熊汪,周超,劉姣,孔德文
(貴州大學(xué)土木工程學(xué)院,貴州貴陽550025)
當(dāng)前,混凝土是土木工程中應(yīng)用范圍最廣、應(yīng)用量最大的建筑材料之一,隨著社會的發(fā)展,在海洋環(huán)境中的混凝土工程逐漸增加.海洋中含有大量的可溶性鹽,其中硫酸鹽對混凝土產(chǎn)生了不可忽視的影響.
國內(nèi)外關(guān)于硫酸鹽對混凝土侵蝕產(chǎn)生的損傷與破壞的研究認(rèn)為混凝土的硫酸鹽侵蝕包括物理侵蝕和化學(xué)侵蝕[1].物理侵蝕是指在混凝土內(nèi)部孔隙的毛細(xì)作用下,混凝土表面承載硫酸鹽離子的水分進(jìn)入混凝土內(nèi)部并在其中發(fā)生蒸發(fā)、濃縮和結(jié)晶作用,致使混凝土體積增大,在混凝土內(nèi)部產(chǎn)生不可忽視的膨脹應(yīng)力;而化學(xué)侵蝕主要分為軟化、無黏結(jié)性和體積膨脹,其中體積膨脹對混凝土的影響極其明顯.諸多研究表明[2-3],硫酸鹽化學(xué)侵蝕反應(yīng)生成的鈣礬石是影響混凝土體積膨脹以至性能劣化的主要原因.硫酸鹽侵蝕混凝土的劣化過程主要分為離子傳輸、化學(xué)反應(yīng)、產(chǎn)物膨脹和力學(xué)響應(yīng)[2],其中硫酸鹽在混凝土基體中發(fā)生的化學(xué)反應(yīng)十分復(fù)雜,至今仍未有統(tǒng)一的硫酸鹽環(huán)境下的混凝土膨脹機(jī)理理論.
現(xiàn)有關(guān)于硫酸鹽侵蝕混凝土的研究以微觀機(jī)理和宏觀現(xiàn)象為主[4-9],基于細(xì)觀尺度的混凝土骨料參數(shù)和邊界研究則較少.本文將基于Fick 定律對硫酸鹽在飽和混凝土中的傳輸進(jìn)行分析,通過固相體積增加理論[3]分析硫酸鹽侵入混凝土內(nèi)部后與各組分成分進(jìn)行的化學(xué)反應(yīng),構(gòu)建混凝土體積膨脹與化學(xué)反應(yīng)參與的固相物之間的關(guān)系,從而建立基于細(xì)觀組分的非均質(zhì)混凝土擴(kuò)散- 應(yīng)力耦合劣化數(shù)值模型,進(jìn)而從細(xì)觀尺度分析混凝土參數(shù)下的硫酸鹽擴(kuò)散規(guī)律和強(qiáng)度劣化機(jī)理.
硫酸鹽在混凝土中的傳輸機(jī)理包含:擴(kuò)散、對流和遷移.其中,擴(kuò)散主要受濃度梯度的作用,由高濃度向低濃度傳遞;對流存在于非飽和混凝土中,硫酸根離子隨著水分的傳輸發(fā)生定向移動.在海水環(huán)境中,硫酸根離子主要在飽和水的濃度作用下擴(kuò)散到混凝土內(nèi)部,進(jìn)而對混凝土產(chǎn)生劣化作用.
采用Fick 定律描述硫酸鹽的濃度在混凝土介質(zhì)中的傳輸機(jī)理,在各向同性的混凝土擴(kuò)散體系中的表達(dá)式為
式(1)中:C 為硫酸根離子的體積濃度;t 為擴(kuò)散的時間;x、y、z為各軸向的傳輸距離;D 為硫酸根離子的擴(kuò)散系數(shù).
在硫酸鹽的侵蝕下,混凝土內(nèi)部將再次發(fā)生化學(xué)反應(yīng)[3]:硫酸根離子首先與混凝土中的鈣離子生成二次石膏(CH2),而石膏可作為反應(yīng)物與水化反應(yīng)生成的鋁酸鈣鹽(水化鋁酸鈣 C4A H13、水化硫鋁酸鈣、未水化的鋁酸三鈣C3A)再次反應(yīng),于是在侵蝕后的混凝土內(nèi)部將存在體積大于原物質(zhì)的、不具有膠結(jié)性能的侵蝕產(chǎn)物鈣礬石和石膏等.硫酸鹽侵蝕下的化學(xué)反應(yīng)式[10]可簡化為式(2)
硫酸鹽侵蝕混凝土首先將會和氫氧化鈣發(fā)生反應(yīng)生成石膏,氫氧化鈣等反應(yīng)物的消耗將造成混凝土基體中產(chǎn)生孔隙,而生成的石膏則將繼續(xù)與水化產(chǎn)物反應(yīng)生成膨脹性的產(chǎn)物鈣礬石.混凝土內(nèi)部在侵蝕硫酸鹽侵蝕下將增加孔隙率,同時膨脹性產(chǎn)物的積累將擠壓孔隙壁,對混凝土內(nèi)部產(chǎn)生膨脹應(yīng)力,混凝土內(nèi)部的體積膨脹應(yīng)變[2]可表示為
式(3)中:εv為混凝土體應(yīng)變;?VP、?VH分別為硫酸鹽侵蝕混凝土過程中的體積膨脹和孔隙增加量;?VH為混凝土初始孔隙體積;V為混凝土體積.
混凝土材料為各向同性材料,則可推導(dǎo)線應(yīng)變ε為
化學(xué)反應(yīng)式產(chǎn)生的體積變化量可參考文獻(xiàn)[7]中提供的數(shù)據(jù),見表1.
表1 硫酸鹽侵蝕混凝土化學(xué)反應(yīng)的體積變化Tab.1 Volume change of chemical reaction of sulfate eroded concrete
在混凝土試件中,骨料在砂漿基體中呈現(xiàn)三維隨機(jī)分布,但是對于現(xiàn)有計算機(jī)的算力,耦合模型具有極強(qiáng)的非線性,求解難度較大,因此需要將三維細(xì)觀模型簡化為二維細(xì)觀模型.
瓦拉文[11]建立了混凝土中骨料級配與內(nèi)部截面切割的骨料面積之間的關(guān)系,為三維細(xì)觀模型到二維細(xì)觀模型的簡化提供了理論基礎(chǔ).在圓形骨料模型的基礎(chǔ)上,骨料級配滿足富勒級配曲線[12],即在混凝土內(nèi)任意一點的小于半徑為Dx的骨料內(nèi)的概率為
式(6)中:為骨料粒徑D<時的概率;D為篩選的骨料粒徑.
細(xì)觀模型中的骨料投放遵循蒙特-卡羅隨機(jī)取樣方法[13],采用Python 中內(nèi)置的Random 模塊搭配Range 模塊生成滿足瓦拉文骨料粒徑的隨機(jī)數(shù), 再通過隨機(jī)數(shù)在混凝土基體中選擇骨料的投放位置,此后隨機(jī)生成的骨料在遍歷已有骨料數(shù)據(jù)進(jìn)行接觸判斷后,即可進(jìn)行投放,建立隨機(jī)骨料的部分代碼見式(7).混凝土試件采用100 mm×100 mm 的二維模型,設(shè)置混凝土強(qiáng)度為C40.骨料粒徑在模型分析部分給出,隨機(jī)生成的細(xì)觀模型見圖1.
圖1 隨機(jī)骨料幾何細(xì)觀模型Fig.1 Geometric meso-model of random aggregate
2.2.1 砂漿和界面層 損傷塑性模型可考慮砂漿在單軸受壓和單軸受拉狀態(tài)下的裂紋的拓展和演化等力學(xué)響應(yīng),因此選用Abaqus 有限元軟件中內(nèi)置的混凝土損傷塑性模型對本章節(jié)的細(xì)觀混凝土的拉壓性能進(jìn)行模擬.
《混凝土結(jié)構(gòu)設(shè)計規(guī)范》(GB 50010-2010)中提出的混凝土塑性損傷模型本構(gòu)曲線,采用不同的拉壓屈服強(qiáng)度表征混凝土在損傷后引起的強(qiáng)度退化,而材料的屈服強(qiáng)度則采用拉伸和壓縮等效塑性應(yīng)變控制.在受壓過程中,混凝土將先經(jīng)歷硬化后軟化,而拉伸屈服則直接以材料的軟化來表征.混凝土塑性損傷模型在單軸受壓下的應(yīng)力- 應(yīng)變關(guān)系式為
式(8)中:σ為混凝土應(yīng)力/MPa;ε為混凝土應(yīng)變;為砂漿彈性模量/MPa;dc為砂漿單軸受壓損傷演化參數(shù);ac為砂漿單軸受壓應(yīng)力-應(yīng)變曲線下降段參數(shù)值;fc,r為砂漿單軸抗壓強(qiáng)度代表值/MPa;εc,r為與單軸抗壓強(qiáng)度相應(yīng)的砂漿峰值壓應(yīng)變.
在單軸受拉下的應(yīng)力-應(yīng)變關(guān)系式為
式(9)中:dt為砂漿單軸受拉損傷演化參數(shù);at為 砂漿單軸受拉應(yīng)力- 應(yīng)變曲線下降段的參數(shù)值;為砂漿的單軸抗拉強(qiáng)度代表值/MPa;εt,r為與單軸抗拉強(qiáng)度代表值f相應(yīng)的砂漿峰值拉應(yīng)變.
研究表明[13],在砂漿和骨料之間存在著一層薄弱的界面過渡區(qū)(Interfacial Transition Zone,ITZ),其厚度通常在100~200 μm,相比于砂漿,ITZ 的孔隙率更高,可以看作為一種薄弱多孔的弱化砂漿[14],力學(xué)性能與砂漿相似,硫酸根離子在其中的擴(kuò)散的系數(shù)更高,更容易形成石膏和鈣礬石.在模型中使用削弱的砂漿表征其受壓和受拉狀態(tài)下的力學(xué)響應(yīng)狀態(tài).
2.2.2 骨料 本文中混凝土材料采用玄武巖碎石,彈性模量通常在40~100 GPa,其抗壓強(qiáng)度遠(yuǎn)大于混凝土的抗壓強(qiáng)度,所以在模型中采用線彈性模型描述粗骨料在受拉受壓狀態(tài)下的力學(xué)性能,參考同類研究模型[15],設(shè)置彈性模量為70 GPa.
2.2.3 侵蝕膨脹Abaqus 中尚未內(nèi)置流體擴(kuò)散- 應(yīng)力的耦合分析模塊,采用溫度- 位移耦合模塊進(jìn)行離子在混凝土中的等效擴(kuò)散分析:由基于溫度模塊的混凝土基體熱膨脹應(yīng)變,等效表達(dá)侵蝕離子在基體中產(chǎn)生的化學(xué)膨脹應(yīng)變,以達(dá)到侵蝕離子的擴(kuò)散- 應(yīng)力耦合.
物體的膨脹由溫度引起,膨脹產(chǎn)生的應(yīng)變在一維方向上的表達(dá)式為
若單元在膨脹方向上受到完全約束,則總膨脹應(yīng)變?yōu)榱?產(chǎn)生的膨脹應(yīng)力為
式(11)中:E為材料的彈性模量; 為材料熱膨脹系數(shù); ?θ為溫度變化量.
硫酸鹽侵蝕膨脹下的混凝土膨脹及外荷載作用下的多物理場模型在數(shù)值解析中具有極強(qiáng)的非線性,需將不同物理場下的模型拆分,采用耦合計算方法進(jìn)行數(shù)值求解.在硫酸鹽的擴(kuò)散模型中,采用瞬態(tài)求解方法及Fick 擴(kuò)散定律,計算時間效應(yīng)下的硫酸根離子擴(kuò)散現(xiàn)象.在混凝土劣化模型中,先采用熱傳遞模塊對混凝土中的細(xì)觀成分進(jìn)行完全化學(xué)侵蝕后的內(nèi)膨脹計算, 再將熱傳遞模塊計算的混凝土各組分的應(yīng)力應(yīng)變及損傷值疊加在耦合模型中, 對耦合模型施加豎向荷載以模擬混凝土在經(jīng)歷劣化后的細(xì)觀受壓過程.模型中部分參數(shù)見表2.
表2 模型中部分參數(shù)Tab.2 Some parameters in the model
擴(kuò)散模型采用質(zhì)量擴(kuò)散模塊,網(wǎng)格選用DC2D8 單元;力學(xué)劣化模型選用采用溫度- 位移耦合模塊,網(wǎng)格單元采用二次平面四邊形單元CPE8RT 減縮單元,既可以保持較高的計算精度,又可適當(dāng)減少計算時間.網(wǎng)格劃分效果如圖2.
圖2 網(wǎng)格劃分Fig.2 Mesh division
硫酸鹽在濃度梯度的作用下擴(kuò)散進(jìn)入基體內(nèi)部,其擴(kuò)散過程受到細(xì)觀組分的影響[18],侵蝕離子與混凝土基體二次反應(yīng)生成的膨脹性產(chǎn)物將對孔壁產(chǎn)生膨脹應(yīng)力,進(jìn)而衰減混凝土的內(nèi)部結(jié)構(gòu)穩(wěn)定性,從而在宏觀混凝土的性能上表現(xiàn)出力學(xué)劣化現(xiàn)象.
本章節(jié)將基于前文中對硫酸鹽傳輸機(jī)理、膨脹原理和劣化模型進(jìn)行參數(shù)化分析,探究硫酸鹽在骨料級配、骨料粒徑、離子濃度和侵蝕邊界等參數(shù)下的擴(kuò)散現(xiàn)象,同時分析擴(kuò)散穩(wěn)定后的混凝土劣化規(guī)律,硫酸鹽擴(kuò)散分析見圖3.
圖3 硫酸鹽在混凝土中的擴(kuò)散Fig.3 Diffusion of sulfate in concrete
在硫酸鹽的擴(kuò)散模型中,分別進(jìn)行小石(4.75 mm~10.00 mm)和大石(10.00 mm~20.00 mm)按照1∶9、3∶7 和5∶5 比例的擴(kuò)散數(shù)值分析,選取的擴(kuò)散時間為7 d、28 d、60 d、180 d 和360 d,數(shù)值計算結(jié)果如圖3-a.
由圖4 可分析,硫酸根離子在不同級配的混凝土中擴(kuò)散深度接近,說明粗骨料的級配比例對離子擴(kuò)散的影響不大.三種粗骨料級配比例下,7 d 時的平均擴(kuò)散深度為6.7 mm,28 d 的平均擴(kuò)散深度為14.6 mm,60 d 的平均擴(kuò)散深度為22.3 mm,180 d 的平均擴(kuò)散深度為34.8 mm,360 d 的平均擴(kuò)散深度為49.2 mm,可以發(fā)現(xiàn)擴(kuò)散深度隨著時間的增長而減緩,反映出硫酸鹽在混凝土中的擴(kuò)散速率隨時間變緩.
圖4 不同級配混凝土劣化強(qiáng)度Fig.4 Deterioration strength of concrete with different gradation
圖4 為不同粗骨料級配的混凝土在硫酸鹽侵蝕前后的抗壓強(qiáng)度值, 隨著骨料級配的增大強(qiáng)度值降低,在硫酸鹽侵蝕致孔隙膨脹后,各級配的混凝土強(qiáng)度均出現(xiàn)了降低現(xiàn)象.
對比經(jīng)硫酸鹽侵蝕前后的受壓試驗細(xì)觀模型(圖5,級配為1∶9),硫酸鹽侵蝕引起細(xì)觀組分中砂漿和界面區(qū)的膨脹,導(dǎo)致細(xì)觀模型在施加抗壓荷載前基體內(nèi)已產(chǎn)生了預(yù)應(yīng)力和初始損傷.在抗壓試驗中,經(jīng)侵蝕的混凝土在已有損傷累積的基礎(chǔ)上繼續(xù)承壓,加劇了混凝土的破壞.
圖5 侵蝕破壞細(xì)觀對比Fig.5 Mesoscale contrast of erosion damage
分別建立粒徑為4.75 mm、10.00 mm 和20.00 mm 的單粒徑粗骨料混凝土擴(kuò)散模型,進(jìn)行7 d、28 d、60 d、180 d 和360 d 的時變擴(kuò)散分析如圖3-b.可以發(fā)現(xiàn),三種粗骨料粒徑的混凝土在相同侵蝕時間上的離子最大擴(kuò)散深度十分接近, 但是相同擴(kuò)散時間和深度下的硫酸鹽濃度在擴(kuò)散前期隨粗骨料粒徑的增加而增加,在擴(kuò)散后期則隨之降低.這是由于前期的擴(kuò)散介質(zhì)主要為砂漿,骨料充當(dāng)著阻礙的作用,大粒徑骨料在混凝土表面的數(shù)量更少;而在擴(kuò)散后期,相同骨料率下的混凝土,小粒徑的骨料將引入更多的多孔隙的混凝土界面過渡區(qū),加速了擴(kuò)散速度,同時因為骨料粒徑小,侵蝕離子很容易通過界面區(qū)的擴(kuò)散繞過骨料,進(jìn)入后續(xù)的擴(kuò)散;粗骨料混凝土因為骨料粒徑過大,硫酸鹽需要“繞過”的界面區(qū)路徑越長,因此容易造成硫酸鹽在骨料前的“累積”現(xiàn)象.由圖6 分析,隨著粒徑的增加,混凝土的抗壓強(qiáng)度隨著骨料粒徑的增加,經(jīng)侵蝕后的混凝土強(qiáng)度總體降低,但仍呈上升趨勢.
圖6 不同粒徑混凝土劣化強(qiáng)度Fig.6 Deteriorationstrengthofconcretewithdifferentparticlesize
建立不同邊界濃度(5 mol/L、10 mol/L、20 mol/L)的混凝土進(jìn)行時變擴(kuò)散的數(shù)值模型如圖3c,可發(fā)現(xiàn),侵蝕邊界的硫酸鹽濃度越高,硫酸鹽在混凝土內(nèi)的擴(kuò)散深度越大,且同深度的離子濃度越高.圖7 為三種濃度下的混凝土試件中心位置所獲取的硫酸鹽濃度曲線,可發(fā)現(xiàn)60 d 以前,三種濃度的試件中心濃度均很小,而在100 d 以后的濃度增長則十分迅速,反映了骨料對硫酸鹽傳輸?shù)淖璧K,造成骨料前累積.360 d時的5 mol/L、10 mol/L 和20 mol/L 邊界濃度的試件中心濃度分別為0.58 mol/L、1.17 mol/L、2.33 mol/L,與邊界初始濃度之間的數(shù)量關(guān)系類似,說明邊界初始離子濃度與硫酸鹽的擴(kuò)散速率呈正線性相關(guān).
圖7 不同侵蝕濃度下的試件中心點時間-濃度曲線Fig.7 Center-point time-concentration curve of specimen under different erosion concentration
在實際環(huán)境中的混凝土受到的條件往往比模型更為復(fù)雜,分別建立單邊侵蝕、兩邊侵蝕和四邊侵蝕(濃度均為10 mol/L)的混凝土擴(kuò)散模型如圖3-d,同時分別測量三個試件中心點的離子濃度(圖8).由圖8 可知,在三種邊界條件的硫酸鹽侵蝕下,增加邊界條件可明顯增強(qiáng)離子的擴(kuò)散速度和深度;試件中心的離子濃度在60 d 內(nèi)均在0.01 mol/L 以下,而在60 d 后,試件中心的離子濃度呈指數(shù)型增長,且濃度增加速率隨侵蝕邊界的增加而劇烈增加.在360 d 時,四邊侵蝕的試件中心離子濃度為3.21 mol/L,兩邊侵蝕的試件中心離子濃度為1.72 mol/L,單邊侵蝕的離子濃度為1.17 mol/L,反映出侵蝕邊界可加強(qiáng)離子的擴(kuò)散,三種侵蝕邊界的離子濃度增長速率無明顯規(guī)律,反映了細(xì)觀模型在離子擴(kuò)散模擬中能考慮到非均質(zhì)材料組分的真實與復(fù)雜性.
圖8 不同侵蝕邊界下的試件中心點時間-濃度曲線Fig.8 Time-concentration curve of specimen center under different erosion boundary
(1)在擴(kuò)散模型中,硫酸根離子的傳輸速度受骨料級配的影響程度不大,而隨著骨料粒徑的增加而逐漸降低,隨著離子濃度和侵蝕邊界的增加而增大;在60 d 前,離子的擴(kuò)散較為穩(wěn)定,擴(kuò)散深度隨時間發(fā)展呈線性增加,而在60 d 后,離子的擴(kuò)散速率降低,擴(kuò)散速率隨時間發(fā)展逐漸減緩.
(2)以試件中心點為測量點,在離子侵蝕前60 d 內(nèi),離子的濃度極低,而在60 d 后,累積的離子繞過骨料,測量點的濃度呈指數(shù)增長,反映了骨料對離子傳輸?shù)淖璧K作用.
(3)在細(xì)觀劣化模型中,混凝土的28 d 強(qiáng)度隨著級配比例的增加而降低,隨骨料粒徑的增加而增加;經(jīng)硫酸鹽侵蝕后的混凝土累積的初始應(yīng)力與損傷,加劇了混凝土的受壓破壞;劣化前后的骨料參數(shù)對混凝土強(qiáng)度影響規(guī)律相同.