鄧志良 梁旭
摘要針對多智能體系統(tǒng)優(yōu)化問題,提出一種基于動(dòng)態(tài)事件觸發(fā)機(jī)制的分布式優(yōu)化算法.基于李雅普諾夫函數(shù)方法設(shè)計(jì)一種新型的動(dòng)態(tài)事件觸發(fā)控制器,相較于傳統(tǒng)靜態(tài)事件觸發(fā)控制方法,所提出算法可有效降低多智能體間通信負(fù)擔(dān)以及控制器計(jì)算負(fù)擔(dān).此外,利用周期采樣信息進(jìn)行事件觸發(fā)條件設(shè)計(jì),可避免智能體連續(xù)檢測事件觸發(fā)條件,并可消除Zeno現(xiàn)象.通過數(shù)值仿真驗(yàn)證了算法的有效性.
關(guān)鍵詞多智能體系統(tǒng);動(dòng)態(tài)事件觸發(fā);分布式優(yōu)化算法;李雅普諾夫函數(shù)
中圖分類號(hào)
TP273
文獻(xiàn)標(biāo)志碼
A
收稿日期
2021-12-23
資助項(xiàng)目
國家重點(diǎn)研發(fā)計(jì)劃 (2018YFC1405703);江蘇省自然科學(xué)基金(BK20200824);南京信息工程大學(xué)人才啟動(dòng)經(jīng)費(fèi)(2019r082)
作者簡介鄧志良,男,博士,教授,博士生導(dǎo)師,研究方向?yàn)橹悄茏R(shí)別與控制.dzl8188@qq.com
1 南京信息工程大學(xué) 自動(dòng)化學(xué)院,南京,210044
0 引言
多智能體系統(tǒng)作為控制行業(yè)的前沿科技,在無人機(jī)編隊(duì)[1]、微電網(wǎng)控制[2]、機(jī)器人群集[3]、無線傳感器網(wǎng)絡(luò)[4]等方面具有廣泛應(yīng)用,因此,多智能體系統(tǒng)的分布式優(yōu)化問題受到大量研究者的關(guān)注[5-6],其研究目的是為通過分布式控制方法實(shí)現(xiàn)多智能體系統(tǒng)總成本函數(shù)最小化.
文獻(xiàn)[7-8]針對等式約束以及不等式約束下的優(yōu)化問題提出了連續(xù)時(shí)間分布式優(yōu)化算法.為實(shí)現(xiàn)系統(tǒng)最優(yōu),各智能體之間需要進(jìn)行連續(xù)的信息交互,但實(shí)際系統(tǒng)中,由于網(wǎng)絡(luò)的帶寬有限,所設(shè)計(jì)算法很難滿足實(shí)際應(yīng)用.基于此,學(xué)者將事件觸發(fā)控制方法應(yīng)用于分布式優(yōu)化問題,當(dāng)智能體之間的狀態(tài)達(dá)到觸發(fā)條件時(shí),智能體之間進(jìn)行通信,反之,則不進(jìn)行通信[9].依據(jù)事件觸發(fā)條件所設(shè)計(jì)的算法可有效避免執(zhí)行過程中智能體連續(xù)通信以及控制器連續(xù)更新問題.文獻(xiàn)[10]針對通信約束下的控制問題,設(shè)計(jì)了一種簡單的事件觸發(fā)控制器,并證明所提出的調(diào)度策略可以保證半全局漸近穩(wěn)定性;文獻(xiàn)[11-12]在文獻(xiàn)[10]的基礎(chǔ)上將事件觸發(fā)機(jī)制應(yīng)用到一階系統(tǒng)的優(yōu)化問題中,解決了傳統(tǒng)周期采樣控制智能體間通信頻繁的問題,但是需要對事件觸發(fā)條件進(jìn)行連續(xù)檢測;文獻(xiàn)[13]基于事件觸發(fā)提出一種自適應(yīng)控制策略,系統(tǒng)的觸發(fā)時(shí)刻只與智能體自身的狀態(tài)和鄰居最新觸發(fā)時(shí)刻的狀態(tài)有關(guān),避免了對鄰居狀態(tài)的連續(xù)檢測;文獻(xiàn)[14]基于事件觸發(fā)設(shè)計(jì)出一種組合測量方式,使得智能體只在自身事件觸發(fā)時(shí)刻進(jìn)行控制輸入更新.由于對系統(tǒng)狀態(tài)的逼近過多,利用系統(tǒng)的先驗(yàn)信息來估計(jì)下一個(gè)事件觸發(fā)時(shí)間的自觸發(fā)控制往往會(huì)引起控制器的更新,Zeno現(xiàn)象成為一個(gè)必須要討論的問題,例如文獻(xiàn)[15]通過利用離散周期采樣序列對智能體進(jìn)行檢測,有效地避免了一階離散系統(tǒng)出現(xiàn)Zeno現(xiàn)象.上述文獻(xiàn)事件觸發(fā)條件均為靜態(tài)事件觸發(fā)條件.文獻(xiàn)[16]針對優(yōu)化問題,提出一種基于動(dòng)態(tài)事件觸發(fā)的分布式優(yōu)化算法,通過引入內(nèi)部動(dòng)態(tài)變量,設(shè)計(jì)了動(dòng)態(tài)控制器觸發(fā)條件,減少了系統(tǒng)的通信負(fù)擔(dān).但是其需要連續(xù)檢測所提出的事件觸發(fā)條件,且Zeno現(xiàn)象難以處理.
受到文獻(xiàn)[14-16]的啟發(fā),針對多智能體系統(tǒng)二次凸優(yōu)化問題,本文設(shè)計(jì)出一種基于周期采樣信息的分布式動(dòng)態(tài)事件觸發(fā)優(yōu)化算法.該算法采用周期采樣信息進(jìn)行事件觸發(fā)條件設(shè)計(jì),兩次觸發(fā)時(shí)間的最小間隔為采樣周期,可有效避免事件觸發(fā)條件的連續(xù)檢測問題以及Zeno現(xiàn)象,更符合實(shí)際系統(tǒng)運(yùn)行機(jī)制.相較于傳統(tǒng)的靜態(tài)事件觸發(fā)條件,所設(shè)計(jì)的動(dòng)態(tài)事件觸發(fā)條件觸發(fā)頻率更低,可有效降低智能體間通信頻率以及控制器更新頻率.
圖2和圖7展示了η i的收斂過程,可以看出動(dòng)態(tài)觸發(fā)條件下的結(jié)果與靜態(tài)事件觸發(fā)下的結(jié)果相同,4個(gè)智能體的成本函數(shù)最終都將穩(wěn)定在優(yōu)化值η 1=η 2=η 3=η 4=η*=19.320,仿真中的結(jié)果與利用式(6)計(jì)算得出結(jié)果相同.圖3中的點(diǎn)表示本文所設(shè)計(jì)算法對應(yīng)4個(gè)智能體的動(dòng)態(tài)事件觸發(fā)時(shí)刻,圖8描述4個(gè)智能體的靜態(tài)觸發(fā)時(shí)刻,表2給出2種觸發(fā)條件對應(yīng)的觸發(fā)次數(shù),可以看出本文給出的方法觸發(fā)頻率更低,表明本文所設(shè)計(jì)的算法可有效降低帶寬、減少通信負(fù)擔(dān).由圖4和圖9可以看出控制輸入 i(t)是分段函數(shù),智能體僅在本身及鄰居的事件觸發(fā)時(shí)刻進(jìn)行更新.圖5和圖10給出了m i(t)的收斂曲線,可以看出m 1由初始值140穩(wěn)定在99.575,m 2由初始值110穩(wěn)定在132.760,m 3由初始值100穩(wěn)定在91.055,m 4由初始值90穩(wěn)定在116.593.由圖6和圖11可以看出在趨于最優(yōu)解的過程中,系統(tǒng)實(shí)時(shí)滿足等式約束.
4 總結(jié)
本文研究了含有等式約束的二次凸優(yōu)化問題,并針對這類問題設(shè)計(jì)了一種基于動(dòng)態(tài)事件觸發(fā)控制的分布式優(yōu)化算法,該算法可以保證系統(tǒng)最終漸近收斂到最優(yōu)解.在所設(shè)計(jì)的觸發(fā)條件下,每個(gè)智能體僅需在自身觸發(fā)時(shí)刻進(jìn)行更新,不需要連續(xù)或周期性地更新控制信息,有效降低了智能體間通信頻率以及控制器更新頻率,并且通過引入周期采樣控制,使觸發(fā)時(shí)間存在下限值,避免了Zeno現(xiàn)象. Matlab仿真結(jié)果表明,與靜態(tài)觸發(fā)控制相比,所提出算法觸發(fā)次數(shù)更少.
參考文獻(xiàn)
References
[1] 朱旭,張遜遜,閆茂德,等.基于一致性的無人機(jī)編隊(duì)控制策略[J].計(jì)算機(jī)仿真,2016,33(8):30-34
ZHU Xu,ZHANG Xunxun,YAN Maode,et al.UAV formation control strategy based on consensus[J].Computer Simulation,2016,33(8):30-34
[2] 劉建剛,楊勝杰.具有容性負(fù)載的直流微電網(wǎng)系統(tǒng)分布式協(xié)同控制[J].自動(dòng)化學(xué)報(bào),2020,46(6):1283-1290
LIU Jiangang,YANG Shengjie.Distributed cooperative control of DC micro-grid systems with capacitive loads[J].Acta Automatica Sinica,2020,46(6):1283-1290
[3] 劉偉,李大衛(wèi),戴洪德,等.具有避障的機(jī)器人集群系統(tǒng)分布式編隊(duì)控制[J].機(jī)械與電子,2021,39(7):44-48
LIU Wei,LI Dawei,DAI Hongde,et al.Distributed multi-robots system formation control with obstacle avoidance[J].Machinery & Electronics,2021,39(7):44-48
[4] 涂志亮,王強(qiáng),沈毅.一種目標(biāo)監(jiān)測的移動(dòng)傳感器網(wǎng)絡(luò)覆蓋分布式優(yōu)化算法[J].控制與決策,2012,27(9):1353-1358
TU Zhiliang,WANG Qiang,SHEN Yi.A distributed coverage optimization algorithm for target monitoring in mobile sensor network[J].Control and Decision,2012,27(9):1353-1358
[5] Kia S S,Cortés J,Martínez S.Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication[J].Automatica,2015,55:254-264
[6] Xi C G,Khan U A.Distributed subgradient projection algorithm over directed graphs[J].IEEE Transactions on Automatic Control,2017,62(8):3986-3992
[7] Wen X N,Qin S T.A projection-based continuous-time algorithm for distributed optimization over multi-agent systems[J].Complex & Intelligent Systems,2021:1-11
[8] Yi P,Hong Y G,Liu F.Distributed gradient algorithm for constrained optimization with application to load sharing in power systems[J].Systems & Control Letters,2015,83:45-52
[9] 吳文,劉斌,姚靖,等.基于事件觸發(fā)網(wǎng)絡(luò)控制系統(tǒng)的分布式控制[J].湖南工業(yè)大學(xué)學(xué)報(bào),2014,28(4):61-66
WU Wen,LIU Bin,YAO Jing,et al.Event-triggered based distributed control in networked control systems[J].Journal of Hunan University of Technology,2014,28(4):61-66
[10] Tabuada P.Event-triggered real-time scheduling of stabilizing control tasks[J].IEEE Transactions on Automatic Control,2007,52(9):1680-1685
[11] Dimarogonas D V,F(xiàn)razzoli E,Johansson K H.Distributed event-triggered control for multi-agent systems[J].IEEE Transactions on Automatic Control,2012,57(5):1291-1297
[12] Liu Z X,Chen Z Q.Event-triggered average-consensus for multi-agent systems[C]//Proceedings of the 29th Chinese Control Conference(CCC10),2010:4506-4511
[13] Xie D S,Xu S Y,Zhang B Y,et al.Consensus for multi-agent systems with distributed adaptive control and an event-triggered communication strategy[J].IET Control Theory & Applications,2016,10(13):1547-1555
[14] Fan Y,F(xiàn)eng G,Wang Y,et al.Distributed event-triggered control of multi-agent systems with combinational measurements[J].Automatica,2013,49(2):671-675
[15] Li H Q,Liu S,Soh Y C,et al.Achieving linear convergence for distributed optimization with zeno-like-free event-triggered communication scheme[C]∥2017 29th Chinese Control and Decision Conference (CCDC).May 28-30,2017,Chongqing,China.IEEE,2017:6224-6229
[16] Du W,Yi X L,George J,et al.Distributed optimization with dynamic event-triggered mechanisms[C]∥2018 IEEE Conference on Decision and Control.December 17-19,2018,Miami,F(xiàn)L,USA.IEEE,2018:969-974
A distributed optimization algorithm based on
dynamic event triggered control
DENG Zhiliang1 LIANG Xu1
1
School of Automation,Nanjing University of Information Science & Technology,Nanjing 210044
Abstract
The dynamic event triggered mechanism is used to design a distributed optimization algorithm for multi-agent systems.Compared with traditional static triggered control,the dynamic event triggered controller based on Lyapunov function can effectively reduce the communication burden between agents as well as the calculation burden of controllers.In addition,the event triggering condition is designed using periodic sampling information,thus is not required to be checked repeatedly by agents.Moreover,Zeno behavior can be avoided.A numerical simulation is given to verify the effectiveness of the algorithm.
Key words multi-agent systems;dynamic event triggered;distributed optimization algorithm;Lyapunov function