董舒超 凌嘉怡 趙麗萍 宋劉霞 王銀磊 趙統(tǒng)敏
摘要:番茄原產(chǎn)自熱帶地區(qū),是全世界栽培面積最大的蔬菜之一。農(nóng)業(yè)生產(chǎn)上,干旱脅迫是限制番茄產(chǎn)量和品質(zhì)的主要制約因素。因此,挖掘抗旱基因用于番茄抗旱育種意義重大。番茄的抗旱性狀是由多基因控制的復(fù)雜性狀,而轉(zhuǎn)錄因子能通過轉(zhuǎn)錄級聯(lián)效應(yīng)同時調(diào)控干旱脅迫響應(yīng)通路上的多個基因來調(diào)節(jié)植物的抗旱性,是培育抗旱番茄品種的重要遺傳資源。本文對近年來有關(guān)轉(zhuǎn)錄因子調(diào)節(jié)番茄抗旱性和參與干旱脅迫響應(yīng)的最新研究成果進行了歸納總結(jié),綜述了bHLH、MYB、NAC、bZIP、ERF、WRKY、HD-Zip等家族轉(zhuǎn)錄因子調(diào)控番茄響應(yīng)干旱脅迫的研究進展。在干旱脅迫下,這些轉(zhuǎn)錄因子參與的調(diào)節(jié)網(wǎng)絡(luò)主要涉及脫落酸(ABA)和活性氧等相關(guān)通路。對轉(zhuǎn)錄因子在培育番茄抗育品種中的應(yīng)用進行了討論,提出增強轉(zhuǎn)錄因子遺傳改良在時空水平的特異性用于抗旱番茄品種選育的方法,旨在為番茄抗旱育種研究提供新思路。
關(guān)鍵詞:番茄;抗旱性;干旱脅迫響應(yīng);轉(zhuǎn)錄因子;育種;脫落酸
中圖分類號:S641.201??文獻標志碼:A??文章編號:1002-1302(2023)09-0009-08
基金項目:國家自然科學基金青年科學基金(編號:32202489);江蘇省自然科學基金青年基金(編號:BK20220743);江蘇省重點研發(fā)計劃現(xiàn)代農(nóng)業(yè)項目(編號:BE2022339);江蘇現(xiàn)代農(nóng)業(yè)(蔬菜)產(chǎn)業(yè)技術(shù)體系(編號:JATS[2022]433)。
作者簡介:董舒超 (1991—),女,湖北人,博士,助理研究員,主要從事番茄抗旱性狀調(diào)控分子機理研究。E-mail:20221007@jaas.ac.cn。
通信作者:趙統(tǒng)敏,碩士,研究員,主要從事高品質(zhì)番茄育種研究。E-mail:tmzhaomail@163.com。
隨著全球氣候變暖的趨勢加劇,干旱災(zāi)害發(fā)生越來越頻繁,給全球農(nóng)業(yè)造成的問題越來越嚴重。在眾多非生物脅迫中,干旱缺水對作物生產(chǎn)是最具破壞性的,是限制作物品質(zhì)和產(chǎn)量的一個重要影響因素[1]。根據(jù)聯(lián)合國發(fā)布的《2022年干旱數(shù)字報告》顯示,自21世紀以來,全球干旱災(zāi)害持續(xù)時間和發(fā)生頻次增加了約29%,其中我國遭受了近 20 次干旱災(zāi)害。在過去的10年中,干旱造成的全球作物減產(chǎn)損失總計約 300億美元[2]。例如被譽為魚米之鄉(xiāng)的江蘇省也曾在2019年秋季遭遇了60年一遇的大面積干旱。為了應(yīng)對愈發(fā)干旱的自然環(huán)境并保障人類社會對作物產(chǎn)量日益增長的需求,亟需增強作物抗旱能力。
番茄(Solanum lycopersicum L.)富含維生素C、葉酸、番茄紅素、鉀等各類營養(yǎng)物質(zhì),是全球栽培最廣泛的蔬菜作物之一。我國是目前全球番茄生產(chǎn)量和種植面積最大的國家,3種類型的番茄:大果型、中果型、櫻桃番茄在山東、江蘇、廣西等地都有廣泛種植。番茄在我國蔬菜產(chǎn)業(yè)中的商業(yè)價值極高。番茄原產(chǎn)自南美洲熱帶地區(qū),種植需水量較多,然而中國是全球人均淡水資源最貧乏的國家之一,農(nóng)業(yè)生產(chǎn)所用的淡水資源十分匱乏。
1?干旱脅迫對番茄的影響
在干旱初期或輕微干旱條件下,番茄根系首先感知土壤中的水分脅迫,引起番茄的根系深扎、根表面積增加、淺層根系減少;干旱后期隨著脅迫加劇番茄根系的正常生長受到顯著抑制,表現(xiàn)為根表面積、根長和側(cè)根數(shù)等降低[3]。此外,干旱脅迫誘導多種離子如Ca2+進出保衛(wèi)細胞,使得保衛(wèi)細胞內(nèi)滲透壓發(fā)生變化,并改變保衛(wèi)細胞形態(tài),并改變?nèi)~片的生理生化特性,如造成氣孔關(guān)閉、卷葉、蒸騰速率下降、凈光合作用速率降低、氣孔導度和胞間CO2濃度下降、光呼吸速率升高,引起番茄葉片光系統(tǒng)損傷。此外,干旱脅迫能觸發(fā)活性氧(reactive oxygen species,ROS)的積累,對細胞造成氧化脅迫,導致脂質(zhì)過氧化、膜結(jié)構(gòu)遭到破壞、蛋白質(zhì)和核酸變性等[4]。因此干旱脅迫會減緩番茄植株的生長發(fā)育速率、影響干物質(zhì)積累和開花坐果。干旱脅迫嚴重時,會造成番茄植株死亡[5]。
2?抗旱機制
植物采用多種策略來應(yīng)對干旱脅迫,并通過多種信號途徑調(diào)節(jié)生理生化狀態(tài)以適應(yīng)干旱[6] 。植物適應(yīng)干旱的機制分為以下3類:(1)避旱,即在干旱來臨之前植物通過加速生長發(fā)育,縮短生命周期來避開干旱脅迫;(2)耐旱,即植物對內(nèi)部低含水量條件的耐受性,主要是利用一系列的緩解機制來維持細胞結(jié)構(gòu)的穩(wěn)定性;(3)御旱,即在干旱脅迫初期植物通過調(diào)整地上部和地下部性狀以減少水分損失,從而維持植物體內(nèi)含水量并預(yù)防組織損傷;其中耐旱性和御旱性被統(tǒng)稱為抗旱性,而在育種研究和生產(chǎn)中增強植物抗旱力相較于避旱力更具有實踐意義[7]。
干旱脅迫會激發(fā)一系列應(yīng)激保護機制,包括:觸發(fā)抗氧化防御系統(tǒng)以維持氧化還原穩(wěn)態(tài),并利用抗氧化劑和活性氧清除劑防止急性細胞損傷,由此維持膜完整性;在嚴重干旱脅迫下,降低光合酶活性、降低光合作用等生理生化反應(yīng)速率,維持細胞結(jié)構(gòu)的穩(wěn)定性;促進甘露醇、脯氨酸、海藻糖等代謝物的產(chǎn)生,而這些代謝物能作為滲透劑有助于維持細胞滲透勢、離子平衡、生物膜的完整性,以及防止細胞內(nèi)水分散失[4,6]。
另外,干旱脅迫也能觸發(fā)植物激素信號傳導途徑,包括脫落酸(abscisic acid,ABA)、赤霉素、油菜素內(nèi)酯和乙烯等[8-11]。這些干旱脅迫響應(yīng)的信號通路存在互作,不同的應(yīng)激機制能夠相互影響。其中ABA信號是干旱脅迫響應(yīng)最重要的信號通路。ABA是一種以異戊二烯為基本結(jié)構(gòu)單位的倍半萜類植物抗逆激素,干旱脅迫能迅速誘導ABA的合成[12]。ABA能促進氣孔關(guān)閉從而降低蒸騰速率并減少水分流失、作為信號分子感知并傳遞干旱脅迫信號、調(diào)節(jié)干旱脅迫響應(yīng)相關(guān)基因的表達以協(xié)助植物適應(yīng)干旱環(huán)境[13]。
3?轉(zhuǎn)錄因子介導的番茄抗旱性調(diào)控
3.1?番茄轉(zhuǎn)錄因子
植物轉(zhuǎn)錄因子(transcription factor,TF)是通過調(diào)控靶基因轉(zhuǎn)錄行使其生物功能的一類蛋白,在調(diào)節(jié)植物生長發(fā)育和脅迫響應(yīng)中發(fā)揮關(guān)鍵作用[14-16]。研究表明,植物轉(zhuǎn)錄因子能夠通過同時調(diào)控干旱響應(yīng)通路上的多個基因來調(diào)節(jié)植物的抗旱性,包括氧化調(diào)控相關(guān)基因、ABA相關(guān)基因、滲透調(diào)節(jié)相關(guān)基因等[17-18]。因此,轉(zhuǎn)錄因子在抗旱育種中具有較高的潛在利用價值。植物轉(zhuǎn)錄因子數(shù)據(jù)庫(http://planttfdb.gao-lab.org/index.php)顯示番茄(Solanum lycopersicum)基因組共包含1 845個轉(zhuǎn)錄因子,根據(jù)蛋白序列和結(jié)構(gòu)特征這些轉(zhuǎn)錄因子被劃分為包括bHLH、MYB、NAC、bZIP、ERF、WRKY等在內(nèi)的共58個家族[19,20]。由表1可見,目前被報道參與番茄對干旱脅迫的響應(yīng)和調(diào)節(jié)抗旱性的轉(zhuǎn)錄因子家族主要包括bHLH、MYB、NAC、bZIP、ERF、WRKY、HD-Zip[21-24]。
3.2?bHLH轉(zhuǎn)錄因子
bHLH(basic helix-loop-helix)是真核生物中最大的轉(zhuǎn)錄因子家族[45]。該家族轉(zhuǎn)錄因子在調(diào)節(jié)植物抗旱性中發(fā)揮重要作用,例如最新的研究顯示花生bHLH轉(zhuǎn)錄因子AhbHLH112能增強花生的抗旱能力,且干旱能顯著誘導其表達[46]。玉米bHLH轉(zhuǎn)錄因子ZmPTF1通過促進根系發(fā)育及ABA合成來調(diào)節(jié)玉米對干旱脅迫的耐受性[47]。
番茄bHLH轉(zhuǎn)錄因子家族共包含125個基因,根據(jù)蛋白結(jié)構(gòu)域特征被進一步劃分為26個亞家族[48]。Gong等通過分析抗旱性不同的材料之間基因表達量的差異發(fā)現(xiàn),與對照材料相比bHLH轉(zhuǎn)錄因子SGN-U215556、SGN-U215557、SGN-U238928、SGN-U217931在抗旱性強的材料中表達水平顯著升高[25]。目前關(guān)于番茄bHLH家族轉(zhuǎn)錄因子參與干旱脅迫響應(yīng)的研究報道較少,其調(diào)控抗旱性的分子機理還有待深入研究。
3.3?MYB轉(zhuǎn)錄因子
Li等在番茄基因組共鑒定出MYB家族轉(zhuǎn)錄因子127個,基于蛋白結(jié)構(gòu)特征和系統(tǒng)進化分析這些轉(zhuǎn)錄因子被進一步劃分為18個亞家族[49]。在擬南芥和一些作物中的研究顯示MYB轉(zhuǎn)錄因子參與了干旱脅迫的響應(yīng),例如調(diào)控氣孔運動、葉片發(fā)育、類黃酮和細胞壁的合成[50]。目前已有直接試驗結(jié)果證明番茄MYB轉(zhuǎn)錄因子能調(diào)節(jié)番茄抗旱性,例如過表達SlMYB49的番茄對干旱脅迫的耐受性相比野生型顯著提高[26]。最近,Chen等的研究指出MYB家族轉(zhuǎn)錄因子SlMYB55是ABA和干旱響應(yīng)基因,沉默SlMYB55的并表達能顯著提升番茄的抗旱性。此外,SlMYB55能調(diào)控ABA的合成及信號通路[27]。
3.4?NAC轉(zhuǎn)錄因子
NAC家族轉(zhuǎn)錄因子是植物特有的,包含NAM、ATAF 和CUC 等3個結(jié)構(gòu)域。在不同物種中均有報道說明NAC轉(zhuǎn)錄因子參與植物抗旱性的調(diào)節(jié)。例如煙草NAC轉(zhuǎn)錄因子NtNAC053能增強煙草在干旱脅迫下的存活率[51]。番茄基因組中共含有93個NAC轉(zhuǎn)錄因子,根據(jù)其結(jié)構(gòu)特征被分為5個亞家族[14]。Wang等的研究發(fā)現(xiàn)過表達NAC家族轉(zhuǎn)錄因子SlNAP1顯著提升番茄的抗旱性[28]。番茄SlNAC4 RNAi沉默株系對干旱脅迫的耐受性低于野生型,說明SlNAC4是調(diào)控番茄抗旱性的正因子[30]。干旱處理能誘導NAC轉(zhuǎn)錄因子SlNAC35的表達,在煙草中過表達番茄NAC轉(zhuǎn)錄因子SlNAC35能促進根部生長發(fā)育并提升轉(zhuǎn)基因植株的抗旱性[32]。Jian等研究指出SlNAC6的表達量在ABA和干旱處理后顯著上升,RNAi沉默SlNAC6表達的轉(zhuǎn)基因番茄植株比野生型矮小,且對干旱脅迫的耐受性降低,而SlNAC6的過表達株系抗旱力增強[31]。此外,在煙草中過表達番茄NAC轉(zhuǎn)錄因子SlNAC2能提升轉(zhuǎn)基因煙草的抗旱性[29]。Thirumalaikumar等的研究結(jié)果顯示利用VIGS技術(shù)在番茄葉片中沉默NAC轉(zhuǎn)錄因子SlNAC042的表達后,植株對干旱脅迫的耐受力顯著低于對照,說明SlNAC042正向調(diào)控番茄抗旱性[18]。
3.5?bZIP轉(zhuǎn)錄因子
番茄基因組共鑒定出69個bZIP轉(zhuǎn)錄因子,并根據(jù)系統(tǒng)發(fā)育分析的結(jié)果將這些轉(zhuǎn)錄因子分為9個亞家族[52]。 bZIP家族轉(zhuǎn)錄因子與干旱脅迫響應(yīng)的關(guān)聯(lián)在不同物種都有文獻報道,例如水稻bZIP轉(zhuǎn)錄因子OsbZIP62能提升水稻的抗旱性,且干旱脅迫能誘導OsbZIP62的表達[53]。棉花bZIP轉(zhuǎn)錄因子GhABF2具有類似功能,其表達量在干旱處理后上調(diào),過表達GhABF2能顯著提升棉花的抗旱性,而沉默GhABF2的轉(zhuǎn)基因棉花對干旱脅迫相比野生型更敏感[54]。
迄今為止大部分研究都顯示番茄bZIP轉(zhuǎn)錄因子對番茄抗旱性起到正向調(diào)節(jié)作用,例如Zhu等發(fā)現(xiàn)通過RNAi技術(shù)沉默SlbZIP1基因表達后,轉(zhuǎn)基因番茄材料SlbZIP1-RNAi對干旱脅迫的耐受性相較野生型顯著下降。此外,基因沉默株系中ABA含量、抗氧化酶活性及抗逆相關(guān)基因的表達量也比野生型低[33]。2個bZIP轉(zhuǎn)錄因子SlAREB1(abscisic acid-responsive element binding)和SlAREB2在番茄根部和莖中的表達受干旱脅迫誘導,過表達SlAREB1顯著提升了番茄的抗旱性,而SlAREB1沉默株系抗旱性相較于野生型顯著下降。利用DNA 微陣列技術(shù)分析基因表達量,結(jié)果顯示SlAREB1參與了氧化脅迫及ABA信號通路相關(guān)基因的調(diào)控[21]。此外,也有與上述bZIP轉(zhuǎn)錄因子功能不同的報道。有研究顯示干旱處理導致SlbZIP38表達量下調(diào),且過表達SlbZIP38的轉(zhuǎn)基因番茄植株的抗旱性比野生型低[34]。
3.6?ERF轉(zhuǎn)錄因子
ERF(ethylene response factors)是植物特有的轉(zhuǎn)錄因子家族,在植物防御各種脅迫逆境中起著重要作用。Yang等在番茄基因組中共鑒定出134個ERF轉(zhuǎn)錄因子,通過系統(tǒng)發(fā)育分析進一步將該家族的基因分為12個亞家族[55]。關(guān)于番茄ERF家族轉(zhuǎn)錄因子參與干旱脅迫響應(yīng)的文獻報道正逐年增多。
早期的研究發(fā)現(xiàn)水稻中超表達番茄ERF轉(zhuǎn)錄因子TSRF1能顯著提升水稻的抗旱能力并促進ABA合成基因的表達[35]。另外一項關(guān)于番茄ERF轉(zhuǎn)錄因子在水稻中的研究發(fā)現(xiàn),過表達JERF1能增強水稻對干旱脅迫的耐受力,且ABA能誘導該基因的表達[36]。此外,被報道參與調(diào)節(jié)抗旱性的番茄ERF轉(zhuǎn)錄因子還包括ERF5 、SlERF84 和SlERF.B1。其中ERF5的表達受干旱處理誘導,過表達ERF5能顯著提升番茄的抗旱性[37]。Li等研究發(fā)現(xiàn)干旱或ABA處理能顯著誘導番茄ERF轉(zhuǎn)錄因子SlERF84的表達,在擬南芥中過表達SlERF84能顯著提升轉(zhuǎn)基因擬南芥對干旱脅迫的耐受力[38]。最近的研究報道顯示,SlERF.B1的表達受干旱脅迫的誘導,而ABA處理卻抑制其表達。過表達SlERF.B1的番茄和擬南芥都表現(xiàn)出對干旱脅迫的超敏感表型,說明SlERF.B1是番茄抗旱性的負調(diào)控因子[39]。
3.7?WRKY轉(zhuǎn)錄因子
經(jīng)分析鑒定番茄基因組共包含83個WRKY轉(zhuǎn)錄因子,根據(jù)蛋白結(jié)構(gòu)特征被分為3個亞家族,它們中的大多數(shù)是調(diào)控生物和非生物脅迫響應(yīng)的關(guān)鍵因子[56]。Huang等發(fā)現(xiàn)番茄基因組中部分WRKY家族的轉(zhuǎn)錄因子的表達能受干旱脅迫誘導,包括SlWRKY1、SlWRKY25、SlWRKY31、SlWRKY32、SlWRKY74 [40]。最近,Ahammed 等研究發(fā)現(xiàn)SlWRKY81能減少脯氨酸合成并降低番茄對干旱的耐受性[42]。最近,該團隊又發(fā)現(xiàn)SlWRKY81的表達量在干旱條件下上調(diào),SlWRKY81沉默后,番茄氣孔在干旱脅迫下閉合加快,且干旱引起的損傷明顯減輕[41]。另外,過表達SlWRKY8能加快氣孔閉合,促進脅迫響應(yīng)基因SlAREB、SlDREB2A、SlRD29的表達,增加脯氨酸的積累,減少H2O2和MDA(malondialdehyde,丙二醛)的積累,從而提升番茄的抗旱性[43]。
3.8?HD-Zip轉(zhuǎn)錄因子
HD-Zip家族是植物特有的轉(zhuǎn)錄因子,番茄基因組共含有51個HD-Zip轉(zhuǎn)錄因子(SlHZ01~SlHZ51),根據(jù)外顯子、內(nèi)含子以及蛋白的結(jié)構(gòu)特征被分為HD-Zip Ⅰ~Ⅳ 4個亞家族[16]。其中 HD-ZipⅠ 和Ⅱ亞家族的轉(zhuǎn)錄因子通常參與將外界環(huán)境信號傳導至植物體內(nèi),是調(diào)節(jié)植物生長發(fā)育以適應(yīng)環(huán)境脅迫的重要因子[57]。例如,Ebrahimian-Motlagh等研究指出超表達擬南芥HD-ZipⅠ轉(zhuǎn)錄因子AtHB13能顯著提高幼苗的抗旱性,且超表達株系能維持正常生長發(fā)育[58]。Zhao等在蘋果(Malus domestica)中的研究顯示,HD-ZipⅠ轉(zhuǎn)錄因子MdHB7能增強轉(zhuǎn)基因蘋果植株的抗旱性,且轉(zhuǎn)基因蘋果植物能正常生長[24]。超表達桉樹(Eucalyptus camaldulensis) HD-Zip Ⅱ轉(zhuǎn)錄因子EcHB1能顯著提高桉樹的抗旱性,且超表達株系的株高相較于野生型顯著提高[59]。Hu等研究報道了番茄HD-Zip轉(zhuǎn)錄因子在干旱脅迫響應(yīng)中的功能,研究結(jié)果顯示HD-ZipⅠ轉(zhuǎn)錄因子SlHB2的表達受ABA和干旱處理誘導,SlHB2-RNAi沉默轉(zhuǎn)基因株系在干旱條件下失水率和MDA含量明顯低于野生型,具有更強的抗旱力[44]。
3.9?其他家族轉(zhuǎn)錄因子
除了上述主要的轉(zhuǎn)錄因子家族外,還有其他家族的轉(zhuǎn)錄因子也參與了調(diào)節(jié)番茄干旱脅迫響應(yīng)和抗旱的性轉(zhuǎn)錄因子。例如Filichikin等發(fā)現(xiàn)干旱處理能誘導一些NF-Y和SPL家族轉(zhuǎn)錄因子的表達[60]。Li 等研究SR/CAMTA家族轉(zhuǎn)錄因子時發(fā)現(xiàn),沉默SlSR1表達的轉(zhuǎn)基因番茄對干旱脅迫的耐受性降低,且參與干旱響應(yīng)的基因表達量降低,說明SlSR1正向調(diào)節(jié)番茄抗旱性[61] 。植物特有的LBD(lateral organ boundaries domain)轉(zhuǎn)錄因子家族成員SlLBD40被敲除后番茄抗旱性顯著提高[62]。與野生型相比,超表達 MADS-box轉(zhuǎn)錄因子SlMBP22的轉(zhuǎn)基因番茄抗旱力增強,且葉綠素、可溶性糖和淀粉含量更高,此外干旱處理能顯著誘導其表達量[63]。番茄SlNPR1(nonexpressor of pathogenesis-related gene 1)編碼的蛋白能夠激活下游基因表達,其功能缺失突變體對干旱脅迫的耐受力明顯弱于野生型[64]。過表達GATA家族的轉(zhuǎn)錄因子SlGATA17能通過增強抗氧化酶活性和脯氨酸合成來提升番茄的抗旱性[65]。
有研究顯示番茄ZF-HDs(zinc finger-homeodomain proteins) 家族轉(zhuǎn)錄因子SlZH13在葉片中的表達量受干旱處理顯著誘導,利用VIGS (virus-induced gene silencing) 技術(shù)沉默SlZH13導致番茄抗旱性顯著降低。此外,干旱處理后SlZH13沉默株系中抗氧化酶的活性和脯氨酸含量比對照植物低,積累更多的ROS和MDA[66]。GRAS家族轉(zhuǎn)錄因子SlGRAS4是干旱脅迫響應(yīng)基因,RNAi沉默SlGRAS4的株系相比野生型對干旱脅迫更敏感,而過表達株系對干旱脅迫有更高的耐受性。SlGRAS4影響了番茄體內(nèi)ROS的積累、ROS清除基因的表達和ABA信號通路[67]。
4?展望
番茄抗旱性是由多基因控制的復(fù)雜性狀,受環(huán)境影響大。盡管目前已經(jīng)有一些途徑能夠改善番茄的抗旱性,但抗旱性狀的遺傳和生理復(fù)雜程度高,使得提高抗旱性和培育抗旱品種的工作進展緩慢。干旱脅迫危害番茄的生長發(fā)育,并觸發(fā)干旱脅迫響應(yīng)信號通路,同時能誘導或抑制響應(yīng)干旱的轉(zhuǎn)錄因子的表達;相關(guān)轉(zhuǎn)錄因子通過轉(zhuǎn)錄級聯(lián)效應(yīng)同時調(diào)控干旱響應(yīng)通路上的多個基因來調(diào)節(jié)番茄的抗旱性,它們的調(diào)控網(wǎng)絡(luò)涉及對抗氧化系統(tǒng)、脫落酸信號途徑、代謝活動等的調(diào)控;而這些信號通路對轉(zhuǎn)錄因子的表達又能起到反饋調(diào)節(jié)的作用(圖1)。通過合理改造這些調(diào)節(jié)番茄干旱脅迫響應(yīng)的轉(zhuǎn)錄因子能有效運用于番茄抗旱育種。
轉(zhuǎn)錄因子是調(diào)節(jié)植物生長發(fā)育與抗逆性之間平衡的閥門,通常生長發(fā)育性狀優(yōu)良的材料抗逆性不夠,而抗逆性強的材料生長發(fā)育有缺陷,這提升了育種中將品質(zhì)和產(chǎn)量相關(guān)的優(yōu)良性狀與抗逆性聚合的難度。例如有些轉(zhuǎn)錄因子雖然能提高番茄的抗旱性,但同時也影響了番茄正常的生長發(fā)育。Nir 等研究發(fā)現(xiàn)番茄GRAS家族的轉(zhuǎn)錄因子PROCERA(PRO),能通過提高保衛(wèi)細胞對ABA的敏感性來促進氣孔關(guān)閉,從而提高番茄抗旱性。組成型過表達PRO的轉(zhuǎn)基因番茄抗旱性得到顯著提升,但植株表現(xiàn)出嚴重矮化[17]。另外,Jian等發(fā)現(xiàn)過表達NAC家族轉(zhuǎn)錄因子SlNAC6能促進ABA通路相關(guān)基因表達、加快氣孔閉合從而顯著提升番茄的抗旱性,但同時也導致了番茄果實早熟[31]。因此,組成型過表達這些抗旱轉(zhuǎn)錄因子在培育抗旱番茄品種中不可取。Nir等還發(fā)現(xiàn)當利用KST1啟動子驅(qū)動PRO在保衛(wèi)細胞中特異性過表達時,轉(zhuǎn)基因番茄的抗旱性得到顯著提升,且能維持正常生長發(fā)育[17]。除了在特定的組織細胞中改良抗旱基因的表達提升番茄的抗旱性以外,通過調(diào)整抗旱基因在特定生長條件下的表達模式,如當植株受到干旱脅迫時,也能有效提升番茄對干旱的耐受力。RD29A是受干旱強誘導的基因,利用RD29A啟動子驅(qū)動NAC轉(zhuǎn)錄因子AtJUB1表達,能有效解決組成型過表達造成擬南芥生長缺陷的問題,并能顯著提升轉(zhuǎn)基因材料的抗旱能力[58]。類似方法利用RD29A啟動子的研究在番茄中也有報道,例如RD29A啟動子驅(qū)動AtDREB1A/CBF3在番茄中過表達能增強轉(zhuǎn)基因番茄材料的的抗旱性、提升抗氧化酶活性和ABA累積量、降低ROS水平[68]。
此外,隨著CRISPR-Cas9基因編輯技術(shù)的優(yōu)化和發(fā)展,該技術(shù)在特定的組織中編輯基因的應(yīng)用越來越廣泛[69]。例如Lei等建立了在棉花花粉中特異性發(fā)揮作用的CRISPR-Cas9基因編輯技術(shù)體系[70]。利用在番茄果實中特性表達的基因PPC2的啟動子驅(qū)動Cas9的表達,實現(xiàn)了特異性在番茄果實中沉默靶基因表達的目的[71]。
綜上所述,通過遺傳改造抗旱轉(zhuǎn)錄因子來提升番茄抗旱性需要提升特異性。即在特定的組織或細胞中,或在特定的生育期或生長環(huán)境中編輯目標抗旱基因,從時空表達2個方向更精準地調(diào)整抗旱基因的表達來實現(xiàn)抗旱育種的目標,同時也更有利于聚合其他高產(chǎn)和品質(zhì)性狀。
參考文獻:
[1]Sallam A,Alqudah A M,Dawood M F A,et al. Drought stress tolerance in wheat and barley:advances in physiology,breeding and genetics research [J]. International Journal of Molecular Sciences,2019,20(13):3137-3163.
[2]Gupta A,Rico-Medina A,Cao-Delgado A I. The physiology of plant responses to drought [J]. Science,2020,368(6488):266-269.
[3]Chun H C,Lee S,Choi Y D,et al. Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean [J]. Journal of Integrative Agriculture,2021,20(10):2639-2651.
[4]Takahashi F,Kuromori T,Urano K,et al. Drought stress responses and resistance in plants:from cellular responses to long-distance intercellular communication [J]. Frontiers in Plant Science,2020,11:556972.
[5]Zhou R,Yu X,Ottosen C O,et al. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress [J]. BMC Plant Biology,2017,17(1):24.
[6]Xu Z,Zhou G,Shimizu H. Plant responses to drought and rewatering [J]. Plant Signaling & Behavior,2010,5(6):649-654.
[7]Basu S,Ramegowda V,Kumar A,et al. Plant adaptation to drought stress [J]. F1000Research,2016,5:1554.
[8]Dubois M,van den Broeck L,Inzé D. The pivotal role of ethylene in plant growth [J]. Trends in Plant Science,2018,23(4):311-323.
[9]Fàbregas N,Lozano-Elena F,Blasco-Escámez D,et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth [J]. Nature Communications,2018,9(1):4680.
[10]Yu W,Zhao R,Wang L,et al. ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants [J]. Planta,2019,250(2):643-655.
[11]Shohat H,Eliaz Ni,Weiss D. Gibberellin in tomato:metabolism,signaling and role in drought responses [J]. Molecular Horticulture,2021,1:15.
[12]Roca Paixo J F,Gillet F X,Ribeiro T P,et al. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyl transferase [J]. Scientific Reports,2019,9(1):8080.
[13]Zhang J,Jia W,Yang J,et al. Role of ABA in integrating plant responses to drought and salt stresses[J]. Field Crops Research,2006,97(1):111-119.
[14]Jin J,Zhang H,Kong L,et al. PlantTFDB 3.0:a portal for the functional and evolutionary study of plant transcription factors [J]. Nucleic Acids Research,2014,42(D1):D1182-D1187.
[15]Joshi R,Wani Sh,Singh B,et al. Transcription factors and plants response to drought stress:current understanding and future directions [J]. Frontiers in Plant Science,2016,7:1029.
[16]Zhang J,Wu J,Guo M,et al. Genome-wide characterization and expression profiling of Eucalyptus grandis HD-Zip gene family in response to salt and temperature stress [J]. BMC Plant Biology,2020,20(1):451.
[17]Nir I,Shohat H,Panizel I,et al. The tomato DELLA protein procera acts in guard cells to promote stomatal closure [J]. The Plant Cell,2017,29(12):3186-3197.
[18]Thirumalaikumar V P,Devkar V,Mehterov N,et al. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato [J]. Plant Biotechnol J,2018,16(2):354-366.
[19]Jin J,Tian F,Yang D C,et al. PlantTFDB 4.0:toward a central hub for transcription factors and regulatory interactions in plants [J]. Nucleic Acids Research,2017,45(D1):D1040-D1045.
[20]Tian F,Yang D C,Meng Y Q,et al. PlantRegMap:charting functional regulatory maps in plants [J]. Nucleic Acids Research,2020,48(D1):D1104-D1113.
[21]Orellana S,Yaez M,Espinoza A,et al. The transcription factor SlAREB1 confers drought,salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato [J]. Plant,Cell & Environment,2010,33(12):2191-2208.
[22]Luo L,Xia H,Lu B R. Editorial:crop breeding for drought resistance [J]. Frontiers in Plant Science,2019,10:314.
[23]Bian Z,Wang Y,Zhang X,et al. A transcriptome analysis revealing the new insight of green light on tomato plant growth and drought stress tolerance [J]. Frontiers in Plant Science,2021,12:649283.
[24]Zhao S,Gao H,Jia X,et al. The HD-Zip I transcription factor MdHB-7 regulates drought tolerance in transgenic apple (Malus domestica) [J]. Environmental and Experimental Botany,2020,180:104246.
[25]Gong P,Zhang J,Li H,et al. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction,and biochemical pathways in tomato [J]. Journal of Experimental Botany,2010,61(13):3563-3575.
[26]Cui J,Jiang N,Zhou X,et al. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress [J]. Planta,2018,248(6):1487-1503.
[27]Chen Y,Li L,Tang B,et al. Silencing of SlMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato [J]. Plant Sci,2022,316:111166.
[28]Wang J,Zheng C,Shao X,et al. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato [J]. Horticulture Research,2020,7(1):209.
[29]van Beek C R,Guzha T,Kopana N,et al. The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants [J]. Physiology and Molecular Biology of Plants,2021,27(5):907-921.
[30]Zhu M,Chen G,Zhang J,et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum) [J]. Plant Cell Reports,2014,33(11):1851-1863.
[31]Jian W,Zheng Y,Yu T,et al. SlNAC6,A NAC transcription factor,is involved in drought stress response and reproductive process in tomato [J]. Journal of Plant Physiology,2021,264:153483.
[32]Wang G,Zhang S,Ma X,et al. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses [J]. Physiologia Plantarum,2016,158(1):45-64.
[33]Zhu M,Meng X,Cai J,et al. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato [J]. BMC Plant Biology,2018,18(1):83.
[34]Pan Y,Hu X,Li C,et al. SlbZIP38,a tomato bzip family gene downregulated by abscisic acid,is a negative regulator of drought and salt stress tolerance [J]. Genes (Basel),2017,8(12):402.
[35]Quan R,Hu S,Zhang Z,et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance [J]. Plant Biotechnology Journal,2010,8(4):476-488.
[36]Zhang Z,Li F,Li D,et al. Expression of ethylene response factor JERF1 in rice improves tolerance to drought [J]. Planta,2010,232(3):765-774.
[37]Pan Y,Seymour G B,Lu C,et al. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato [J]. Plant Cell Reports,2012,31(2):349-360.
[38]Li Z,Tian Y,Xu J,et al. A tomato ERF transcription factor,SlERF84,confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000 [J]. Plant Physiology and Biochemistry,2018,132:683-695.
[39]Wang Y,Xia D,Li W,et al. Overexpression of a tomato AP2/ERF transcription factor SlERF.B1 increases sensitivity to salt and drought stresses [J]. Scientia Horticulturae,2022,304:111332.
[40]Huang S,Gao Y,Liu J,et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum[J]. Mol Genet Genomics,2012,287(6):495-513.
[41]Ahammed G J,Li X,Mao Q,et al. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought [J]. Physiologia Plantarum,2021,172(2):885-895.
[42]Ahammed G J,Li X,Wan H,et al. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato [J]. Scientia Horticulturae,2020,270:109444.
[43]Gao Y F,Liu J K,Yang F M,et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum [J]. Physiologia Plantarum,2020,168(1):98-117.
[44]Hu J,Chen G,Yin W,et al. Silencing of SlHB2 improves drought,salt stress tolerance,and induces stress-related gene expression in tomato [J]. Journal of Plant Growth Regulation,2017,36(3):578-589.
[45]Sun X,Wang Y,Sui N. Transcriptional regulation of bHLH during plant response to stress [J]. Biochemical and Biophysical Research Communications,2018,503(2):397-401.
[46]Li C,Yan C,Sun Q,et al. The bHLH transcription factor AhbHLH112 improves the drought tolerance of peanut [J]. BMC Plant Biology,2021,21(1):540.
[47]Li Z,Liu C,Zhang Y,et al. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis [J]. Journal of Experimental Botany,2019,70(19):5471-5486.
[48]Wang J,Hu Z,Zhao T,et al. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum) [J]. BMC Genomics,2015,16(1):39.
[49]Li Z,Peng R,Tian Y,et al. Genome-wide identification and analysis of the MYB transcription factor superfamily in Solanum lycopersicum[J]. Plant & Cell Physiology,2016,57(8):1657-1677.
[50]Baldoni E,Genga A,Cominelli E. Plant MYB transcription factors:Their role in drought response mechanisms [J]. International Journal of Molecular Sciences,2015,16(7):15811-15851.
[51]Li X,Wang Q,Guo C,et al. NtNAC053,A novel NAC transcription factor,confers drought and salt tolerances in tobacco [J]. Frontiers in Plant Science,2022,13:817106.
[52]Li D,F(xiàn)u F,Zhang H,et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.) [J]. BMC Genomics,2015,16:771.
[53]Yang S,Xu K,Chen S,et al. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice [J]. BMC Plant Biology,2019,19(1):260.
[54]Liang C,Meng Z,Meng Z,et al. GhABF2,a bZIP transcription factor,confers drought and salinity tolerance in cotton (Gossypium hirsutum L.) [J]. Scientific Reports,2016,6:35040.
[55]Yang H,Sun Y,Wang H,et al. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato [J]. BMC Plant Biology,2021,21(1):72.
[56]Bai Y,Sunarti S,Kissoudis C,et al. The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses [J]. Frontiers in Plant Science,2018,9.
[57]Harris Jc,Hrmova M,Lopato S,et al. Modulation of plant growth by HD-Zip class Ⅰ and Ⅱ transcription factors in response to environmental stimuli [J]. New Phytol 2011,190(4):823-837.
[58]Ebrahimian-Motlagh S,Ribone P A,Thirumalaikumar V P,et al. JUNGBRUNNEN1 confers drought tolerance downstream of the HD-ZipⅠ transcription factor AtHB13 [J]. Frontiers in Plant Science,2017,8:2118.
[59]Sasaki K,Ida Y,Kitajima S,et al. Overexpressing the HD-Zip class Ⅱ transcription factor EcHB1 from Eucalyptus camaldulensis increased the leaf photosynthesis and drought tolerance of Eucalyptus [J]. Scientific Reports,2019,9(1):14121.
[60]Filichkin S A,Ansariola M,F(xiàn)raser V N,et al. Identification of transcription factors from NF-Y,NAC,and SPL families responding to osmotic stress in multiple tomato varieties [J]. Plant Science,2018,274:441-450.
[61]Li X,Huang L,Zhang Y,et al. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance [J]. BMC Plant Biology,2014,14(1):286.
[62]Liu L,Zhang J,Xu J,et al. CRISPR/Cas9 targeted mutagenesis of SlLBD40,a lateral organ boundaries domain transcription factor,enhances drought tolerance in tomato [J]. Plant Science,2020,301:110683.
[63]Li F,Chen X,Zhou S,et al. Overexpression of SlMBP22 in tomato affects plant growth and enhances tolerance to drought stress [J]. Plant Science,2020,301:110672.
[64]Li R,Liu C,Zhao R,et al. CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance [J]. BMC Plant Biology,2019,19(1):38.
[65]Zhao T,Wu T,Pei T,et al. Overexpression of SlGATA17 promotes drought tolerance in transgenic tomato plants by enhancing activation of the phenylpropanoid biosynthetic pathway [J]. Frontiers in Plant Science,2021,12:634888.
[66]Zhao T,Wang Z,Bao Y,et al. Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato [J]. Journal of Integrative Agriculture,2019,18(7):1579-1586.
[67]Liu Y,Wen L,Shi Y,et al. Stress-responsive tomato gene SlGRAS4 function in drought stress and abscisic acid signaling [J]. Plant Science,2021,304:110804.
[68]Rai G K,Rai N P,Rathaur S,et al. Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants [J]. Plant Physiology and Biochemistry,2013,69:90-100.
[69]Koreman G T,Xu Y,Hu Q,et al. Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila[J]. Proceedings of the National Academy of Sciences,2021,118(14):e2014255118.
[70]Lei J,Dai P,Li J,et al. Tissue-Specific CRISPR/Cas9 system of cotton pollen with GhPLIMP2b and GhMYB24 promoters [J]. Journal of Plant Biology,2021,64(1):13-21.
[71]Feder A,Jensen S,Wang A,et al. Tomato fruit as a model for tissue-specific gene silencing in crop plants [J]. Horticulture Research,2020,7(1):142.