminum alloy [J].Hot Working Technology,2015,44(6):53-55.

      [64] JIANG J,JIANG F,ZHANG M,et al.Al3(Sc,Zr)

      precipitation in deformed Al-Mg-Mn-Sc-Zr alloy:effect of annealing temperature and dislocation density [J].Journal of Alloys and Compounds,2020,831:154856.

      [65] SAASTAMOINEN A,KAIJALAINEN A,PORTER D,

      et al.The effect of finish rolling temperature and tempering on the microstructure,mechanical properties and dislocation density of direct-quenched steel [J].Materials Characterization,2018,139:1-10.

      [66] ZAMANI M,DINI H,SVOBODA A,et al.A

      dislocation density based constitutive model for as-cast Al-Si alloys:effect of temperature and microstructure [J].International Journal of Mechanical Sciences,2017,100(121):164-170.

      [67] LEE W S,LIU C Y.The effects of temperature and

      strain rate on the dynamic flow behaviour of different steels [J].Materials Science and Engineering:A,2006,426(1/2):101-113.

      [68] GOETZ R L,SEMIATIN S L.The adiabatic correction

      factor for deformation heating during the uniaxial compression test [J].Journal of Materials Engineering and Performance,2001,10(6):710-717.

      [69] MATAYA M C,SACKSCHEWSKY V E.Effect of

      internal heating during hot compression on the stress-strain behavior of alloy 304L [J].Metallurgical and Materials Transactions A,1994,25(12):2737-2752.

      [70] GILBERT A, WILCOX B A, HAHN G T. The effect of strain rate on dislocation multiplication in polycrystalline molybdenum[J]. Philosophical Magazine, 1965, 12(117): 649-653.

      [71] ROHITH P,SAINATH G,SRINIVASAN V S.Effect

      of size,temperature and strain rate on dislocation density and deformation mechanisms in Cu nanowires [J].Physica B:Condensed Matter,2019,561:136-140.

      [72] EL-AWADY J A.Unravelling the physics of size-

      dependent dislocation-mediated plasticity [J].Nature Communications,2015,6(1):1-9.

      [73] SHI J,ZIKRY M A.Grain size,grain boundary sliding,

      and grain boundary interaction effects on nanocrystalline behavior [J].Materials Science and Engineering:A,2009,520(1/2):121-133.

      [74] CHIA K,JUNG K,CONRAD H.Dislocation density

      model for the effect of grain size on the flow stress of a Ti-15.2 at.% Mo β-alloy at 4.2-650K [J].Materials Science and Engineering:A,2005,409(1/2):32-38.

      [75] CONRAD H.Grain-size dependence of the flow stress of Cu from millimeters to nanometers [J].Metallurgical and Materials Transactions A,2004,35(9):2681-2695.

      [76] HANSEN N.Polycrystalline strengthening [J].

      Metallurgical Transactions A,1985,16(12):2167-2190.

      [77] SIM G D,KIM G,LAVENSTEIN S,et al.Anomalous

      hardening in magnesium driven by a size-dependent tr ansition in deformation modes [J].Acta Materialia,2018,144:11-20.

      [78] GRACIO J J.The double effect of grain size on the

      work hardening behaviour of polycrystalline copper [J].Scripta Metallurgica et Materiallia,1994,31(4):487-489.

      [79] GRACIO J J,F(xiàn)ERNANDES J V,SCHMITT J H.Effect

      of grain size on substructural evolution and plastic behaviour of copper [J].Materials Science and Engineering:A,1989,118:97-105.

      [80] MOMENI A,DEHGHANI K,EBRAHIMI G R.

      Modeling the initiation of dynamic recrystallization using a dynamic recovery model [J].Journal of Alloys and Compounds,2011,509(39):9387-9393.

      [81] AMIN H A,VOYIADJIS G Z.Effect of strain rate on

      the dynamic hardness in metals [J].Journal of Engineering Materials and Technology,2007,129(4):505-512.

      [82] 李周兵,沈健,閆亮明,等.應(yīng)變速率對7055鋁合

      金顯微組織和力學(xué)性能的影響 [J].稀有金屬,2010,34(5):643-7.

      LI Z B,SHEN J,YAN L M,et al.Influence of hot process strain rate on microstructures and tensile properties of 7055 aluminum alloy [J].Chinese Journal of Rare Metals,2010,34(5):643-647.

      [83] ZHENG R,DU J P,GAO S,et al.Transition of

      dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J].Acta Materialia,2020,198(1):35-46.

      [84] PIETRZYK M,CSER L,LENARD J.Mathematical

      and physical simulation of the properties of hot rolled products [M].Amsterdam:Elsevier Press,1999:85-104.

      [85] LI P,LI S X,WANG Z G,et al.Fundamental factors on

      formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals [J].Progress in Materials Science,2011,56(3):328-377.

      [86] ESTRIN Y,BRAASCH H,BRECHET Y.A dislocation

      density based constitutive model for cyclic deformation [J].Journal of Engineering Materials and Technology,1996,118(4):441-447.

      [87] SANDSTRM R,HALLGREN J.The role of creep in

      stress strain curves for copper [J].Journal of Nuclear Materials,2012,422(1/2/3):51-57.

      [88] ZHOU H,KONG Q P.The generation rate of

      dislocations during creep evaluated by the method of dynamic internal friction [J].Scripta Materialia,1996,34(2):269-274.

      [89] PIETRZYK M,LENARD J G.Deformation heating

      during cold rolling of aluminum strips [J].Journal of Engineering Materials and Technology,1991,113(1):69-73.

      [90] HE X,YAO Y.A dislocation density-based viscoplas

      ticity model for cyclic deformation:application to P91 steel [J].International Journal of Applied Mechanics,2018,10(5):1850055.

      [91] LI P,LI S X,WANG Z G,et al.Unified factor control

      ling the dislocation evolution of fatigued face-centered cubic crystals [J].Acta Materialia,2017,129:98-111.

      [92] ZECEVIC M,KNEZEVIC M.A dislocation density

      based elasto-plastic self-consistent model for the prediction of cyclic deformation:application to AA6022-T4 [J].International Journal of Plasticity,2015,72:200-217.

      [93] WU X M,WANG Z G,LI G Y.Cyclic deformation and

      strain burst behavior of Cu-7at.% Al and Cu-16at.% Al single crystals with different orientations [J].Materials Science and Engineering:A,2001,314(1/2):39-47.

      [94] PREUNER J,RUDNIK Y,BREHM H,et al.A

      dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals [J].International Journal of Plasticity,2009,25(5):973-994.

      [95] BERGSTRM Y.HALLN H.An improved

      dislocation model for the stress-strain behaviour of polycrystalline α-Fe [J].Materials Science and Engineering,1982,55(1):49-61.

      [96] KREYCA J F.State parameter based modelling of

      stress-strain curves in aluminium alloys [D].Vienna:Vienna University of Technology,2017.

      [97] ASHBY M F.The deformation of plastically non-

      homogeneous materials [J].The Philosophical Magazine:A Journal of Theoretical Experimental and? Applied Physics,2006,21(170):399-424.

      [98] KARHAUSEN K F,ROTERS F.Development and

      application of constitutive equations for the multiple-stand hot rolling of Al-alloys [J].Journal of Materials Processing Technology,2002,123(1):155-166.

      [99] PRINZ F B,ARGON A S.The evolution of plastic

      resistance in large strain plastic flow of single phase subgrain forming metals [J].Acta Matalluriga 1984, 32(7):1021-1028.

      [100] MONTHEILLET F,LURDOS O,DAMAMME G.A

      grain scale approach for modeling steady-state discontinuous dynamic recrystallization [J].Acta? Materialia,2009,57(5):1602-1612.

      [101] GOURDET S,MONTHEILLET F.Effects of

      dynamic grain boundary migration during the hot compression of high stacking fault energy metals [J].Acta Materialia,2002,50(11):2801-2812.

      [102] HUNTER A, PRESTON D L. Analytic model of dislocation density evolution in fcc polycrystals accounting for dislocation generation, storage, and dynamic recovery mechanisms[J]. International Journal of Plasticity, 2022, 151: 103178.

      [103] ESTRIN Y. Dislocation-density-related

      constitutive modeling[M]// KRAUSS A S.Unified constitutive laws of plastic deformation. New York:Academic Press Inc., 1996: 69-106.

      [104] NABARRO F R N.Work hardening and dynamical

      recovery of f.c.c.metals in multiple glide [J].Acta Metallurgica,1964,37(6):1521-1546.

      [105] GOETZ R L,SEETHARAMAN V.Modeling

      dynamic recrystallization using cellular automata [J].Scripta Materialia,1998,38(3):405-413.

      [106] ESSMANN U,MUGHRABI H.Annihilation of

      dislocations during tensile and cyclic deformation and limits of dislocation densities [J].Philosophical Magazine A,1979,40(6):731-756.

      [107] SANDSTRM R,LAGNEBORG R.A controlling

      factor for dynamic recrystallisation [J].Scripta Metallurgica,1975,9(1):59-66.

      [108] ESTRIN Y, KUBIN L P. Plastic instabilities: phenomenology and theory[J]. Materials Science and Engineering: A, 1991, 137(15): 125-134.

      [109] REYNE B, MANACH P Y, MOES N. Macroscopic consequences of Piobert-Lüders and Portevin-Le Chatelier bands during tensile deformation in Al-Mg alloys[J] Materials Science and Engineering: A, 2019, 746: 187-196.

      [110] KUBIN L P, ESTRIN Y. Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect[J]. Acta Metallurgica et Materialia, 1990, 38(5): 697-708.

      [111] HART E W.Theory of the tensile test [J].Acta Metallurgica,1967,15(2):351-355.

      [112] WANG Z,BEYERLEIN I,LESAR R.Plastic anisitro

      py in fcc single crystals in high rate deformation [J].International Journal of Plasticity,2009,25(1):26-48.

      [113] LI J,YI M,WU H,et al.Fine-grain-embedded dislocation-cell structures for high strength and ductility in additively manufactured steels [J].Materials Science? and Engineering:A,2020,790:139736.

      [114] MUGHRABI H.Dislocation wall and cell structures

      and long-range internal stress in deformation matal crystals [J].Acta Metallurgica,1983,31(9):1367-1379.

      [115] MA A,ROTERS F.A constitutive model for fcc single

      crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J].Acta Materialia,2004,52(12):3603-3612.

      [116] 潘金生,仝健民,田民波.材料科學(xué)基礎(chǔ)(修訂版)[M].北京:清華大學(xué)出版社,2011:177-180.

      PAN J S,TONG J M,TIAN M B.Fundamentals of materials science(revised) [M].Beijing:Tsinghua University Press,2011:177-180.

      [117] ROTERS F,EISENLOHR P,HANTCHERLI L,et al.

      Overview of constitutive laws,kinematics,homogenization and multiscale methods in crystal plasticity finite-element modeling:theory,experiments,applications [J].Acta Materialia,2010,58(4):1152-1211.

      [118] WEBER F,SCHESTAKOW I,ROTERS F,et al.

      Texture evolution during bending of a single crystal copper nanowire studied by EBSD and crystal plasticity finite element simulations [J].Advanced Engineering Materials,2008,10(8):737-741.

      [119] HARDER J.A crystallographic model for the study of

      local deformation processes in polycrystals [J].International Journal of Plasticity,1998,15(6):605-624.

      [120] HESSELBARTH H W,GBEL I R.Simulation of

      recrystallization by cellular automata [J].Acta Metallmater,1991,39(9):2135-2143.

      [121] DING R,GUO Z X.Coupled quantitative simulation

      of microstructural evolution and plastic flow during dynamic recrystallization [J].Acta Materialia,2001,49(16):3163-3175.

      [122] MADEJ L,SITKO M,LEGWAND A,et al.

      Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization [J].Journal of Computational Science,2018,26:66-77.

      [123] SITKO M,PIETRZYK M,MADEJ L.Time and

      length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method [J].Journal of Computational Science,2016,16:98-113.

      [124] PAL S,GURURAJ K,MERAJ M,et al.Molecular

      dynamics simulation study of uniaxial ratcheting behaviors for ultrafine-grained nanocrystalline nickel [J].Journal of Materials Engineering and Performance,2019,28(8):4918-4930.

      [125] LI M,CHU W Y,GAO K W.Molecular dynamics

      simulation of cross-slip and the intersection of dislocations in copper [J].Journal of Physics:Condensed Matter,2003,15(20):3391.

      [126] YASHIRO K,NAITO M,TOMITA Y.Molecular

      dynamics simulation of dislocation nucleation and motion at γ/γ′ interface in Ni-based superalloy [J].International Journal of Mechanical Sciences,2002,44(9):1845-1860.

      [127] PEACH M,KOEHLER J S.The forces exerted on

      dislocations and the stress fields produced by them [J].Physical Review,1950,80(3):436-439.

      [128] BULATOV V,CAI W.Computer simulations of dislocations [M].Oxford:Oxford University Press,2006:196-240.

      [129] SILLS R B,BERTIN N,AGHAEI A,et al.

      Dislocation networks and the microstructural origin of

      strain hardening [J].Physical Review Letters,2018,

      121(8):085501.

      [130] DEVINCRE B,HOC T,KUBIN L.Dislocation mean

      free paths and strain hardening of crystals [J].Science,2008,320(5884):1745-1748.

      [131] HUSSEIN A M,EL-AWADY J A.Quantifying

      dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals [J].Journal of the Mechanics and Physics of Solids,2016,91:126-144.

      [132] 陶正耀.材料強(qiáng)度及其影響因素[J].機(jī)械工程材料,1982(1):35-40.

      TAO Z Y.Material strength and its influencing factors [J].Mechanical Engineering Materials,1982(1):35-40.

      [133] REID C N,GILBERT A,ROSENFIELD A R.

      Dislocation multiplication [J].Philosophical Magazine,1965,12(116):409-412.

      [134] SHANTHRAJ P,ZIKRY M A.Dislocation density

      evolution and interactions in crystalline materials [J].Acta Materialia,2011,59(20):7695-7702.

      [135] SERAJZADEH S,TAHERI A K.Prediction of flow

      stress at hot working condition [J].Mechanics Research Communications,2003,30(1):87-93.

      [136] SAKAI T,JONAS J J.Overview no.35 dynamic

      recrystallization:mechanical and microstructural considerations [J].Acta Metallurgica,1984,32(2):189-209.

      [137] TAYLOR G I.Plastic strain in metals [J].The Journal of the Institute of Metals,1938,62:307-324.

      [138] SELLARS C M,WHITEMAN J A.Recrystallization and grain growth in hot rolling [J].Metal Science,1979,13(3/4):187-194.

      [139] ROBERTS W,AHLBLOM B.A nucleation criterion for dynamic recrystallization during hot working [J].Acta Metallurgica,1978,26(5):801-813.

      [140] DING R,GUO Z X.Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J].Acta Materialia,2001,49(16):3163-3175.

      [141] SEEGER A,DIEHL J,MADER S,et al.Work-hardening and work-softening of face-centred cubic metal crystals [J].Philosophical Magazine,1957,2(15):323-350.

      [142] FAN H,WANG Q,EL-AWADY J A,et al.Strain rate dependency of dislocation plasticity [J].Nature Communications,2021,12(1):1-11.

      [143] MA E.Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J].Nanostructured Materials,2006,58(4):49-53.

      [144] MA E,ZHU T.Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J].Materials Today,2017,20(6):323-331.

      Research progress of dislocation density evolution models

      LEI Mingyu,WEN Bin

      (State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao,Hebei 066004,China)

      Abstract:

      As an internal variable of microstructure,dislocation density is closely related to microstructure evolution and mechanical properties.During the process of plastic deformation of metal materials,the dislocation density will evolve.Therefore,the establishment of dislocation density evolution model is an important topic in the field of microstructure and mechanical properties of materials.In this review paper,the evolution of dislocation density and its physical mechanism are briefly introduced.The research progress of dislocation density evolution model is reviewed.The research status of numerical calculation method of dislocation density evolution is summarized.The influence law of dislocation density on mechanical properties is explained.Finally,the development trend of dislocation density evolution research is discussed in detail.

      Keywords:

      plastic deformation;dislocation density evolution model;numerical calculation method;microstructure;mechanical properties

      猜你喜歡
      塑性變形再結(jié)晶微觀
      劇烈塑性變形制備的納米金屬材料的力學(xué)行為
      一種新的結(jié)合面微觀接觸模型
      高速切削Inconel718切屑形成過程中塑性變形研究
      空化水噴丸工藝誘導(dǎo)塑性變形行為的數(shù)值模擬
      常化工藝對低溫Hi-B鋼初次及二次再結(jié)晶的影響
      上海金屬(2016年3期)2016-11-23 05:19:38
      鑄態(tài)30Cr2Ni4MoV鋼動態(tài)再結(jié)晶行為研究
      大型鑄鍛件(2015年1期)2016-01-12 06:32:58
      微觀的山水
      詩選刊(2015年6期)2015-10-26 09:47:10
      Cu元素對7XXX 系列鋁合金再結(jié)晶的影響
      上海金屬(2014年3期)2014-12-19 13:09:04
      Q460GJE鋼形變奧氏體的動態(tài)再結(jié)晶行為研究
      上海金屬(2014年3期)2014-12-19 13:09:03
      微觀中國
      浙江人大(2014年8期)2014-03-20 16:21:15
      中西区| 阜阳市| 东港市| 德钦县| 漳州市| 石嘴山市| 台前县| 阿拉善左旗| 万山特区| 佛教| 辽宁省| 静安区| 吉安市| 武隆县| 奇台县| 长泰县| 尚志市| 漠河县| 资溪县| 石狮市| 奉新县| 南汇区| 靖宇县| 霍林郭勒市| 东宁县| 呼和浩特市| 漳州市| 邢台县| 秦安县| 大理市| 乐昌市| 南丰县| 博乐市| 潼南县| 泰宁县| 日土县| 枣阳市| 永济市| 合江县| 巢湖市| 兰州市|