李建港 郇雪潔 焦倩 姜宏
[摘要]目的探究p53基因突變對膠質(zhì)母細(xì)胞瘤細(xì)胞連接蛋白43(Connexin 43)表達(dá)的影響。方法培養(yǎng)膠質(zhì)母細(xì)胞瘤U87細(xì)胞(p53野生型)與U251細(xì)胞(p53突變型),采用Western blotting方法分別檢測兩種細(xì)胞中p53蛋白與Connexin 43蛋白的表達(dá)水平。結(jié)果膠質(zhì)母細(xì)胞瘤U251細(xì)胞中p53基因發(fā)生突變,與U87細(xì)胞相比,p53蛋白表達(dá)水平降低(t=2.948,P<0.05);U251細(xì)胞中Connexin 43蛋白的表達(dá)水平顯著高于U87細(xì)胞(t=2.771,P<0.05)。結(jié)論在膠質(zhì)母細(xì)胞瘤細(xì)胞中,p53基因突變可能會提高Connexin 43蛋白的表達(dá)量。
[關(guān)鍵詞]基因,p53;膠質(zhì)母細(xì)胞瘤;細(xì)胞系,腫瘤;連接蛋白43
[中圖分類號]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號]2096-5532(2023)03-0361-03
doi:10.11712/jms.2096-5532.2023.59.091[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20230802.0901.001;2023-08-0213:07:34
EFFECTS OF p53 GENE MUTATION ON CONNEXIN 43 EXPRESSION IN GLIOBLASTOMA CELLS? LI Jiangang, HUAN Xuejie, JIAO Qian, JIANG Hong (State Key Disciplines: Physiology (Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effects of p53 gene mutation on the expression of Connexin 43 in glioblastoma cells. MethodsIn cultured glioblastoma U87 cells (wild-type p53 gene) and U251 cells (mutant p53 gene), the expression of p53 protein and Connexin 43 protein was measured by Western blot. ResultsThe p53 protein level was significantly decreased in U251 cells compared with U87 cells (t=2.948,P<0.05). The expression level of Connexin 43 protein in U251 cells was significantly increased than that of U87 cells (t=2.771,P<0.05). ConclusionThe mutation of the p53 gene may increase the expression of Connexin 43 protein in glioblastoma cells.
[KEY WORDS]genes, p53; glioblastoma; cell line, tumor; Connexin 43
彌漫性膠質(zhì)瘤是最常見的中樞神經(jīng)系統(tǒng)惡性腫瘤,占中樞神經(jīng)系統(tǒng)惡性腫瘤的80%[1]。世界衛(wèi)生組織(WHO)根據(jù)其組織學(xué)和分子特征將它們歸類為Ⅰ~Ⅳ級[2]。Ⅳ級膠質(zhì)母細(xì)胞瘤(GBM)最具侵襲性,且中位生存期較差[3]。p53被認(rèn)為是一個關(guān)鍵的腫瘤抑制基因,其功能障礙對腫瘤發(fā)生具有重要影響[4]。p53基因發(fā)生突變的腫瘤約占人類腫瘤的50%,一些p53突變體具有促進(jìn)腫瘤發(fā)生發(fā)展的特性[5]。縫隙連接由連接蛋白組成,連接蛋白是一種跨膜蛋白,可組裝成質(zhì)膜中的通道[6]??p隙連接信號負(fù)責(zé)相當(dāng)大比例的細(xì)胞通訊,通過與相鄰細(xì)胞形成的縫隙連接,可向鄰近細(xì)胞遞送和交換小分子肽、離子、內(nèi)源核酸和其他細(xì)胞代謝物。因此,縫隙連接的異常表達(dá)可以改變細(xì)胞的新陳代謝,影響腫瘤的發(fā)生和進(jìn)展[7]。連接蛋白43(Connexin 43)是目前發(fā)現(xiàn)細(xì)胞膜上表達(dá)最豐富的連接蛋白[8]。它能調(diào)節(jié)包括增殖在內(nèi)的多種細(xì)胞功能活動[9],其表達(dá)異常會引起癌癥等多種病理變化[10]。有研究表明,Connexin 43可以促進(jìn)膠質(zhì)母細(xì)胞瘤的侵襲[11]。但膠質(zhì)母細(xì)胞瘤中p53突變和Connexin 43的調(diào)節(jié)關(guān)系目前尚不明確。本實驗選用p53野生型的U87細(xì)胞[12]和p53突變型的U251細(xì)胞[13],檢測Connexin 43的表達(dá),旨在探討p53基因突變對膠質(zhì)母細(xì)胞瘤細(xì)胞Connexin 43表達(dá)的影響。
1材料與方法
1.1實驗材料
本實驗所用細(xì)胞為人膠質(zhì)母細(xì)胞瘤U87細(xì)胞與U251細(xì)胞,均為貼壁生長的細(xì)胞,其中U87細(xì)胞為p53野生型細(xì)胞,而U251細(xì)胞則為p53突變型細(xì)胞。高糖DMEM細(xì)胞培養(yǎng)液購于以色列Biolo-gical Industries公司,胎牛血清購于北京全式金生物技術(shù)有限公司,青鏈霉素合劑購于北京索萊寶公司,p53抗體、Connexin 43抗體和GAPDH抗體均購于美國CST公司,羊抗兔IgG-HRP購于上海愛必信生物科技有限公司。
1.2實驗方法
1.2.1細(xì)胞培養(yǎng)將U87與U251細(xì)胞分別接種于含體積分?jǐn)?shù)0.01青鏈霉素合劑和體積分?jǐn)?shù)0.10胎牛血清的高糖DMEM培養(yǎng)液中,置于37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱中培養(yǎng),待細(xì)胞融合度達(dá)80%~90%時,用胰酶消化2~3 min,加入等量的完全培養(yǎng)液終止消化,收集到15 mL的離心管中,以1 000 r/min離心5 min后丟棄上清液,加入新的完全培養(yǎng)液,用吸管輕輕吹打50~80次后充分懸浮細(xì)胞,轉(zhuǎn)移到新的培養(yǎng)瓶中進(jìn)行培養(yǎng)。
1.2.2Western blotting檢測p53和Connexin 43蛋白的表達(dá)將U87細(xì)胞和U251細(xì)胞懸液按照每孔1×108/L的密度分別接種于6孔板中,待細(xì)胞融合度達(dá)到80%左右時將6孔板從培養(yǎng)箱中取出,每孔加入100 μL裂解液在冰上裂解30 min后提取兩種細(xì)胞的蛋白。加入5×Loading Buffer,在水中煮沸10 min變性后進(jìn)行十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(SDS-PAGE)。每個凝膠孔的蛋白上樣量為20 μg,用90 V的穩(wěn)定電壓進(jìn)行電泳,用300 mA的穩(wěn)定電流轉(zhuǎn)膜90 min,根據(jù)所需目的蛋白的分子量對PVDF膜進(jìn)行剪裁,然后以10 g/L的脫脂奶粉封閉90 min,分別加入p53抗體(1∶1 000)、Connexin 43抗體(1∶1 000)以及GAPDH抗體(1∶10 000)4 ℃孵育過夜。用TBST溶液漂洗3次(每次10 min)之后加入二抗(1∶10 000)室溫孵育60 min,再用TBST溶液漂洗3次。用ECL化學(xué)發(fā)光液進(jìn)行顯影并拍照。使用Image J軟件分析p53、Connexin 43和GAPDH條帶的灰度值,目的蛋白的表達(dá)水平以p53、Connexin 43與GAPDH的比值表示。
1.3統(tǒng)計學(xué)方法
利用GraphPad Prism軟件對數(shù)據(jù)進(jìn)行統(tǒng)計學(xué)分析,計量資料以±s表示,兩組比較采用兩獨立樣本t檢驗,P<0.05認(rèn)為差異具有統(tǒng)計學(xué)意義。
2結(jié)果
2.1兩種細(xì)胞中p53蛋白表達(dá)的比較
Western blotting結(jié)果顯示,U87和U251細(xì)胞中p53蛋白的相對表達(dá)水平分別為1.280±0.227和0.570±0.080(n=6)。與U87細(xì)胞相比較,U251細(xì)胞中p53蛋白的表達(dá)水平明顯降低,差異具有統(tǒng)計學(xué)意義(t=2.948,P<0.05)。見圖1。
2.2兩種細(xì)胞中Connexin 43蛋白表達(dá)的比較
Western blotting檢測結(jié)果顯示,U87細(xì)胞和U251細(xì)胞中Connexin 43蛋白的相對表達(dá)水平分別為0.370±0.096和0.820±0.131(n=6)。與U87細(xì)胞相比較,U251細(xì)胞中Connexin 43蛋白的表達(dá)水平明顯升高,差異具有統(tǒng)計學(xué)意義(t=2.771,P<0.05)。見圖2。
3討論
膠質(zhì)母細(xì)胞瘤是目前最常見和最具侵襲性的成人腦腫瘤,容易復(fù)發(fā)而且預(yù)后較差,5年生存率僅為5%[14],主要原因是由于腫瘤的廣泛浸潤、細(xì)胞異質(zhì)性以及放化療抗性[15-17]。p53是如今研究最廣泛的腫瘤抑制因子之一,它能調(diào)節(jié)各種細(xì)胞過程,包括細(xì)胞的侵襲與增殖[18]。在正常情況下,p53的活性維持在基礎(chǔ)水平,但這種活性可能會在不同的應(yīng)激條件下增加,例如不同類型的DNA損傷和致癌性損傷[19]。所以p53通路的失調(diào)被認(rèn)為是腫瘤發(fā)生中的關(guān)鍵事件,在大多數(shù)的人類癌癥中,p53出現(xiàn)下調(diào)或突變[5]。
有研究表明,在人類前列腺癌細(xì)胞中,Connexin 43蛋白的表達(dá)隨著腫瘤細(xì)胞惡性程度的增加而升高,其在腫瘤內(nèi)的分布發(fā)生變化,并與細(xì)胞侵襲之間存在相關(guān)性[20]。但也有研究發(fā)現(xiàn),在胰腺導(dǎo)管腺癌細(xì)胞中,p53突變體可以通過促進(jìn)Connexin 43蛋白的降解來增強(qiáng)細(xì)胞的遷移侵襲能力[21]。而在膠質(zhì)母細(xì)胞瘤細(xì)胞中,Connexin 43的表達(dá)增加可以增強(qiáng)細(xì)胞的侵襲能力,敲除U87細(xì)胞中的Connexin43則會顯著降低細(xì)胞的侵襲能力[22]。因此,膠質(zhì)母細(xì)胞瘤細(xì)胞中依賴于Connexin 43的細(xì)胞通訊,可能是促進(jìn)膠質(zhì)母細(xì)胞瘤侵襲的一個重要因素。本實驗結(jié)果顯示,與U87細(xì)胞相比,U251細(xì)胞中Connexin 43蛋白的表達(dá)顯著升高,表明p53基因的突變可能會導(dǎo)致膠質(zhì)母細(xì)胞瘤細(xì)胞中Connexin 43蛋白的表達(dá)升高。有研究顯示,U251細(xì)胞在體內(nèi)比U87細(xì)胞具有更強(qiáng)的侵襲性和浸潤性[23],該特性是否與Connexin 43表達(dá)上調(diào)有關(guān)有待進(jìn)一步研究。本研究后續(xù)將探討p53突變調(diào)控Connexin 43的機(jī)制及與膠質(zhì)瘤發(fā)展的關(guān)系,以期為靶向治療膠質(zhì)母細(xì)胞瘤提供實驗數(shù)據(jù)。
[參考文獻(xiàn)]
[1]OSTROM Q T, GITTLEMAN H, FULOP J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008—2012[J]. Neuro-oncology, 2015,17(Suppl 4):iv1-iv62.
[2]LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathologica, 2016,131(6):803-820.
[3]BLEEKER F E, MOLENAAR R J, LEENSTRA S. Recent advances in the molecular understanding of glioblastoma[J]. Journal of Neuro-Oncology, 2012,108(1):11-27.
[4]ASCHAUER L, MULLER P A J. Novel targets and interaction partners of mutant p53 Gain-Of-Function[J]. Biochemical Society Transactions, 2016,44(2):460-466.
[5]MULLER P A J, VOUSDEN K H. p53 mutations in cancer[J]. Nature Cell Biology, 2013,15(1):2-8.
[6]HERV? J C, BOURMEYSTER N, SARROUILHE D, et al. Gap junctional complexes: from partners to functions[J]. Progress in Biophysics and Molecular Biology, 2007,94(1-2):29-65.
[7]POYET C, BUSER L, ROUDNICKY F, et al. Connexin 43 expression predicts poor progression-free survival in patients with non-muscle invasive urothelial bladder cancer[J]. Journal of Clinical Pathology, 2015,68(10):819-824.
[8]GOODENOUGH D A, PAUL D L. Gap junctions[J]. Cold Spring Harbor Perspectives in Biology, 2009,1(1):a002576.
[9]POINTIS G, GILLERON J, CARETTE D, et al. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2010,365(1546):1607-1620.
[10]ISMAIL R, RASHID R, ANDRABI K, et al. Pathological implications of Cx43 down-regulation in human colon cancer[J]. Asian Pacific Journal of Cancer Prevention, 2014,15(7):2987-2991.
[11]LIN J H C, TAKANO T, COTRINA M L, et al. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2002,22(11):4302-4311.
[12]LEE S W, KIM H K, LEE N H, et al. The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells[J]. Cancer Letters, 2015,360(2):195-204.
[13]BR?ZDOV? M, QUANTE, TGEL L, et al. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences[J]. Nucleic Acids Research, 2009,37(5):1486-1500.
[14]BATASH R, ASNA N, SCHAFFER P, et al. Glioblastoma multiforme, diagnosis and treatment; recent literature review[J]. Current Medicinal Chemistry, 2017,24(27):3002-3009.
[15]DE GOOIJER M C, GUILL?N NAVARRO M, BERNARDS R, et al. An experimenters guide to glioblastoma invasion pathways[J]. Trends in Molecular Medicine, 2018,24(9):763-780.
[16]WICK W, KESSLER T. New glioblastoma heterogeneity atlas-a shared resource[J]. Nature Reviews Neurology, 2018,14(8):453-454.
[17]KIM Y, KIM K H, LEE J, et al. Wnt activation is implicated in glioblastoma radioresistance[J]. Laboratory Investigation, 2012,92(3):466-473.
[18]WAWRYK-GAWDA E, CHYLISKA-WRZOS P, LIS-SOCHOCKA M, et al. P53 protein in proliferation, repair and apoptosis of cells[J]. Protoplasma, 2014,251(3):525-533.
[19]LOWE S W. Activation of p53 by oncogenes[J]. Endocrine-Related Cancer, 1999,6(1):45-48.
[20]ZHANG A, HITOMI M, BAR-SHAIN N, et al. Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration[J]. Oncotarget, 2015,6(13):11640-11651.
[21]MUKHERJEE S, MADDALENA M, L? Y Q, et al. Cross-talk between mutant p53 and p62/SQSTM1 augments cancer cell migration by promoting the degradation of cell adhesion proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022,119(17):e2119644119.
[22]MCCUTCHEON S, SPRAY D C. Glioblastoma-astrocyte connexin 43 gap junctions promote tumor invasion[J]. Molecular Cancer Research: MCR, 2022,20(2):319-331.
[23]SCHULZ J A, RODGERS L T, KRYSCIO R J, et al. Characterization and comparison of human glioblastoma models[J]. BMC Cancer, 2022,22(1):844.
(本文編輯馬偉平)