• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      CRISPR/Cas基因編輯系統(tǒng)在水稻中的研究進(jìn)展

      2023-07-10 05:56:14劉建菊肖寧吳云雨蔡躍潘存紅時(shí)薇陳梓春朱書豪李育紅余玲王志平劉廣青周長海黃年生張小祥季紅娟李愛宏
      江蘇農(nóng)業(yè)科學(xué) 2023年11期
      關(guān)鍵詞:基因編輯水稻

      劉建菊 肖寧 吳云雨 蔡躍 潘存紅 時(shí)薇 陳梓春 朱書豪 李育紅 余玲 王志平 劉廣青 周長?!↑S年生 張小祥 季紅娟  李愛宏

      摘要:基因編輯是一種能對特定基因進(jìn)行修飾的基因工程技術(shù),能快速對靶點(diǎn)基因編輯,是高效捕獲目的基因、快速研究目標(biāo)基因功能的重要手段,在基因功能研究和作物育種等方面有著重要意義和廣闊的應(yīng)用前景?;蚓庉嬂锰禺惖腄NA結(jié)合元件和切割元件開展編輯工作,然而該技術(shù)最需注意的是特異性和脫靶率問題,不同時(shí)期的基因編輯技術(shù)也針對上述2個(gè)問題進(jìn)行改良,目前應(yīng)用最為廣泛的是CRISPR/Cas9,Cas12a 由于其特異性高且脫靶率大大降低也受到越來越多的關(guān)注。本文對基因編輯的技術(shù)發(fā)展及特點(diǎn)、CRISPR/Cas9和Cas12a的技術(shù)優(yōu)勢進(jìn)行介紹,并對這2種技術(shù)在水稻產(chǎn)量、抗性及品質(zhì)中的研究進(jìn)展進(jìn)行綜述,同時(shí)對拓展CRISPR/Cas基因編輯技術(shù)在水稻中的應(yīng)用提出展望,為基因功能鑒定及遺傳改良提供參考。

      關(guān)鍵詞:基因編輯;Cas9;Cas12a;水稻;性狀改良

      中圖分類號:S511.01文獻(xiàn)標(biāo)志碼:A文章編號:1002-1302(2023)11-0001-09

      基因編輯(gene editing)是一種能對特定基因進(jìn)行修飾的基因工程技術(shù)[1-2],該技術(shù)利用工程核酸酶切割目標(biāo)基因組產(chǎn)生DNA雙鏈斷裂(DSB),進(jìn)而激活細(xì)胞內(nèi)源性DNA修復(fù)機(jī)制從而產(chǎn)生包括插入、缺失及基因片段替換等新的基因突變類型[3-5]。

      1996年出現(xiàn)的鋅指核酸酶(ZFN)為基因編輯技術(shù)的發(fā)展奠定了基礎(chǔ)[6-7],利用該技術(shù)首次于2002年果蠅染色體上實(shí)現(xiàn)基因定點(diǎn)突變[8]。隨后轉(zhuǎn)錄激活樣效應(yīng)因子核酸酶(TALENs)[9]及由RNA介導(dǎo)的Cas9蛋白相關(guān)的成簇規(guī)則間隔短回文重復(fù)序列(CRISPR)相繼被發(fā)現(xiàn)[10-11],特別是CRISPR/Cas9于2013年開始應(yīng)用于植物基因組編輯,被Science列入2013年十大科學(xué)進(jìn)展[10]。此外,用于切割雙鏈DNA的CRISPR/Cas12a(Cpf1)[12-13]及在crRNA指導(dǎo)下切割ssRNA的CRISPR/Cas13(C2c2)[14]于2015年和2016年相繼被發(fā)現(xiàn)(圖1)。

      基因編輯利用特異的DNA結(jié)合元件和切割元件開展編輯工作,然而該技術(shù)最需注意的是特異性和脫靶率問題,基因編輯技術(shù)的更迭對這2個(gè)方面的改善也各不相同(表1)。ZFNs是第一個(gè)應(yīng)用于基因定點(diǎn)編輯的技術(shù),然而其ZFN 剪切DNA 形成同源二聚體的同時(shí),可能會產(chǎn)生異源二聚體引起脫靶且難以實(shí)現(xiàn)多靶點(diǎn)編輯等問題,嚴(yán)重阻礙了其應(yīng)用[15-16];TALENs技術(shù)是1個(gè)TALE基序識別1個(gè)堿基對,因此多個(gè)串聯(lián)的TALE基序與其識別的堿基對呈一一對應(yīng)關(guān)系,大大提高了編輯特異性并降低脫靶率,但其編輯效率較低,且難以進(jìn)行多基因編輯[17-20];CRISPR/Cas9技術(shù)在sgRNA的指導(dǎo)下與靶點(diǎn)結(jié)合,并利用HNH和RuvC對外源DNA進(jìn)行切割,其編輯效率大大提高,且可以對多基因同時(shí)編輯,然而其缺點(diǎn)是靶向目標(biāo) DNA 序列容易出現(xiàn)錯(cuò)配,存在脫靶率高、編輯特異性低等缺陷[4,16,21-22];Cas12a可以在crRNA引導(dǎo)下識別PAM,識別到正確序列才會形成封閉的R環(huán),因此編輯準(zhǔn)確性相對Cas9有了較大提高,其脫靶率也有所降低[12-13,23]。

      CRISPR/Cas9及Cas12a是目前基因編輯技術(shù)中應(yīng)用最為廣泛的2種技術(shù),在水稻產(chǎn)量、品質(zhì)、生物脅迫及非生物脅迫性狀關(guān)鍵基因的分子遺傳功能解析和目標(biāo)性狀的精準(zhǔn)改良上已成熟應(yīng)用(表2)。

      2CRISPR/Cas在水稻中的研究進(jìn)展

      2.1產(chǎn)量性狀

      水稻產(chǎn)量由單株穗數(shù)、每穗粒數(shù)、粒型及粒重等多個(gè)性狀綜合組成[112-113]。目前已有29個(gè)產(chǎn)量相關(guān)基因被編輯,其中4個(gè)基因?qū)Ξa(chǎn)量起正調(diào)控作用,其他25個(gè)基因均作為負(fù)調(diào)控因子發(fā)揮作用。Li等對每穗粒數(shù)Gn1a、粒型DEP1、粒重GS3及理想株型基因IPA1定點(diǎn)突變,gn1a、dep1和gs3的T2突變體出現(xiàn)穗粒數(shù)增加、粒型變大,成功提高了產(chǎn)量[37]。其他研究分別對Gn1a&DEP1、GS3&DEP1、GS3、GS2/GRF4及SPL16/qGW8等開展基因編輯,在穗粒數(shù)、粒型、粒重等性狀上調(diào)控產(chǎn)量,改善農(nóng)藝性狀同時(shí)提高產(chǎn)量[39,42,44,47-48]。開展多基因同時(shí)編輯也可快速調(diào)控產(chǎn)量,Xu等同時(shí)對負(fù)調(diào)控粒重、粒型基因GS3、GW2、GW5及TGW6進(jìn)行編輯,快速改良突變體粒重及產(chǎn)量[41]。Zhou等同時(shí)編輯GS3、Gn1a及GW2,相關(guān)突變體出現(xiàn)籽粒變大、穗粒數(shù)增多從而提高水稻產(chǎn)量[38]。Zeng等同時(shí)編輯PIN5b、GS3和MYB30,突變體兼顧了高產(chǎn)和耐冷性[43]。非產(chǎn)量調(diào)控基因突變也會提高產(chǎn)量,Miao等獲得ABA受體突變體pyl1/4/6,通過增加31%籽粒數(shù)量從而提高產(chǎn)量[57],除此之外,對FWL4、SD1(OsGA20ox2)及PYL9進(jìn)行定點(diǎn)突變也可不同程度提高產(chǎn)量[49,51-52,58]。然而產(chǎn)量正調(diào)控基因如RGA1、SWEET11被編輯后會分別引起植株極端矮化及灌漿功能受損,從而減產(chǎn)[42,50]。

      CRISPR/Cas12a在水稻產(chǎn)量調(diào)控中應(yīng)用也日漸增多,Malzahn等對粒長基因DEP1和葉片卷曲度基因ROC5進(jìn)行敲除提高產(chǎn)量。對水稻PDS、DEP 和ROC5基因所有靶點(diǎn)進(jìn)行突變,能同時(shí)改良農(nóng)藝性狀及抗性[45,54],而將葉綠素a加氧酶基因CAO1靶向敲入水稻中,突變體的產(chǎn)量及品質(zhì)降低[32,53],Zheng等同時(shí)利用Cas9和Cas12a對細(xì)胞分裂素家族基因OsCKX1-11進(jìn)行編輯,獲得了農(nóng)藝性狀及產(chǎn)量均有提升的單基因及多基因突變體,Cas9的編輯效率為26.9%~90.0%,有8個(gè)基因的編輯效率高于50.0%,而Cas12a的編輯效率為368%~100%且9個(gè)基因的編輯效率高于60%,Cas12a的多基因編輯效率高于Cas9(91.7%>545%)[40]。上述研究表明,對負(fù)調(diào)控基因進(jìn)行定點(diǎn)突變后可快速獲得目標(biāo)性狀改善的編輯系,然而有些基因突變后會對其他性狀產(chǎn)生不利影響,因此多重基因編輯技術(shù)的應(yīng)用為多個(gè)性狀同時(shí)改良提供了方案和可行性,在開展基因編輯時(shí)Cas12a的編輯效率及穩(wěn)定性均高于Cas9。

      2.2品質(zhì)性狀

      稻米品質(zhì)是水稻商業(yè)價(jià)值的核心賣點(diǎn),受到多個(gè)基因綜合調(diào)控,已有大量基因被證實(shí)直接或間接調(diào)控稻米品質(zhì),可用于定向改良直鏈淀粉含量、蛋白、香味等性狀。目前有13個(gè)品質(zhì)基因被編輯,其中4個(gè)基因(ISA、ITPK、GL3.2和BEL)正調(diào)控稻米品質(zhì),其他基因負(fù)調(diào)控稻米品質(zhì)。Wx基因的基因編輯位置差異對稻米品質(zhì)影響不同,對Wx基因功能位點(diǎn)進(jìn)行突變,可以將直鏈淀粉含量降至與糯稻相似,在不影響產(chǎn)量前提下改良稻米品質(zhì)[59-61];對 Wxb基因啟動子轉(zhuǎn)錄因子結(jié)合位點(diǎn)進(jìn)行突變,獲得新的Wx等位基因并獲得直鏈淀粉含量不同程度降低的突變體,改良了稻米品質(zhì)[62]。fad2突變體的油酸濃度提高,gs9突變體的粒型、堊白及外觀等品質(zhì)顯著改善,or突變體籽粒β-胡蘿卜素含量顯著提高,isa突變體總淀粉含量下調(diào),ZmPsy和SSU-crtI突變體水稻的籽粒類胡蘿卜素含量提高,badh2突變體籽粒產(chǎn)生香味,均可改良稻米品質(zhì)[66-67,69-70,72,114]。多基因同時(shí)突變可綜合提升水稻性狀,如app6/10雙突變體的直鏈淀粉、蛋白及谷蛋白含量均下調(diào)[65];細(xì)胞色素P450家族基因(Os03g0603100、Os03g0568400和GL3.2)和香味基因BADH2同時(shí)突變后改良稻米香味并提高產(chǎn)量[71];PDS和BELs同時(shí)突變穩(wěn)定提高水稻產(chǎn)量和品質(zhì)[73]。對正調(diào)控基因進(jìn)行突變,有助于理解基因在稻米品質(zhì)改良中的作用,敲除Wxb第一內(nèi)含子、SBEIIb進(jìn)行精準(zhǔn)敲除,突變體直鏈淀粉含量上調(diào),且引起營養(yǎng)特性改變[63-64]。Jiang等突變ITPK1-6,降低籽粒植酸含量然而卻提高無機(jī)磷含量,不利于水稻生長繁殖,證實(shí)該基因?qū)λ菊IL發(fā)育的重要性[68]。對負(fù)調(diào)控稻米品質(zhì)基因的敲除加速了優(yōu)質(zhì)水稻品種選育的進(jìn)程,與其他產(chǎn)量性狀相關(guān)基因同時(shí)編輯,有望在保證產(chǎn)量的同時(shí)提高品質(zhì)。

      2.3生物脅迫

      水稻生長過程對生物脅迫的抗性也可利用基因編輯方法改良,對抗性相關(guān)基因MPK1、MPK2、MPK5和MPK6的敲除能夠提高抗病性[85-86]。ERF922、SEC3A、ALB1、RSY1 和Pi21敲除后,突變體對稻瘟病的抗性提高,同時(shí)農(nóng)藝性狀也得到改良[74-78]。SWEET13和SWEET14敲除后突變體對白葉枯病菌的抗性提高,且SWEET14突變體無產(chǎn)量損失[79,81]。對SWEET11/8N3/Xa13編碼區(qū)及啟動子區(qū)定點(diǎn)突變,也能提高水稻對白葉枯病的抗性[80,82]。Liang等對稻曲病相關(guān)基因USTA和UvSLT2進(jìn)行編輯,顯著提高了水稻對稻曲病抗性[84]。利用Cas12a低水平同源性核酸酶MAD7對水稻基因EPSPS、NRAMP、PDS、Xa13及ALS等進(jìn)行多重基因敲除,同步提升了突變體的品質(zhì)、除草劑及白葉枯病抗性[83]。Wang等利用Cas12a對受體樣激酶(OsRLK)相關(guān)基因(OsRLK-798、OsRLK-799、OsRLK-802和OsRLK-803)及CYP81A家族基因(OsBEL-230、OsBEL-240、OsBEL-250和OsBEL-260)開展多重基因編輯,獲得了陽性植株,相關(guān)突變體調(diào)控了水稻的抗逆性[105]。

      對水稻負(fù)調(diào)控抗性基因進(jìn)行敲除或替換可快速改善目標(biāo)性狀,提升水稻抗性,然而有些編輯以損失產(chǎn)量為代價(jià)[109],而有些編輯在不損害甚至優(yōu)化農(nóng)藝性狀前提下同步改善水稻品質(zhì)[77-78,81,90,95],因此在進(jìn)行水稻抗性改良時(shí)需要考慮基因?qū)λ镜木C合影響,從而制定相應(yīng)編輯策略。

      2.4非生物脅迫

      水稻生長發(fā)育過程中會受到多種非生物脅迫的影響,如干旱、低溫、鹽、除草劑等,相關(guān)基因的大量挖掘促進(jìn)了基因編輯在水稻非生物脅迫中的應(yīng)用,目前有24個(gè)相關(guān)基因被編輯,其中8個(gè)基因起正調(diào)控作用,即Ann3、OTS1、RAV2、SAPK2、BELs、MKK5、RLKs和SAP。在水稻抗旱性方面,PYL9、ERA1、PDS、半卷葉基因(SRL1和SRL2)和MIR535的基因突變會增強(qiáng)突變體的抗旱性[58,88-90,106]。而敲除SAPK2和SAP基因后,突變體對干旱脅迫和活性氧更敏感,農(nóng)藝性狀顯著下降[87,111]。在水稻響應(yīng)鹽脅迫方面,敲除水稻中的RR22、DST及PQT3基因,可顯著提高耐鹽性且不影響農(nóng)藝性狀[92,94-95],但對OTS1編碼區(qū)及RAV2啟動子的GT-1元件突變后,其耐鹽性下降[91,93]。在水稻抗除草劑方面,通過將EPSPS、ALS突變基因敲入,或點(diǎn)突變野生型基因(ALS、FTIP1e)均能使水稻獲得除草劑抗性[96-103]。

      除此之外,敲除Nramp5能降低Cd的積累且不影響產(chǎn)量[107-108];Ann3敲除后對低溫的耐受性降低[110];敲除MKK5后,突變體抗逆性降低[104];同時(shí)突變抽穗基因Hd2、Hd4和Hd5后突變體開花期及成熟期提前有助于逃避脅迫[109],然而農(nóng)藝性狀受到較大影響,因此在應(yīng)用時(shí)可進(jìn)行單基因編輯,從而消除對產(chǎn)量的損害。

      3CRISPR/Cas的技術(shù)展望

      基因編輯技術(shù)為生命科學(xué)帶來重大進(jìn)展,然而幾種技術(shù)的脫靶率及特異性問題仍需重點(diǎn)關(guān)注。研究人員優(yōu)化了相關(guān)技術(shù),開發(fā)了DB-PACE法從而降低基因編輯工具酶的脫靶效應(yīng),大大提高TALEN核酸酶的DNA結(jié)合能力和切割特異性[115];開發(fā)出提高Cas9基因編輯和堿基編輯特異性的選擇性核輸出抑制劑(SINE)[116];Sheng利用腙介導(dǎo)CRISPR/Cas12a系統(tǒng),通過互補(bǔ)堿基配對引起的鄰近效應(yīng)來加速整個(gè)激活鏈的形成,從而提高Cas12a 系統(tǒng)的特異性[117]。除此之外,CRISPR系統(tǒng)的sgRNA的優(yōu)化、PAM修飾、crRNA優(yōu)化及Cas蛋白突變體挖掘也會進(jìn)一步提高編輯范圍及特異性并降低脫靶率[12,46,104,118-120]。此外Cas12a蛋白表現(xiàn)出對低溫敏感的特征,目前Cas12a突變體是解決該問題的主要方式,而引起低溫敏感的分子機(jī)制尚不明確。上述問題的解決,將大大提高基因編輯水平,對目標(biāo)基因進(jìn)行定向編輯,產(chǎn)生無外源DNA插入的新品種,從而加快育種速度、縮短育種年限。

      水稻產(chǎn)量、抗性和品質(zhì)相關(guān)基因的挖掘及分子機(jī)理解析,有助于更全面了解基因功能,目前基因編輯主要集中在編碼區(qū),有少量研究是編輯啟動子的轉(zhuǎn)錄結(jié)合位點(diǎn)實(shí)現(xiàn)性狀調(diào)控的。已有研究表明,DNA結(jié)構(gòu)本身,如拓?fù)洚悩?gòu)結(jié)構(gòu)等也會影響基因表達(dá)水平[121],因此,未來也可能作為基因編輯靶點(diǎn),增加目標(biāo)性狀精準(zhǔn)改良的可能性。隨著人工智能的發(fā)展,Alphafold等技術(shù)對蛋白預(yù)測精準(zhǔn)度提高,越來越多的蛋白結(jié)構(gòu)被預(yù)測,對目標(biāo)基因的模擬突變有助于挖掘關(guān)鍵堿基序列,可進(jìn)行靶向預(yù)測,實(shí)現(xiàn)新的目標(biāo)性狀的改良已經(jīng)成為可能。相信隨著基因編輯技術(shù)的不斷完善、生物信息學(xué)和人工智能的不斷發(fā)展,水稻育種將會迅猛發(fā)展。

      參考文獻(xiàn):

      [1]Yin K,Gao C,Qiu J L. Progress and prospects in plant genome editing[J]. Nature Plants,2017,3(8):1-6.

      [2]李君,張毅,陳坤玲,等. CRISPR/Cas 系統(tǒng):RNA 靶向的基因組定向編輯新技術(shù)[J]. 遺傳,2013,35(11):1265-1273.

      [3]Kim H,Kim J S. A guide to genome engineering with programmable nucleases[J]. Nature Reviews Genetics,2014,15(5):321-334.

      [4]Shan Q,Wang Y,Li J,et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology,2013,31(8):686-688.

      [5]張白雪,孫其信,李海峰. 基因修飾技術(shù)研究進(jìn)展[J]. 生物工程學(xué)報(bào),2015,31(8):1162-1174.

      [6]Urnov F D,Miller J C,Lee Y L,et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J]. Nature,2005,435(7042):646-651.

      [7]Miller J C,Holmes M C,Wang J,et al. An improved zinc-finger nuclease architecture for highly specific genome editing[J]. Nature Biotechnology,2007,25(7):778-785.

      [8]Bibikova M,Golic M,Golic K G,et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics,2002,161(3):1169-1175.

      [9]Boch J,Scholze H,Schornack S,et al. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors[J]. Science,2009,326(5959):1509-1512.

      [10]Jinek M,Chylinski K,F(xiàn)onfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science,2012,337(6096):816-821.

      [11]Gasiunas G,Barrangou R,Horvath P,et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences,2012,109(39):E2579-E2586.

      [12]Makarova K S,Koonin E V. Annotation and classification of CRISPR-Cas systems[J]. CRISPR:Methods and Protocols,2015,1311:47-75.

      [13]Zetsche B,Gootenberg J S,Abudayyeh O O,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell,2015,163(3):759-771.

      [14]Abudayyeh O O,Gootenberg J S,Konermann S,et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science,2016,353(6299):aaf5573.

      [15]Ramirez C L,F(xiàn)oley J E,Wright D A,et al. Unexpected failure rates for modular assembly of engineered zinc fingers[J]. Nature Methods,2008,5(5):374-375.

      [16]Gupta R M,Musunuru K. Expanding the genetic editing tool kit:ZFNs,TALENs,and CRISPR-Cas9 [J]. The Journal of Clinical Investigation,2014,124(10):4154-4161.

      [17]Reyon D,Tsai S Q,Khayter C,et al. FLASH assembly of TALENs for high-throughput genome editing[J]. Nature Biotechnology,2012,30(5):460-465.

      [18]Kim Y,Kweon J,Kim A,et al. A library of TAL effector nucleases spanning the human genome [J]. Nature Biotechnology,2013,31(3):251-258.

      [19]Guilinger J P,Pattanayak V,Reyon D,et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity[J]. Nature Methods,2014,11(4):429-435.

      [20]Smith C,Gore A,Yan W,et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs[J]. Cell Stem Cell,2014,15(1):12-13.

      [21]Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.

      [22]Nekrasov V,Staskawicz B,Weigel D,et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nature Biotechnology,2013,31(8):691-693.

      [23]Zeng Y,Hong Y,Azi F,et al. Advanced genome-editing technologies enable rapid and large-scale generation of genetic variants for strain engineering and synthetic biology[J]. Current Opinion in Microbiology,2022,69:102175.

      [24]Yang G,Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells[J]. Cell Regeneration,2019,8(2):33-41.

      [25]Osakabe K,Osakabe Y,Toki S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases[J]. Proceedings of the National Academy of Sciences,2010,107:12034-12039.

      [26]Miller J C,Tan S,Qiao G,et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology,2011,29:143-150.

      [27]趙欽軍,韓忠朝. 基因編輯技術(shù)的發(fā)展前景及倫理與監(jiān)管問題探討[J]. 科學(xué)與社會,2016,6(3):1-11.

      [28]Sood R,Carrington B,Bishop K,et al. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases:data from targeting of nine genes using CompoZr or CoDA ZFNs[J]. PloS One,2013,8(2):e57239.

      [29]Arazoe T,Ogawa T,Miyoshi K,et al. Tailor‐made TALEN system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnology and Bioengineering,2015,112(7):1335-1342.

      [30]Naeem M,Majeed S,Hoque M Z,et al. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing[J]. Cells,2020,9(7):1608.

      [31]Hruscha A,Krawitz P,Rechenberg A,et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish [J]. Development,2013,140(24):4982-4987.

      [32]Endo A,Masafumi M,Kaya H,et al. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida[J]. Scientific Reports,2016,6(1):38169.

      [33]Miller J C,Patil D P,Xia D F,et al. Enhancing gene editing specificity by attenuating DNA cleavage kinetics[J]. Nature Biotechnology,2019,37(8):945-952.

      [34]Wang X,Wang Y,Wu X,et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors[J]. Nature Biotechnology,2015,33(2):175-178.

      [35]Khandagale K,Nadaf A. Genome editing for targeted improvement of plants[J]. Plant Biotechnology Reports,2016,10:327-343.

      [36]Kim H K,Song M,Lee J,et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity [J]. Nature Methods,2017,14(2):153-159.

      [37]Li M,Li X,Zhou Z,et al. Reassessment of the four yield-related genes Gn1a,DEP1,GS3,and IPA1 in rice using a CRISPR/Cas9 system [J]. Frontiers in Plant Science,2016,7:377.

      [38]Zhou J,Xin X,He Y,et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties[J]. Plant Cell Reports,2019,38:475-485.

      [39]Huang L,Zhang R,Huang G,et al. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system [J]. The Crop Journal,2018,6:475-481.

      [40]Zheng X,Zhang S,Liang Y,et al. Loss-function mutants of OsCKX gene family based on CRISPR-Cas systems revealed their diversified roles in rice[J]. The Plant Genome,2023,e20283.

      [41]Xu R,Yang Y,Qin R,et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. Journal of Genetics and Genomics,2016,43(8):529-532.

      [42]Cui Y,Jiang N,Xu Z,et al. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice[J]. BMC Plant Biology,2020,20:1-13.

      [43]Zeng Y,Wen J,Zhao W,et al. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b,GS3,and OsMYB30 with the CRISPR-Cas9 system[J]. Front Plant Science,2020,10:1663.

      [44]Huang J,Gao L,Luo S,et al. The genetic editing of GS3 via CRISPR/Cas9 accelerates the breeding of three-line hybrid rice with superior yield and grain quality [J]. Molecular Breeding,2022,42(4):22.

      [45]Tang X,Lowder,Zhang T,et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants[J]. Nature Plants,2017,3:17018.

      [46]Malzahn A A,Tang X,Lee K,et al. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice,maize,and Arabidopsis[J]. BMC Biology,2019,17(1):1-14.

      [47]Wang W,Wang W,Pan Y,et al. A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield[J]. The Crop Journal,2022,10(4):1207-1212.

      [48]Usman B,Nawaz G,Zhao N,et al. Programmed editing of rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins[J]. International Journal of Molecular Sciences,2020,22(1):249.

      [49]Gao Q,Li G,Sun H,et al. Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice[J]. International Journal of Molecular Sciences,2020,21(3):809.

      [50]Ma L,Zhang D,Miao Q,et al. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling[J]. Plant and Cell Physiology,2017,58(5):863-873.

      [51]Hu X,Cui Y,Dong G,et al. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces [J]. Scientific Reports,2019,9:19096.

      [52]Han Y,Teng K,Nawaz G,et al. Generation of semi-dwarf rice (Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations[J]. 3 Biotech,2019,9:387.

      [53]Begemann M B,Gray B N,January E,et al. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases[J]. Scientific Reports,2017,7(1):11606.

      [54]Mahfouz M M. Genome editing:the efficient tool CRISPR-Cpf1[J]. Nature Plants,2017,3(3):1-2.

      [55]Yin X,Biswal A K,Dionora J,et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice[J]. Plant Cell Reports,2017,36:745-757.

      [56]Yin X,Anand A,Quick P,et al. Editing a stomatal developmental gene in rice with CRISPR/Cpf1[J]. Plant Genome Editing with CRISPR Systems:Methods and Protocols,2019,257-268.

      [57]Miao C,Xiao L,Hua K,et al. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proceedings of the National Academy of Sciences,2018,115:6058-6063.

      [58]Usman B,Nawaz G,Zhao N,et al. Precise editing of the OsPYL9 gene by RNA-guided Cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa L.) by regulating circadian rhythm and abiotic stress responsive proteins[J]. International Journal of Molecular Sciences,2020,21:7854.

      [59]Ma X,Zhang Q,Zhu Q,et al. A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant,2015,8(8):1274-1284.

      [60]Zhang J,Zhang H,Botella J R,et al. Generation of new glutinous rice by CRISPR/Cas9‐targeted mutagenesis of the Waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology,2018,60(5):369-375.

      [61]Fei Y Y,Jie Y,Wang F Q,et al. Production of two elite glutinous rice varieties by editing wx gene[J]. Rice Science,2019,26(2):118-124.

      [62]Huang L,Li Q,Zhang C,et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system [J]. Plant Biotechnology Journal,2020,18:2164 -2166.

      [63]Liu X,Ding Q,Wang W,et al. Targeted deletion of the first intron of the Wxb allele via CRISPR/Cas9 significantly increases grain amylose content in rice[J]. Rice,2022,15:1-12.

      [64]Sun Y,Jiao G,Liu Z,et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science,2017,8:298.

      [65]Wang S,Yang Y,Guo M,et al. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system[J]. The Crop Journal,2020,8:457-464.

      [66]Abe K,Araki E,Suzuki Y,et al. Production of high oleic/low linoleic rice by genome editing[J]. Plant Physiology and Biochemistry,2018,131:58-62.

      [67]Chao S F,Cai Y C,F(xiàn)eng B B,et al. Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation[J]. Rice Science,2019,26:77-87.

      [68]Jiang M,Liu Y,Liu Y,et al. Mutation of inositol 1,3,4-trisphosphate 5/6-kinase6 impairs plant growth and phytic acid synthesis in rice [J]. Plants,2019,8(5):114.

      [69]Endo A,Saika H,Takemura M,et al. A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing[J]. Rice,2019,12(1):1-5.

      [70]Ashokkumar S,Jaganathan D,Ramanathan V,et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing[J]. PloS One,2020,15(8):e0237018.

      [71]Usman B,Nawaz G,Zhao N,et al. Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of Cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations[J]. Plants,2020,9:788.

      [72]Zhao D S,Li Q F,Zhang C Q,et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communication,2018,9:1240.

      [73]Xu R F,Qin R Y,Li H,et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system[J]. Plant Biotechnology Journal,2017,15(6):713-717.

      [74]Wang F,Wang C,Liu P,et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PloS One,2016,11:1-18.

      [75]Ma J,Chen J,Wang M,et al. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice[J]. Journal of Experimental Botany,2017,69:1051-1064.

      [76]Foster A J,Martin-Urdiroz M,Yan X,et al. CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus[J]. Scientific Reports,2018,8:14355.

      [77]Li S,Shen L,Hu P,et al. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing [J]. Journal of Integrative Plant Biology,2019,61:1201-1205.

      [78]Nawaz G,Usman B,Peng H,et al. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line[J]. Genes,2020,11(7):735.

      [79]Zhou J,Peng Z,Long J,et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. The Plant Journal,2015,82(4):632-643.

      [80]Kim Y A,Moon H,Park C J. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae[J]. Rice,2019,12:67.

      [81]Zeng X,Luo Y,Vu N T Q,et al. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty[J]. BMC Plant Biology,2020,20(1):1-11.

      [82]Li C,Li W,Zhou Z,et al. A new rice breeding method:CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice [J]. Plant Biotechnology Journal,2020,18:313-315.

      [83]Lin Q,Zhu Z,Liu G,et al. Genome editing in plants with MAD7 nuclease[J]. Journal of Genetics and Genomics,2021,48(6):444-451.

      [84]Liang Y,Han Y,Wang C,et al. Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system [J]. Frontiers in Plant Science,2018,9:699.

      [85]Xie K,Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system[J]. Molecular Plant,2013,6:1975-1983.

      [86]Minkenberg B,Xie K,Yang Y. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes[J]. The Plant Journal,2017,89:636-648

      [87]Lou D,Wang H,Liang G,et al. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice[J]. Frontiers in Plant Science,2017,8:993.

      [88]Ogata T,Ishizaki T,F(xiàn)ujita M,et al. CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice[J]. PLoS One,2020,15(12):e0243376.

      [89]Banakar R,Schubert M,Collingwood M,et al. Comparison of CRISPR-Cas9/Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice phytoene desaturase (OsPDS) gene[J]. Rice,2020,13(1):1-7.

      [90]Liao S,Qin X,Luo L,et al. CRISPR/Cas9-induced mutagenesis of semi-rolled Leaf1,2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.) [J]. Agronomy,2019,9(11):728.

      [91]Duan Y B,Li J,Qin R Y,et al. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis[J]. Plant Molecular Biology,2016,90:49-62.

      [92]Zhang A,Liu Y,Wang F,et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene[J]. Molecular Breeding,2019,39:1-10.

      [93]Zhang C,Srivastava A K,Sadanandom A. Targeted mutagenesis of the SUMO protease,Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance[J]. BioRxiv,2019:555706.

      [94]Santosh Kumar V V,Verma R K,Yadav S K,et al. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010[J]. Physiology and Molecular Biology of Plants,2020,26:1099-1110.

      [95]Alfatih A,Wu J,Jan S U,et al. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field[J]. Plant,Cell & Environment,2020,43(11):2743-2754.

      [96]Li J,Meng X,Zong Y,et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 [J]. Nature Plants,2016,2(10):1-6.

      [97]Shimatani Z,Kashojiya S,Takayama M,et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nature Biotechnology,2017,35:441-443.

      [98]Sun Y,Zhang X,Wu C,et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Molecular Plant,2016,9(4):628-631.

      [99]Kuang Y,Li S,Ren B,et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms [J]. Molecular Plant,2020,13(4):565-572.

      [100]Wang F,Xu Y,Li W,et al. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing[J]. The Crop Journal,2021,9(2):305-312.

      [101]Zhang R,Chen S,Meng X,et al. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing[J]. Science China Life Sciences,2021,64:1624-1633.

      [102]Li S,Li J,Zhang J,et al. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice [J]. Journal of Experimental Botany,2018,69(20):4715-4721.

      [103]Li S,Li J,He Y,et al. Precise gene replacement in rice by RNA transcript-templated homologous recombination [J]. Nature Biotechnology,2019,37(4):445-450.

      [104]Zhang Q,Yin K,Liu G,et al. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites[J]. Science China Life Sciences,2020,63:1918-1927.

      [105]Wang M,Mao Y,Lu Y,et al. Multiplex gene editing in rice using the CRISPR-Cpf1 system[J]. Molecular Plant,2017,10(7):1011-1013.

      [106]Yue E,Cao H,Liu B. OsmiR535,a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa[J]. Plants,2020,9(10):1337.

      [107]Tang L,Mao B,Li Y,et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports,2017,7(1):14438.

      [108]Yang C H,Zhang Y,Huang C F. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. Journal of Integrative Agriculture,2019,18(3):688-697.

      [109]Li X,Zhou W,Ren Y,et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing [J]. Journal of Genetics and Genomics,2017,44:175-178.

      [110]Shen C,Que Z,Xia Y,et al. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice[J]. Journal of Plant Biology,2017,60:539-547.

      [111]Park J R,Kim E G,Jang Y H,et al. Applications of CRISPR/Cas9 as new strategies for short breeding to drought gene in rice[J]. Frontiers in Plant Science,2022,13.

      [112]Wang Y J,Li J Y. Molecular basis of plant architecture[J]. Annual Review of Plant Biology,2008,59:253 -279.

      [113]Xing Y,Zhang Q. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology,2010,61:421-442.

      [114]Dong O X,Yu S,Jain R,et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9[J]. Nature Communications,2020,11(1):1178.

      [115]Hubbard B P,Badran A H,Zuris J A,et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity [J]. Nature Methods,2015,12(10):939-942.

      [116]Cui Y R,Wang S J,Ma T,et al. KPT330 improves Cas9 precision genome-and base-editing by selectively regulating mRNA nuclear export[J]. Communications Biology,2022,5(1):237.

      [117]Sheng A,Yang J,Tang L,et al. Hydrazone chemistry-mediated CRISPR/Cas12a system for bacterial analysis[J]. Nucleic Acids Research,2022,50(18):10562-10570.

      [118]Lee K,Zhang Y,Kleinstiver B P,et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize [J]. Plant Biotechnology Journal,2019,17(2):362-372.

      [119]Gao L,Cox D B,Yan W X,et al. Engineered Cpf1 variants with altered PAM specificities[J]. Nature Biotechnology,2017,35(8):789-792.

      [120]王敬文,嚴(yán)芳,柳浪,等. 水稻 CRISPR/Cas12a 系統(tǒng)的優(yōu)化及其介導(dǎo)的腺嘌呤堿基編輯器的建立[J]. 生物技術(shù)通報(bào),2021,37(6):279.

      [121]Oudelaar A M,Higgs D R. The relationship between genome structure and function[J]. Nature Reviews Genetics,2021,22:154-168.

      猜你喜歡
      基因編輯水稻
      什么是海水稻
      有了這種合成酶 水稻可以耐鹽了
      水稻種植60天就能收獲啦
      軍事文摘(2021年22期)2021-11-26 00:43:51
      油菜可以像水稻一樣實(shí)現(xiàn)機(jī)插
      一季水稻
      文苑(2020年6期)2020-06-22 08:41:52
      水稻花
      文苑(2019年22期)2019-12-07 05:29:00
      基于CRISPR—Cas9定向編輯CCL17和CCL22基因的研究
      基因編輯技術(shù)在害蟲防治中的應(yīng)用
      科技視界(2017年12期)2017-09-11 12:55:00
      CRISPR/Cas9技術(shù)應(yīng)用的研究進(jìn)展
      今日健康(2016年11期)2017-06-09 03:02:11
      基于CRISPR/Cas9介導(dǎo)的基因編輯技術(shù)研究進(jìn)展
      科技視界(2017年2期)2017-04-18 18:52:33
      湖北省| 名山县| 探索| 平乐县| 宁阳县| 德钦县| 邵阳县| 铜鼓县| 驻马店市| 岳阳市| 峨眉山市| 阿克陶县| 南通市| 蒲城县| 宜兴市| 仙游县| 崇文区| 兰坪| 丰镇市| 达日县| 河北区| 崇州市| 克拉玛依市| 平舆县| 手游| 巴林右旗| 武定县| 正宁县| 肃宁县| 东乌珠穆沁旗| 兴安盟| 布拖县| 汝阳县| 含山县| 新民市| SHOW| 瓮安县| 新安县| 青铜峡市| 和政县| 郯城县|