• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      番茄潛葉蛾綜合防控技術(shù)研究進展

      2023-05-30 10:48:04吳圣勇張起愷張燁刁紅亮張治科唐良德張?zhí)飯@張曉明雷仲仁
      植物保護 2023年2期
      關(guān)鍵詞:潛葉蛾化學防治天敵

      吳圣勇 張起愷 張燁 刁紅亮 張治科 唐良德 張?zhí)飯@ 張曉明 雷仲仁

      摘要 番茄潛葉蛾P(guān)hthorimaea absoluta Meyrick起源于南美洲的秘魯,是一種世界檢疫性入侵害蟲,目前已經(jīng)擴散到全球100多個國家,嚴重威脅全球番茄產(chǎn)業(yè)。該蟲于2017年入侵我國新疆伊犁,之后在南方多個省份相繼被發(fā)現(xiàn),且呈現(xiàn)擴散趨勢,危害范圍加大。本文從農(nóng)業(yè)防治、化學防治、生物防治、物理防治等方面總結(jié)番茄潛葉蛾原發(fā)地和入侵國的防治進展及治理經(jīng)驗,并結(jié)合我國實際提出建議,為國內(nèi)番茄潛葉蛾的有效治理和抑制其擴散提供參考。

      關(guān)鍵詞 番茄潛葉蛾;?入侵害蟲;?農(nóng)業(yè)防治;?化學防治;?生物防治;?物理防治;?害蟲綜合防控(IPM)

      中圖分類號: S 433.4

      文獻標識碼:?A

      DOI:?10.16688/j.zwbh.2021729

      Abstract The tomato leafminer Phthorimaea absoluta Meyrick originated from Peru, South America, is a quarantine invasive pest worldwide. It was found that the pest has currently spread to more than 100 countries, seriously threatening the global tomato industry. P.absoluta was first recorded in Yili, Xinjiang, China in 2017, and was subsequently found in many southern provinces, showing a tendency of rapid spread and increasing scope of pest damage. In the review, we summarized the progress and experience in the control of P.absoluta in its native areas and invaded countries, including agricultural practices, chemical insecticides, biological and physical control. Combined with Chinese practices, some suggestions were put forward to provide a reference for restraining further spread and promoting effective control of P.absoluta in China.

      Key words Phthorimaea absoluta;?invasive pest;?agricultural practices;?chemical control;?biological control;?physical control;?integrated pest management(IPM)

      番茄潛葉蛾P(guān)hthorimaea absoluta Meyrick [異名: Tuta absoluta (Meyrick)]是一種新的外來入侵害蟲,原產(chǎn)南美洲的秘魯,被稱為番茄Solanum lycopersicum上的“埃博拉病毒”。該蟲主要以幼蟲潛食葉肉、頂芽、嫩莖、嫩梢、蛀食果實等方式為害,嚴重發(fā)生時可導致80%~100%的番茄產(chǎn)量損失,是最具毀滅性的世界性入侵害蟲之一[1]。番茄潛葉蛾寄主范圍廣,可為害包括番茄、茄子、甜椒、菜豆、菠菜等在內(nèi)的多種蔬菜及煙草、水果等經(jīng)濟作物、糧食作物、糖料作物等[2-3],且擴散迅速。截至2022年6月,該害蟲已經(jīng)擴散到南美洲以外的歐洲、非洲、中美洲、亞洲的100多個國家[4]。2017年8月,該蟲首次在我國新疆伊犁的露地番茄上被發(fā)現(xiàn),后來又在云南臨滄發(fā)現(xiàn)其為害保護地番茄[5],之后在貴州、四川、重慶、廣西、湖南、江西等地相繼發(fā)現(xiàn)[6]。目前,該蟲呈現(xiàn)出持續(xù)擴散的趨勢,嚴重威脅我國番茄及其他蔬菜產(chǎn)業(yè)。為了抑制番茄潛葉蛾的持續(xù)擴散和為害,本文總結(jié)了國外的防治技術(shù)和經(jīng)驗,并結(jié)合國內(nèi)實際情況提出建議。

      1?農(nóng)業(yè)防治

      番茄潛葉蛾的農(nóng)業(yè)防治措施主要是通過篩選、培育抗性品種以及通過輪作、灌溉、施肥等栽培管理措施來抑制其種群增長。

      1.1?抗性品種

      抗番茄潛葉蛾植物品種的選育工作主要集中于番茄作物。早在20世紀90年代,國外(尤其是巴西)育種家就開始探索利用抗性寄主來抑制番茄潛葉蛾的為害[7]。當時主要是研究番茄葉片上毛狀體(trichomes)的抗蟲功能,因為毛狀體能釋放具有殺蟲活性的化合物,對番茄潛葉蛾幼蟲具有一定的防治效果[8]。目前,人工培育的番茄品種中,僅有為數(shù)不多的幾種對番茄潛葉蛾表現(xiàn)中抗,大部分都易感染番茄潛葉蛾[9-10],對番茄潛葉蛾抗性較強的番茄多為野生品種[11]。在番茄野生品系中,其抗性與植物基因型、葉片和根莖毛狀體密度及分泌的化合物有關(guān)[12]。其中,異種化感物(?;?、姜烯和2-十三烷酮)可降低番茄潛葉蛾的產(chǎn)卵量和對作物的為害[13-14]。Rakha等[11]研究發(fā)現(xiàn)一些與人工馴化品系較為接近的野生番茄S.galapagense、S.cheesmaniae和S.pimpinellifolium對番茄潛葉蛾表現(xiàn)出較高抗性,這些番茄種類都具有高密度的能分泌?;呛捅栋胼频南倜?。目前,國外育種家通過導入野生番茄S.galapagense的DNA序列的方式培育出商業(yè)化的可抗番茄潛葉蛾等鱗翅目害蟲及番茄斑萎病毒的番茄品系,并已申請專利[15]。Selale等[16]報道了轉(zhuǎn)Bt基因番茄可提高番茄潛葉蛾幼蟲死亡率,并能降低葉片潛道的數(shù)量。

      1.2?栽培管理

      利用栽培管理措施控制番茄潛葉蛾是一種低成本的防治策略。其中,水肥管理是最常見的措施,合理施肥既能為作物提供必需的養(yǎng)分,又能提高作物忍耐害蟲為害的能力。Mohamadi等[17]研究發(fā)現(xiàn),在土壤中施用腐殖酸肥料能增強番茄對番茄潛葉蛾的抵御能力。降低氮肥使用量也能抑制番茄潛葉蛾在植物葉片上的存活率,延長其發(fā)育歷期,從而降低其種群數(shù)量[18-19]。Contreras等[20]報道,隨灌溉水施用金龜子綠僵菌Metarhizium anisopliae液體制劑可提高番茄潛葉蛾蛹的死亡率。此外,在種植番茄作物時,清除周邊茄科近緣種植物,有助于抑制其種群擴散,降低后代種群數(shù)量。通過與非茄科類作物輪作以終止或減少番茄潛葉蛾的喜好寄主植物,可打斷其生活史,從而有效抑制害蟲種群增長[21]。

      2?化學防治

      化學防治是控制番茄潛葉蛾的主要手段[3,22-23],其主要優(yōu)勢是能夠快速、經(jīng)濟高效地消滅害蟲,特別是害蟲剛?cè)肭謺r,當?shù)厝狈τ行У姆揽卮胧?,化學防治可以為綜合治理方案的制訂贏得時間[23-25]。目前登記用于防治番茄潛葉蛾的殺蟲劑主要有:有機磷類(毒死蜱、甲胺磷)、擬除蟲菊酯類(溴氰菊酯、高效氯氟氰菊酯、聯(lián)苯菊酯、芐氯菊酯)、噁二嗪類(茚蟲威)、多殺菌素類(多殺霉素、乙基多殺菌素)、阿維菌素類[阿維菌素、甲氨基阿維菌素苯甲酸鹽 (甲維鹽)]、吡咯類(蟲螨腈)、幾丁質(zhì)合成抑制劑(二氟脲、虱螨脲、雙苯氟脲)、二酰胺類(氯蟲苯甲酰胺、氟蟲雙酰胺)、昆蟲生長調(diào)節(jié)劑(環(huán)蟲酰肼、甲氧蟲酰肼、蟲酰肼)、縮氨基脲類(氰氟蟲腙)、四降三萜類(印楝素)和沙蠶毒素類(殺螟丹)[23]。王少麗等[26]評價了7種藥劑對番茄潛葉蛾的致死效果,結(jié)果表明,1.8%阿維菌素水乳劑、24%蟲螨腈懸浮劑、5%氯蟲苯甲酰胺懸浮劑,5%甲維鹽水分散粒劑和6%乙基多殺菌素懸浮劑對番茄潛葉蛾有極高的毒力。

      殺蟲劑的不合理使用導致番茄潛葉蛾的抗藥性增強。起初,在南美洲觀察到了番茄潛葉蛾對有機磷和擬除蟲菊酯的低水平抗性,隨后進一步檢測到其對阿維菌素、殺螟丹和甲胺磷的抗性[27-29]。之后,檢測出其對茚蟲威中低水平的耐藥性以及對幾丁質(zhì)合成抑制劑高水平的耐藥性[30-31],近幾年檢測到其對多殺霉素和二酰胺的耐藥性,并且可能正在增強[31-33]。除了南美洲,該蟲在歐洲也被檢測出對擬除蟲菊酯、茚蟲威、多殺霉素、二酰胺的抗性[30,34-37]。

      番茄潛葉蛾的抗藥性導致了化學藥劑的不斷更替使用[22]。有機磷和擬除蟲菊酯分別于20世紀60年代和80年代開始用于防治番茄潛葉蛾,是最早用于防治該蟲的殺蟲劑[27-28,38],而后被殺螟丹和阿維菌素所代替[27,29,36]。到20世紀90年代末,茚蟲威和幾丁質(zhì)合成抑制劑已經(jīng)上市,尤其是后者成為廣泛用于防控番茄潛葉蛾的藥劑[7, 30]。到了21世紀,使用的殺蟲劑種類主要有蟲螨腈、多殺霉素、氯蟲酰胺類和氟蟲酰胺類[7, 30, 35]。

      3?生物防治

      番茄潛葉蛾的生物防治措施主要包括使用天敵昆蟲和致病微生物。

      3.1?天敵昆蟲

      番茄潛葉蛾的天敵昆蟲資源豐富,包括至少60種多食性捕食性天敵和近100種寄生性天敵,分布于南美洲、歐洲、亞洲、非洲等地區(qū)[39-40],如半翅目的捕食性蝽類和膜翅目的寄生蜂類,其中有多種天敵對番茄潛葉蛾種群具有較高的抑制作用[41-42]。

      對于捕食性天敵來說,在歐洲有兩種已經(jīng)商業(yè)化的本土天敵煙盲蝽Nesidiocoris tenuis和Macrolophus pygmaeus成功用于防治番茄潛葉蛾[43]。這兩種捕食蝽具有兩項生物學優(yōu)勢:一是對番茄潛葉蛾卵的取食量大[44];二是植食性的取食特點使得其在獵物匱乏時仍能在番茄植株上存活[45]。但在應用策略上需要注意保護其種群,并在番茄作物定植前釋放。如在番茄潛葉蛾已經(jīng)發(fā)生后再釋放捕食蝽,其效果會大大降低[46]。需要注意的是,由于盲蝽具有植食性,因此在必要情況下需要使用化學藥劑降低盲蝽種群數(shù)量,減輕其對作物的為害,提高其生防效果[47-48]。Naselli 等[49]報道,通過種植芝麻Sesamum indicum作為伴生植物可降低盲蝽對番茄植株的為害。此外,通過生態(tài)調(diào)控策略可提高盲蝽的生物防治功能。例如,在番茄作物周邊種植金盞花 Calendula officinalis,或利用金盞花作為替代寄主在溫室中建立載體植物系統(tǒng)(banker plant system),均有助于保持M.pygmaeus種群,該方法已經(jīng)在西班牙和法國成功應用[50-51]。

      對于天敵寄生蜂來說,在南美洲,至少有8種商業(yè)化的赤眼蜂可用來防治番茄潛葉蛾。例如,巴西通過單獨釋放短管赤眼蜂Trichogramma pretiosum,或者與Bt聯(lián)合防治番茄潛葉蛾已經(jīng)取得成功[52]。在阿根廷,在田間釋放T.nerudai有效降低了番茄潛葉蛾種群數(shù)量[53]。此外,研究者在溫室中釋放一種卵寄生蜂Pseudapanteles dignus獲得了較好的防治效果[54]。在歐洲,釋放的短管赤眼蜂對番茄潛葉蛾的寄生率達90%以上[55],該赤眼蜂目前在歐洲和北非均實現(xiàn)了商業(yè)化生產(chǎn)[56]。在非洲(主要是突尼斯和埃及),在保護地或大田釋放兩種本土赤眼蜂Trichogramma cacoeciae和T.bourarachae可顯著降低番茄潛葉蛾種群數(shù)量,減少對植物的為害[57-58]。

      捕食性天敵和寄生性天敵聯(lián)合應用、天敵與其他措施聯(lián)合應用也是防治番茄潛葉蛾的有效措施。在歐洲,聯(lián)合釋放Trichogramma achaeae與煙盲蝽提高了對番茄潛葉蛾的防治效果[59]。在亞洲(主要是土耳其、伊朗、沙特阿拉伯),聯(lián)合釋放T.evanescens和煙盲蝽被證明可有效防治番茄潛葉蛾[60]。類似地,食胚赤眼蜂T.embryophagum與Bt聯(lián)合應用或甘藍夜蛾赤眼蜂T.brassicae與多殺菌素類殺蟲劑聯(lián)合應用,均能有效降低番茄潛葉蛾種群數(shù)量[61-62]。

      3.2?致病微生物

      番茄潛葉蛾的致病微生物主要包括細菌、真菌、病毒和線蟲。蘇云金芽胞桿菌Bacillus thuringiensis (Bt),包括Bt kurstaki和Bt aizawai兩個亞種已被廣泛應用于防治蔬菜作物上的鱗翅目害蟲[63]。商業(yè)化的Bt制劑已經(jīng)成為防治番茄潛葉蛾的重要微生物殺蟲劑。番茄潛葉蛾的原發(fā)地南美洲及之后遭其入侵的國家都相繼利用Bt防治該害蟲[64-65]。Urbaneja等[46]報道,施用Bt可使番茄潛葉蛾種群數(shù)量減少95%。昆蟲病原真菌中的球孢白僵菌Beauveria bassiana、金龜子綠僵菌和蟲草棒束孢Isaria farinosa對番茄潛葉蛾有一定的防治潛力[66]。Klieber等[67]報道,一種商業(yè)化的球孢白僵菌可作為內(nèi)生菌定殖于番茄植株體內(nèi),并導致各齡期番茄潛葉蛾的校正死亡率達到30%~50%。球孢白僵菌和金龜子綠僵菌(濃度為106孢子/mL)對番茄潛葉蛾卵的致死率分別為50%和37.6%[68]。Mascarin等[69]發(fā)現(xiàn)一種從馬鈴薯塊莖蛾P(guān)hthorimaea operculella體內(nèi)分離的顆粒體病毒(PhopGV)可延緩番茄潛葉蛾幼蟲發(fā)育,并降低其羽化率。EI Aimani等[70]通過室內(nèi)和田間試驗,發(fā)現(xiàn)在40~50 IJs/cm2濃度下,夜蛾斯氏線蟲Steinernema feltiae(品系SF-MOR9和SF-MOR10)和異小桿線蟲屬Heterorhabditis線蟲(品系HB-MOR8)對番茄潛葉蛾幼蟲的致死率在60%~100%,認為這3個昆蟲病原線蟲品系對防治番茄潛葉蛾有很高的應用潛力。

      4?物理防治

      性信息素誘殺技術(shù)是防治番茄潛葉蛾的重要方法之一[56],也可以起到預測預報的作用。性信息素誘殺主要是根據(jù)雌性釋放的性信息素組分,人工合成性信息素引誘劑,對雄蛾進行大量誘捕[56,71]。番茄潛葉蛾雌成蟲釋放的性信息素主要包括兩種組分,分別為反-3,順-8,順-11-十四碳三烯乙酸酯[(3E,8Z,11Z)-3,8,11-tetradecatrien-1-yl acetate (TDTA)](主要組分)[72-73]和反-3,順-8-十四碳烯醇乙酸酯[(3E,8Z)-3,8-tetradecadien-l-yl acetate (TDDA)](次要組分)[74-75]。單獨使用TDTA或兩種組分混合使用均能誘捕到大量的雄蛾[76-77]。在我國,已商品化的番茄潛葉蛾性信息素產(chǎn)品有4種,分別由青島羅素生物技術(shù)有限公司、北京水光科技有限公司、北京中捷四方生物科技股份有限公司和中國科學院動物研究所等單位研發(fā),在田間均具有較好的使用效果。綜合評價結(jié)果表明,中國科學院動物研究所研發(fā)的番茄潛葉蛾性信息素產(chǎn)品性價比最好[78]。性信息素與三角形誘捕器配合使用誘捕效果更好[79]。

      此外,利用信息素迷向技術(shù)干擾雄蟲對雌蟲的搜索定位,降低交配幾率,可以減少番茄潛葉蛾后代的發(fā)生量[71]。迷向技術(shù)使用的性信息素劑量較高,如每公頃需使用500~1 000個信息素分散器才能達到干擾效果[80],且迷向效果常常受到種群密度、已交配雌蛾遷入處理區(qū)、防治面積等因素的影響,因此對于迷向技術(shù)的使用應謹慎。

      在保護地中可以使用燈光引誘以減輕番茄潛葉蛾為害[81-82]。此外,選擇番茄潛葉蛾趨性較強的黑色、紅色、綠色、藍色色板可提高誘殺效果[71]。

      5?總結(jié)與建議

      番茄潛葉蛾是威脅全球番茄生產(chǎn)的一種重要害蟲,從各國探索的防治技術(shù)的效果來看,一方面,化學防治仍然是主要的應急手段和常規(guī)措施,另一方面,單一的防治措施往往不能有效抑制番茄潛葉蛾的傳播和為害。Desneux等[56]針對各種防治措施在應用過程中的權(quán)重問題,對29個國家(害蟲原發(fā)地3國,早期入侵地12國和新入侵地14國)的相關(guān)從業(yè)者進行了較為詳盡的問卷調(diào)查,結(jié)果發(fā)現(xiàn),化學防治在各類措施中的占比總體偏高。但值得注意的是,化學農(nóng)藥在應用中的比重逐年降低,這種趨勢在害蟲早期入侵地的防控中尤為明顯。此外,南美洲作為害蟲原發(fā)地,化學防治占比在2006年明顯下降,但之后卻變化不大,這也意味著化學防治仍是該地區(qū)綜合防治措施中的主要手段。以歐洲、北美洲和中東為代表的早期入侵地區(qū)在2012年開始借助本土寄生性天敵(如赤眼蜂Trichogramma spp.)和捕食性天敵(如煙盲蝽、M. pygmaeus)的釋放,以及微生物殺蟲劑Bt的應用來控制害蟲,這些生物防治措施有效減少了化學農(nóng)藥的使用頻次,極大程度地降低了化學防治所誘發(fā)的安全隱患和生態(tài)風險。此外,一些其他防治手段如性誘劑誘殺,品種選育及栽培管理,蟲情的監(jiān)測預警等,也逐漸被應用到害蟲的綜合防控中來。這些防治手段在單獨應用時可能見效甚微,但其作為化學防治或者生物防治的輔助手段時,其協(xié)同增效作用明顯。例如,生物殺蟲劑搭配寄生性天敵和捕食性天敵的釋放,或者聯(lián)合性誘劑誘殺、干擾交配等方法可以提高對番茄潛葉蛾的綜合防治效果。

      基于國外的經(jīng)驗,在國內(nèi)番茄潛葉蛾新入侵地區(qū)以及預測的入侵地區(qū),在防控時除了可借鑒國外原發(fā)地和早期入侵地所積累的知識、經(jīng)驗與成功案例,同時還應注意本土天敵資源的發(fā)掘以及外來天敵優(yōu)勢種資源的引入。在實踐中,還應借助多種防治措施的聯(lián)合應用來實現(xiàn)對該害蟲的綜合防控(IPM),但綜合防治技術(shù)在具體執(zhí)行時也不是一成不變的,需要根據(jù)害蟲入侵后的范圍和時間進行適當調(diào)整,使其更適用于當時的防控環(huán)境。Kogan等認為IPM策略的執(zhí)行過程具有明顯的階段性,首先需通過適時的化學防治將害蟲造成的損失控制在經(jīng)濟閾值以下,此后則應采用生物防治或農(nóng)業(yè)防治等非化學防治手段[83]。目前,在番茄潛葉蛾原發(fā)地和早期入侵地化學防治措施在綜合防控技術(shù)中雖仍有一定占比,但總體呈現(xiàn)下降趨勢??傮w來看,新入侵地過分依賴化學防治的困境也會隨著綜合防控技術(shù)的深入推進而得以緩解。

      番茄潛葉蛾作為一種入侵生物近年來在全球的擴散速度加快,為害加重。在遵守外來入侵生物管理政策的前提下,當番茄潛葉蛾入侵到相應國家后,政府和科研部門開始啟動應急管理策略,研究防治措施。本文總結(jié)的防治技術(shù)均是各個國家結(jié)合本國實際探索出的應對對策,相比于番茄潛葉蛾的擴散速度,防治技術(shù)的研究明顯滯后。此外,很多基于室內(nèi)的研究結(jié)果還有待田間檢驗。因此,為了抑制番茄潛葉蛾在世界范圍內(nèi)的擴散速度,國際間的信息共享、跨境合作治理是非常必要的。番茄潛葉蛾入侵我國不久,應結(jié)合國外已有的技術(shù)和經(jīng)驗,集中優(yōu)勢力量和資源在害蟲入侵地開展相應的生物學、生態(tài)學和防治技術(shù)研究,并在其他地區(qū)提前開展監(jiān)測和預警工作,為抑制番茄潛葉蛾在世界范圍內(nèi)的持續(xù)擴散提供技術(shù)支撐。

      參考文獻

      [1]?DESNEUX N, WAJNBER G E, WYCKHUYS K A G, et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control [J]. Journal of Pest Science, 2010, 83(3): 197-215.

      [2]?CABI. Invasive species compendium, Tuta absoluta (tomato leafminer) datasheet [DB/OL]. [2021-12-30]. https:∥www.cabi.org/isc/datasheet/49260.

      [3]?CAMPOS M R, BIONDI A, ADIGA A, et al. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe [J]. Journal of Pest Science, 2017, 90(3): 787-796.

      [4]?EPPO. Global database: Tuta absoluta [DB/OL]. [2021-12-30]. https:∥gd.eppo.int/taxon/GNORAB/distribution.

      [5]?張桂芬, 冼曉青, 張毅波, 等. 警惕南美番茄潛葉蛾Tuta absoluta (Meyrick) 在中國擴散 [J]. 植物保護, 2020, 46(2): 281-286.

      [6]?陸永躍. 警惕番茄潛葉蛾Tuta absoluta (Meyrick)在我國持續(xù)擴散入侵 [J].環(huán)境昆蟲學報, 2021, 43(2): 526-528.

      [7]?GUEDES R N C, PICANO M C. The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance [J]. EPPO Bulletin, 2012, 42(2): 211-216.

      [8]?ECOLE C C, PICANO M, JHAM G N, et al. Variability of Lycopersicon hirsutum f. typicum and possible compounds involved in its resistance to Tuta absoluta [J]. Agricultural and Forest Entomology, 1999, 1(4): 249-254.

      [9]?GHAREKHANI G H, SALEK-EBRAHIMI H. Life table parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on different varieties of tomato [J]. Journal of Economic Entomology, 2014, 107(5): 1765-1770.

      [10]ROSTAMI E, MADADI H, ABBASIPOUR H, et al. Life table parameters of the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) on different tomato cultivars [J]. Journal of Applied Entomology, 2017, 141(1/2): 88-96.

      [11]RAKHA M, ZEKEYA N, SEVGAN S, et al. Screening recently identified whitefly/spider mite-resistant wild tomato accessions for resistance to Tuta absoluta [J]. Plant Breeding, 2017, 136(4): 562-568.

      [12]SOHRABI F, NOORYAZDAN H R, GHARATI B, et al. Plant resistance to the moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato cultivars [J]. Neotropical Entomology, 2017, 46(2): 203-209.

      [13]MALUF W R, MACIEL G M, GOMES L A A, et al. Broad-spectrum arthropod resistance in hybrids between high-?and low-acylsugar tomato lines [J]. Crop Science, 2010, 50(2): 439-450.

      [14]OLIVEIRA C M D. Resistência de linhagens de tomateiro à traa Tuta absoluta, relacionada a aleloquímicos e à densidade de tricomas [D]. Diamantina: Universidade Federal dos Vales do Jequitinhonha e Mucur, 2011.

      [15]SNOEREN T A L, SITBON E, LEVY D. Resistance to arthropod pest in tomatoes: US2017/0240910 A1?[P]. 2017-08-24.

      [16]SELALE H, DAGˇLI F, MUTLU N, et al. Cry1Ac-mediated resistance to tomato leaf miner (Tuta absoluta) in tomato [J]. Plant Cell, Tissue and Organ Culture, 2017, 131(1): 65-73.

      [17]MOHAMADI P, RAZMJOU J, NASERI B, et al. Population growth parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on tomato plant using organic substrate and biofertilizers [J/OL]. Journal of Insect Science, 2017, 17(2): 36. DOI: 10.1093/jisesa/iex011.

      [18]BLAZHEVSKI S, KALAITZAKI A P, TSAGKARAKIS A E. Impact of nitrogen and potassium fertilization regimes on the biology of the tomato leaf miner Tuta absoluta [J]. Entomologia Generalis, 2018, 37(2): 157-174.

      [19]HAN P, DESNEUS N, BECKER C, et al. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for integrated pest management [J]. Journal of Pest Science, 2019, 92(4): 1359-1370.

      [20]CONTRERAS J, MENDOZA J E, MARTNEZ-AGUIRRE M R, et al. Efficacy of enthomopathogenic fungus Metarhizium anisopliae against Tuta absoluta (Lepidoptera: Gelechiidae) [J]. Journal of Economic Entomology, 2014, 107(1): 121-124.

      [21]RWOMUSHANA I, BEALE T, CHIPABIKA G, et al. Tomato leafminer (Tuta absoluta): Impacts and coping strategies for Africa [R]. CABI Working Paper, 2019.

      [22]BIONDI A, GUEDES R N C, WAN Fanghao, et al. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future [J]. Annual Review of Entomology, 2018, 63: 239-258.

      [23]GUEDES R N C, RODITAKIS E, CAMPOS M R, et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook [J]. Journal of Pest Science, 2019, 92: 1329-1342.

      [24]LIEBHOLD A M, BEREC L, BROCKERHOFF E G, et al. Eradication of invading insect populations: from concepts to applications [J]. Annual Review of Entomology, 2016, 61: 335-352.

      [25]MCLAUGHLIN G M, DEARDEN P K. Invasive insects: management methods explored [J]. Journal of Insect Science, 2019, 19(5): 1-9.

      [26]王少麗, 史彩華, 徐丹丹. 等. 入侵性南美番茄潛葉蛾高效藥劑篩選及其抗性基因突變檢測[J]. 中國蔬菜, 2021(11): 33-36.

      [27]SIQUEIRA HA, GUEDES R N C, PICANO M C. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae) [J]. Agricultural and Forest Entomology, 2000, 2(2): 147-153.

      [28]SALAZAR E R, ARAYA J E. Tomato moth, Tuta absoluta (Meyrick) response to insecticides in Arica, Chile [J]. Agricultura Técnica, 2001, 61(4): 429-435.

      [29]SIQUEIRA H A A, GUEDES R N C, FRAGOSO D B, et al. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. International Journal of Pest Management, 2001, 47(4): 247-251.

      [30]SILVA G A, PICANO M C, BACCI L, et al. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta [J]. Pest Management Science, 2011, 67(8): 913-920.

      [31]SILVA T B M, SILVA W M, CAMPOS M R, et al. Susceptibility levels of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to minor classes of insecticides in Brazil [J]. Crop Protection, 2016, 79: 80-86.

      [32]REYES M, ROCHA K, ALARCN L, et al. Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad [J]. Pesticide Biochemistry and Physiology, 2012, 102(1): 45-50.

      [33]CAMPOS M R, RODRIGUES A R S, SILVA W M, et al. Spinosad and the tomato borer Tuta absoluta: a bioinsecticide, an invasive pest threat, and high insecticide resistance [J/OL]. PLoS ONE, 2014, 9(8): e103235. DOI: 10.1371/journal.pone.0103235.

      [34]RODITAKIS E, SKARMOUTSOU C, STAURAKAKI M. Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece [J]. Pest Management Science, 2013, 69(7): 834-840.

      [35]GONTIJO P C, PICANO M C, PEREIRA E J G, et al. Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta [J]. Annals of Applied Biology, 2013, 162(1): 50-59.

      [36]GUEDES R N C, SIQUEIRA H A A. The tomato borer Tuta absoluta: insecticide resistance and control failure [J/OL]. CABI Reviews, 2012, 7: 055. DOI: 10.1079/PAVSNNR20127055.

      [37]RODITAKIS E, VASAKIS E, GRISPOU M, et al. First report of Tuta absoluta resistance to diamide insecticides [J]. Journal of Pest Science, 2015, 88(1): 9-16.

      [38]LIETTI M M M, BOTTO E, ALZOGARAY R A. Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. Neotropical Entomology, 2005, 34: 113-119.

      [39]FERRACINI C, BUENO V H P, DINDO M L, et al. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and South America [J]. Biocontrol Science and Technology, 2019, 29(6): 578-609.

      [40]MANSOUR R, BIONDI A. Releasing natural enemies and applying microbial and botanical pesticides for managing Tuta absoluta in the MENA region [J]. Phytoparasitica, 2021, 49: 179-194.

      [41]JAWORSKI C C, CHAILLEUX A, BEAREZ P, et al. Predator-mediated apparent competition between pests fails to prevent yield loss despite actual pest populations decrease [J]. Journal of Pest Science, 2015, 88: 793-803.

      [42]BACCI L, SILVAM, SILVA G A, et al. Natural mortality factors of tomato leafminer Tuta absoluta in open-field tomato crops in South America [J]. Pest Management Science, 2019, 75(3): 736-743.

      [43]PREZ-HEDO M, RIAHI C, URBANEJA A. Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives [J]. Pest Management Science, 2021, 77(1): 33-42.

      [44]SYLLA S, BRVAULT T, DIARRA K, et al. Life-history traits of Macrolophus pygmaeus with different prey foods [J/OL]. PLoS ONE, 2016, 11(11): e0166610. DOI: 10.1371/journal.pone.0166610.

      [45]THOMINE E, JEAVONS E, RUSCH A, et al. Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis [J]. Journal of Pest Science, 2020, 93(4): 1255-1265.

      [46]URBANEJA A, GONZLEZ-CABRERA J, ARNO J, et al. Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin [J]. Pest Management Science, 2012, 68(9): 1215-1222.

      [47]ARN J, GABARRA R. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae) [J]. Journal of Pest Science, 2011, 84(4): 513-520.

      [48]ZAPPALA L, SISCARO G, BIONDI A L, et al. Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis [J]. Journal of Applied Entomology, 2012, 136(6): 401-409.

      [49]NASELLI M, ZAPPALA L, GUGLIUZZO A, et al. Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants [J]. Arthropod-Plant Interactions, 2017, 11(2): 121-131.

      [50]BALZAN M V. Flowering banker plants for the delivery of multiple agroecosystem services [J]. Arthropod-Plant Interactions, 2017, 11(6): 743-754.

      [51]ARDANUY A, FIGUERAS M, MATAS M, et al. Banker plants and landscape composition influence colonisation precocity of tomato greenhouses by mirid predators [J]. Journal of Pest Science, 2022, 95: 447-459.

      [52]MEDEIROS M A, DE BOAS G L V, VILELA N J, CARRIJO O A. A preliminary survey and biological control of South America tomato pinworm with the parasitic Trichogramma pretiosum in greenhouse models [J]. Horticultura Brasileira, 2009, 27: 80-85.

      [53]VIRGALA M B R, BOTTO E N. Biological studies on Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae), egg parasitoid of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) [J]. Neotropical Entomology, 2010, 39(4): 612-617.

      [54]SALAS GERVASSIO N G. Perspectivas del uso del endoparasitoide nativo Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae) para el control biológico de la polilla del tomate Tuta absoluta (Meyrick) (Lepidoptera: Gelechidae) [D]. Argentina: Universidad Nacional de La Plata, 2017.

      [55]DE OLIVEIRA C M, DE OLIVEIRA J V, BREDA M O, et al. Biological parameters and thermal requirements of Trichogramma pretiosum for the management of the tomato fruit borer (Lepidoptera: Crambidae) in tomatoes [J]. Crop Protection, 2017, 99: 39-44.

      [56]DESNEUX N, HAN P, MANSOUR R, et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions [J]. Journal of Pest Science, 2022, 95: 17-39.

      [57]CHERIF A, MANSOUR R, ATTIA-BARHOUMI S, et al. Effectiveness of different release rates of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) against Tuta absoluta (Lepidoptera: Gelechiidae) in protected and open field tomato crops in Tunisia [J]. Biocontrol Science and Technology, 2019, 29(2): 149-161.

      [58]ZOUBA A, CHERMITI B, CHRAIET R, et al. Effect of two indigenous Trichogramma species on the infestation level by tomato miner Tuta absoluta in tomato greenhouses in the south-west of Tunisia [J]. Tunisian Journal of Plant Protection, 2013, 8(2): 87-106.

      [59]CHAILLEUX A, BEAREZ P, PIZZOL J, et al. Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta [J]. Journal of Pest Science, 2013, 86(3): 533-541.

      [60]KEECI M, ZTOP A. Possibilities for biological control of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in the western Mediterranean region of Turkey [J]. Turkish Journal of Entomology, 2017, 41(2): 219-230.

      [61]ALSAEDI G, ASHOURI A, TALAEI-HASSANLOUI R. Assessment of two Trichogramma species with Bacillus thuringiensis var. krustaki for the control of the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in Iran [J]. Open Journal of Ecology, 2017, 7(2): 112-124.

      [62]JAMSHIDNIA A, ABDOLI S, FARROKHI S, et al. Efficiency of spinosad, Bacillus thuringiensis and Trichogramma brassicae against the tomato leafminer in greenhouse [J]. BioControl, 2018, 63(5): 619-627.

      [63]LACEY L A. Microbial control of insect and mite pests: from theory to practice [M]. Academic Press, 2016.

      [64]THEODULOZ C, VEGA A, SALAZAR M, et al. Expression of a Bacillus thuringiensis δ-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills) [J]. Journal of Applied Microbiology, 2003, 94(3): 375-381.

      [65]GONZLEZ-CABRERA J, MOLL O, MONTN H, et al. Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. BioControl, 2011, 56(1): 71-80.

      [66]YKSEL E, AIKGZ , DEMIRCI F, et al. Effects of the entomopathogenic fungi, Beauveria bassiana, Isaria farinosa and Purpureocillium lilacinum, on eggs of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. Türkiye Biyolojik Mücadele Dergisi, 2017, 8(1): 39-47.

      [67]KLIEBER J, REINEKE A. The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta [J]. Journal of Applied Entomology, 2016, 140(8): 580-589.

      [68]ABDEL-BAKY N F, ALHEWAIRINI S S, AL-AZZAZY M M, et al. Efficacy of Metarhizium anisopliae and Beauveria bassiana against Tuta absoluta (Lepidoptera: Gelechiidae) eggs under laboratory conditions [J]. Pakistan Journal of Agricultural Sciences, 2021, 58(2): 743-750.

      [69]MASCARIN G M, ALVES S B, RAMPELOTTI-FERREIRA F T, et al. Potential of a granulovirus isolate to control Phthorimaea operculella (Lepidoptera: Gelechiidae) [J]. BioControl, 2010, 55(5): 657-671.

      [70]EI AIMANI A, MOKRINI F, HOUARI A, et al. Potential of indigenous entomopathogenic nematodes for controlling tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory and field conditions in Morocco [J/OL]. Physiological and Molecular Plant Pathology, 2021, 116: 101710. DOI: 10.1016/j.pmpp.2021.101710.

      [71]ERLER F, KIRISIK M, TOPUZ E. Comparable study on different colored sticky traps for catching of adult Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) [J]. Fresenius Environmental Bulletin, 2020, 29(9): 7349-7354.

      [72]ATTYGALLE A B, JHAM G N, SVATO A, et al. Microscale, random reduction: Application to the characterization of (3E,8Z,11Z)-3,8,11-tetradecatrienyl acetate, a new lepidopteran sex pheromone [J]. Tetrahedron Letters, 1995, 36(31): 5471-5474.

      [73]ATTYGALLE A B, JHAM G N, SVATO A, et al. (3E,8Z,11Z)-3,8,11-tetradecatrienyl acetate, major sex pheromone component of the tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae) [J]. Bioorganic & Medicinal Chemistry, 1996, 4(3): 305-314.

      [74]GRIEPINK F C, VAN BEEK T A, POSTHUMUS M A, et al. Identification of the sex pheromone of Scrobipalpula absoluta; determination of double bond positions in triple unsaturated straight chain molecules by means of dimethyl disulphide derivatization [J]. Tetrahedron Letters, 1996, 37(3): 411-414.

      [75]SVATO A, ATTYGALLE A B, JHAM G N, et al. Sex pheromone of tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae) [J]. Journal of Chemical Ecology, 1996, 22(4): 787-800.

      [76]VACAS S, LPEZ J, PRIMO J, et al. Response of Tuta absoluta (Lepidoptera: Gelechiidae) to different pheromone emission levels in greenhouse tomato crops [J]. Environmental Entomology, 2013, 42(5): 1061-1068.

      [77]LOBOS E, OCCHIONERO M, WERENITZKY D, et al. Optimization of a trap for Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and trials to determine the effectiveness of mass trapping [J]. Neotropical Entomology, 2013, 42(5): 448-457.

      [78]張桂芬, 張毅波, 劉萬學, 等. 4種性信息素產(chǎn)品對新發(fā)南美番茄潛葉蛾引誘效果研究[J]. 植物保護, 2020, 46(5): 303-308.

      [79]RODA A L, BRAMBILA J, BARRIA J, et al. Efficiency of trapping systems for detecting Tuta absoluta (Lepidoptera: Gelechiidae) [J]. Journal of Economic Entomology, 2015, 108(6): 2648-2654.

      [80]COCCO A, DELIPERI S, DELRIO G. Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique [J]. Journal of Applied Entomology, 2013, 137(1/2): 16-28.

      [81]COCCO A, DELIPERI S, DELRIO G. Potential of mass trapping for Tuta absoluta management in greenhouse tomato crops using light and pheromone traps [J]. IOBC-WPRS Bulletin, 2012, 80: 319-324.

      [82]ERLER F, BAYRAM Y. Efficacy of mass trapping of tomato moth, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), using a new-designed light trap in reducing leaf and fruit damages in greenhouse-grown tomatoes [J]. Journal of Plant Diseases and Protection, 2021, 128: 1177-1185.

      [83]KOGAN M, BAJWA W I. Integrated pest management: a global reality? [J]. Anais da Sociedade Entomológica do Brasil, 1999, 28(1): 1-25.

      (責任編輯:楊明麗)

      猜你喜歡
      潛葉蛾化學防治天敵
      番茄潛葉蛾識別與綜合防控技術(shù)
      懷仁市植保站開展番茄潛葉蛾調(diào)查工作
      麝香 急性尿潴留的天敵
      天敵昆蟲
      ——管氏腫腿蜂的應用技術(shù)
      柑橘潛葉蛾的識別與綜合防治方法
      柚子潛葉蛾無公害防治技術(shù)的探索與應用
      天敵昆蟲在林木病蟲害防治中的重要作用探討
      試析水稻田主要病害防治技術(shù)
      植物鐮刀菌枯萎病防治的研究進展
      細菌的天敵—氮氣
      荔波县| 水富县| 通河县| 玛纳斯县| 栾城县| 施甸县| 高陵县| 镇安县| 香格里拉县| 安泽县| 前郭尔| 临城县| 汕尾市| 高雄县| 玉龙| 涟水县| 图们市| 双江| 若尔盖县| 南昌市| 广昌县| 万山特区| 宜宾市| 德昌县| 萨嘎县| 博罗县| 剑川县| 正镶白旗| 阜新| 合山市| 军事| 即墨市| 普安县| 苏尼特右旗| 垦利县| 称多县| 个旧市| 盐山县| 微山县| 江都市| 延津县|