原曉喻,馮靜園,葛貝寧,張馨雨,張瑩瑩,姜芳凱,顏建偉
納米復(fù)合食品接觸材料研究進展
原曉喻1a,馮靜園1a,葛貝寧1,張馨雨1a,張瑩瑩1a,姜芳凱1a,顏建偉2*
(1.河南農(nóng)業(yè)大學(xué) a.食品科學(xué)技術(shù)學(xué)院 b.國際教育學(xué)院,鄭州 450002;2.華東交通大學(xué) 土木建筑學(xué)院,南昌 330013)
為全面推進食品包裝的功能化、智能化、綠色生態(tài)一體化發(fā)展,對納米復(fù)合食品接觸材料的發(fā)展現(xiàn)狀進行深入的探究。首先,概述納米復(fù)合食品接觸材料的多樣性發(fā)展,并剖釋納米技術(shù)對食品接觸材料的機械強度、氣體阻隔、抗菌保鮮、活性智能監(jiān)控和生物降解等性能的影響;緊接著,深入分析實際工況下(環(huán)境溫度、接觸時長、食物酸堿度等)食品接觸材料中納米物質(zhì)的遷移行為規(guī)律;最后,納米材料的毒理性作為食品接觸材料安全評估的重點關(guān)注因素,還探討納米物質(zhì)對人體細胞和組織器官等的潛在毒性。現(xiàn)代納米技術(shù)改善了柔性高分子聚合物的性能,實現(xiàn)納米復(fù)合食品接觸材料的多功能化,在肉類、面包、果蔬等食品包裝中具有重要的應(yīng)用前景,也為食品包裝工業(yè)的發(fā)展提供重要的參考價值。
納米復(fù)合食品接觸材料;活性抗菌;智能監(jiān)控;生物降解;遷移研究
常用的納米材料可以分為無機納米材料、有機納米材料和復(fù)合納米材料3種。隨著納米材料及其相關(guān)技術(shù)的發(fā)展,其應(yīng)用已經(jīng)涉及醫(yī)藥、食品、理療、電子、油田、土木等諸多領(lǐng)域。傳統(tǒng)食品接觸材料多為石油基塑料,存在污染大、功能單一等不足。隨著納米技術(shù)的發(fā)展,通過納米添加、改性、嫁接等方法對聚合物基底材料進行優(yōu)化,制備出的納米復(fù)合食品接觸材料(Nano-Composite Food Contact Materials, NFCM)超越了傳統(tǒng)的功能食品接觸材料,在機械強度[1]、物理化學(xué)(高阻隔性、高光澤度和透明度、智能指示)[2-3]、綠色生態(tài)性(降解、抗菌抗污)[4]等方面具有優(yōu)異的性能。
NFCM問世十余年間發(fā)展迅猛,在肉類、果蔬、面包、飲料等食品工業(yè)中得到了廣泛的應(yīng)用。隨之而來的安全問題也引起大家的關(guān)注。如食品接觸材料中的納米物質(zhì)向食品遷移的影響因素有哪些?若超出生命體的安全承受范圍,會給生命體帶來什么樣的危害?這些問題都屬于NFCM安全性研究的范疇。本文總結(jié)了不同類型的NFCM的功能特點和應(yīng)用現(xiàn)狀,重點闡述NFCM的遷移研究和毒理學(xué)研究,為它們的風險評估和標準制訂提供理論參考。
無機納米材料既有納米尺度效應(yīng),又有材料本征屬性。近年來,納米金屬[5-8]、納米金屬氧化物[9-11]、納米黏土[12-13]等已被廣泛應(yīng)用于食品包裝領(lǐng)域。有機納米材料發(fā)展稍晚,包括脂質(zhì)、多糖及有機高分子聚合物等新型納米材料,具有多樣性、易剪裁性等優(yōu)勢[14],常見的無機和有機納米材料如圖1所示。復(fù)合納米材料為組合無機和有機納米材料。其中,一相為基體,是連續(xù)相;另一相為活性材料,是分散相。相比單一納米材料,復(fù)合納米材料能滿足多種功能性需求[15-16]。本文按照納米復(fù)合食品接觸材料的功能性,將NFCM分為增強型、活性智能型和生物降解型。以最重要的和最常研究的幾類納米物質(zhì)為例,進一步詳細闡述。
新型NFCM迅速崛起,對納米材料和基底聚合物都提出了更高的要求,而力學(xué)性能和阻隔性能作為食品接觸材料最基本的功能屬性,廣大學(xué)者們進行了大量研究,以便將其更好地應(yīng)用于食品加工、儲存和運輸過程。
1.1.1 納米二氧化硅
納米二氧化硅(SiO2Nanoparticles, SiO2NPs)是結(jié)晶過程中良好的成核劑,有助于提高食品接觸材料的機械強度和阻隔性能,所制備的二氧化硅納米復(fù)合薄膜在食品包裝領(lǐng)域具有潛在應(yīng)用價值。Hou等[1]發(fā)現(xiàn),當SiO2NPs質(zhì)量分數(shù)增至10%時,瓊脂/海藻酸鈉(AG/SA)薄膜的拉伸強度從45 MPa增加至74 MPa,而薄膜的斷裂伸長率從33%增加至52%。推測拉伸強度的增加是由于SiO2與薄膜基質(zhì)分子之間存在強烈的氫鍵相互作用,而斷裂伸長率的增加是由于SiO2均勻分布在薄膜分子鏈中,起到增塑作用。Dong等[17]將沒食子酸GA共價接枝到SiO2NPs顆粒上,獲得了改性的納米顆粒SiO2-GA NPs,將它們摻入殼聚糖(CS)后生成新型復(fù)合納米食品接觸材料CS/SiO2-GA NPs。SiO2-GA NPs與CS之間形成了較強的分子間作用力,使得復(fù)合膜的力學(xué)性能、水蒸氣阻隔性能和紫外光阻隔能力均有顯著提高。Marangoni等[18]在海藻酸鈉(SA)基底薄膜中加入綠蜂膠提取物(PE)和SiO2NPs,制備了活性復(fù)合薄膜SA/PE/SiO2。PE和SiO2NPs的添加可將海藻酸鈉薄膜的拉伸強度從12.9 MPa提高到19.6 MPa。此外,SiO2NPs的加入可使3 328 cm?1處的透光率增加,薄膜的結(jié)晶度降低,推測海藻酸鈉的羧基和SiO2NPs的羥基之間發(fā)生了相互作用。
圖1 無機和有機納米材料類型
1.1.2 納米黏土
納米黏土能夠改善基底材料的力學(xué)性能和氣體的阻隔性能,而且它還具有較大的比表面積、良好的陽離子交換率和溶脹性。市場上第1個應(yīng)用于食品包裝的納米復(fù)合材料便由納米黏土制備而成[19]。納米蒙脫土(MMT)的硅酸鹽片狀結(jié)構(gòu)可通過層間靜電作用堆積在一起,具有生產(chǎn)成本低、吸附性強、熱穩(wěn)定性好的優(yōu)點。Peres等[20]將質(zhì)量分數(shù)為1%的MMT材料添加到熱塑性淀粉(TPS)包裝中,明顯提高了聚合物基質(zhì)的力學(xué)性能和水蒸氣阻隔性能。與對照組薄膜相比,TPS/1% MMT薄膜的拉伸強度(由2.5 MPa提高到3.8 MPa)和斷裂伸長率(由38%提高到60%)都得到了顯著提升。水蒸氣阻隔性增強的原因可能是由于MMT均勻分散在聚合物基質(zhì)中,增加了水蒸氣透過時路徑的曲折性。Peighambardoust等[21]將銀離子、銅離子改性的納米蒙脫土摻入到羧甲基纖維素(CMC)基底膜中制備了CMC/MMT-Ag、CMC/ MMT-Cu薄膜。掃描電子顯微鏡分析發(fā)現(xiàn),改性Ag/Cu-MMT可均勻分散在CMC基質(zhì)中。與CMC薄膜相比,CMC-MMT-Cu/Ag薄膜的拉伸強度和斷裂伸長率更好,水蒸氣透過率顯著降低。
1.1.3 纖維素納米晶體/纖維
纖維素納米晶體(NCC)和纖維素納米纖維(CNF)從天然產(chǎn)物(棉花、甘蔗渣)或工業(yè)殘留物(鋸末、回收紙板)中提取和制備,添加到包裝薄膜中可增強力學(xué)性能,調(diào)節(jié)包裝內(nèi)濕度,增強耐水性和屏障功能[22]。Chen等[23]將纖維素納米晶體(NCC)、花青素(ANT)與肌原纖維蛋白(MP)結(jié)合,制備可食用薄膜MP/ANT/NCC。NCC可以降低薄膜的水分含量,增強水分阻隔性能,防止與水分含量高的食物體系接觸時薄膜發(fā)生崩解。Kesari等[24]在熱塑性淀粉(TPS)基質(zhì)中添加了質(zhì)量分數(shù)為5%的CNF之后,復(fù)合膜的抗拉伸強度提高了1.6倍,彈性模量增加了120%。隨著CNF的加入,接觸角增大,復(fù)合薄膜的親水性降低;推測CNF纖維網(wǎng)絡(luò)結(jié)構(gòu)能防止淀粉基質(zhì)膨脹,降低水分滲透率。Wu等[25]以柑橘果膠(PC)為前體,加入纖維素納米纖維(CNF)作為增強劑,制備混合氣凝膠PC/CNF。評價氣凝膠最主要的強度指標便是其所能承受的應(yīng)力,它代表了保護包裝食品免受運輸或裝卸過程中產(chǎn)生的機械應(yīng)力。隨著CNF的加入,氣凝膠承受的應(yīng)力和凝膠性能顯著增強,這可能是由于CNF具有良好的纏繞特性,改善了氣凝膠的結(jié)構(gòu)完整性和力學(xué)性能。果膠和纖維素分子鏈上的大量羥基,使氣凝膠具有親水性,吸濕率可達自身質(zhì)量的100%;當周圍環(huán)境相對濕度較低時,受毛細管力和水蒸氣壓差的驅(qū)動,又可通過凝膠內(nèi)部的多孔通道向外釋放水分。氣凝膠PC/CNF可將使用菌包裝內(nèi)的濕度調(diào)節(jié)至97%,顯著延長了雙孢蘑菇的貯藏時間。
綜上,納米物質(zhì)的摻入可加強食品接觸材料的力學(xué)性能和氣體阻隔性能,為生產(chǎn)高性能食品包裝提供基礎(chǔ)的理論數(shù)據(jù)和技術(shù)支撐。
1.2.1 活性納米復(fù)合食品接觸材料
歐盟食品接觸材料與物品法規(guī)(EC 1935/2004)中定義活性食品接觸材料為能延長保質(zhì)期、保持或改善食品品質(zhì)的材料和制品,材料本身具有某種功能(抗菌、抗氧化)或預(yù)先混入特定成分以吸收或釋放食品周圍物質(zhì)的能力。
1.2.1.1 金屬及其氧化物納米顆粒
金屬及其氧化物納米顆粒是一種廣譜抗菌劑,因顆粒小、比表面積大而具有抗菌性能,可抑制或殺死大量的微生物[26]。其抗菌原理可概述為活性氧自由基機理[27-30]、細胞膜破壞機理[31-32]、細胞內(nèi)蛋白質(zhì)和DNA破壞機理[33-35]。常通過化學(xué)氣相沉積法(CVD)[36-37]、分子束外延法(MBE)[38]、旋轉(zhuǎn)涂覆/噴涂法[39]以及電沉積法[40]等多種技術(shù)摻入或沉積到食品接觸材料中,可防止金屬納米顆粒聚集,并有效調(diào)控其釋放。Bekissanova等[41]以綠色環(huán)保的過氧化氫為還原劑合成銀納米顆粒(Ag NPs),并制備銀/高嶺石納米復(fù)合材料(Kaolinite/Ag NPs)。Ag NPs均勻分布在高嶺石中,Kaolinite/Ag NPs對革蘭氏陽性金黃色葡萄球菌、革蘭氏陰性肺炎克雷伯菌、大腸桿菌菌株,甚至對病原體的分離株都具有潛在抗菌活性。Vi等[42]制備了銀-氧化石墨烯納米顆粒(Ag-GO NPs),對大腸桿菌和金黃色葡萄球菌的抑菌率分別為73%和98.5%。石墨烯層通過官能團附著在膜上,折疊整個細菌;Ag NPs穿透細胞膜導(dǎo)致細胞死亡。此外,GO-Ag NPs還具有顯著的氧化還原活性,能夠高效催化過氧化氫分解生成活性氧(ROS)而發(fā)揮殺菌作用。GO-Ag NPs的理化性質(zhì)與ROS的產(chǎn)生對大腸桿菌和金黃色葡萄球菌具有優(yōu)良的協(xié)同抗菌作用。
納米鈦鐵氧化物(Fe2TiO5NPs)能夠清除自由基活性,其介孔結(jié)構(gòu)也可以作為抗菌肽或精油等抗菌活性成分的載體,應(yīng)用于食品接觸材料,可以有效預(yù)防食物氧化和腐敗。Rizzotto等[43]通過溶膠-凝膠法合成平均粒徑為44 nm的Fe2TiO5NPs,通過溶劑鑄造法摻入藻酸鹽中制備活性納米復(fù)合食品接觸材料alginate/Fe2TiO5NPs,它可以限制氧氣轉(zhuǎn)移和自由基反應(yīng),延長食品的保質(zhì)期。在完整草莓和鮮切草莓的貯藏過程中,薄膜起到了屏障作用,降低了組織降解速率,表現(xiàn)出良好的抗氧化活性。通過ICP-OES測試,沒有發(fā)現(xiàn)納米復(fù)合食品接觸材料中Fe2TiO5NPs、鐵和鈦離子的遷移現(xiàn)象,這表明Fe2TiO5NPs與復(fù)合膜具有良好的生物相容性。當Fe2TiO5NPs質(zhì)量濃度達到5 mg/mL時,對人類Caco-2上皮細胞未產(chǎn)生任何損傷,表明Fe2TiO5NPs納米顆粒沒有細胞毒性。
1.2.1.2 復(fù)合納米材料
復(fù)合納米材料也常應(yīng)用在活性包裝體系中,食品接觸材料中的復(fù)合納米填料可直接與食品環(huán)境相互作用,清除食品環(huán)境體系中的氧氣,對氧敏感食物的貯藏具有重要意義[44]。Mittal等[45]以聚羥基丁酸酯/聚乙二醇(PHB/PEG)為基底材料,加入丁香精油(CEO)和納米二氧化硅(SiO2NPs)復(fù)合納米填料,分別起抗菌和增強材料韌性的作用。通過流延法制備納米復(fù)合食品接觸材料PHB/PEG/CEO/SiO2,能夠抑制黑面包表面微生物的生長,使黑面包的保質(zhì)期延長至10 d,有效解決了水果蛋糕、面包等在儲存過程中易腐敗變質(zhì)的問題。Xiong等[46]以牛至精油(OEO)和白藜蘆醇(RES)制備復(fù)合納米乳液Nano- OEO-RES,在4 ℃下保存15 d,依然具有良好的乳液穩(wěn)定性。將納米乳液摻入果膠(PEC)基質(zhì)中,制備Nano-OEO-RES-PEC涂層樣品,對高氧氣調(diào)包裝(HOMAP)中新鮮里脊豬肉進行涂層保鮮。研究表明,Nano-OEO-RES-PEC涂層可減少pH值和顏色變化、延緩脂質(zhì)和蛋白質(zhì)氧化、保持肉質(zhì)嫩度并抑制微生物生長,從而顯著延長豬肉的保質(zhì)期。因此,負載活性納米乳液的生物聚合物作為可食用涂層具有較大的鮮肉保鮮能力。Saravanakumar等[47]以海藻酸鈉(SA)為基底材料,以纖維素納米晶(CNW)和氧化銅納米粒子(CuO NPs)作為復(fù)合納米填料,采用多糖吸附法制備抗菌聚合物薄膜CNW-SA-CuO NPs。研究發(fā)現(xiàn)復(fù)合納米薄膜對DPPH和ABTS具有很好的清除能力,顯示出極佳的抗氧化活性;對金黃色葡萄球菌、大腸桿菌、沙門氏菌、白色念珠菌和木霉都表現(xiàn)出優(yōu)異的抗菌能力。這種薄膜對預(yù)防鮮切水果和蔬菜的微生物污染具有重要的應(yīng)用價值。相比普通食品包裝,活性納米復(fù)合食品接觸材料更能保證食品的新鮮度和安全性,在延長食品的貨架壽命和控制食品的品質(zhì)和安全方面發(fā)揮著日益重要的作用。
1.2.2 智能型納米復(fù)合食品接觸材料
智能型食品接觸材料具有探測和傳感功能,可監(jiān)測食品體系的含氧量或食品的新鮮度、成熟度、時間和溫度等變化,以滿足消費者對高品質(zhì)食物的需求[48]。
1.2.2.1 氧指示劑
氧指示劑是研究最多的智能指示劑。氧氣與食物腐敗、油脂氧化和微生物生長的生化過程密切相關(guān)。包裝內(nèi)泄漏的氧氣不僅會與食品反應(yīng)導(dǎo)致氧化酸敗,還會促進霉菌和需氧微生物的生長繁殖。Li等[49]通過靜電紡絲法合成了氧化鎢/聚丙烯腈納米纖維膜(WO3/PAN NFM),WO3納米顆粒是研究較多的無機光致變色材料之一,均勻分布在纖維表面,使NFM呈深藍色。在氧氣存在下,NFM迅速氧化成淺黃色。NFM的孔隙率也使其能夠更快、更容易地吸收O2。即便痕量級別的含氧量,也能使NFM產(chǎn)生細微的顏色變化。因此,WO3/PAN NFM可以作為高效、高靈敏的比色型氧氣指示劑。此外,智能手機可識別NFM光學(xué)照片的RGB值,大大縮短了檢測時間,降低了檢測成本,為食品品質(zhì)監(jiān)控提供了新策略。
1.2.2.2 pH指示劑
pH指示劑一般為從植物中提取的色素,如花青素、紫草素、姜黃素、茜素等[50]。由先前的研究可知,pH>7.0(魚/蝦)和pH>6.8(豬肉)時表明食物開始變質(zhì)[51-53],它們儲存期間pH值的增加是由于腐敗化合物(包括氨、二甲基銨、糖復(fù)合物和三甲胺)的形成,導(dǎo)致蛋白質(zhì)和脂質(zhì)的分解[54-56]。以pH指示型智能包裝薄膜為例,它通常由基質(zhì)材料和pH指示劑兩部分組成。Lu等[57]以殼聚糖/魷魚皮明膠(CG)為基質(zhì),在薄膜中加入黑花生種皮花生素(BPSCA)和納米氧化鋅ZnO NPs,以增強薄膜的pH感色性能和抗菌抗氧化性能,獲得智能型pH感應(yīng)指示膜CGZh(如圖2所示)。4 ℃下檢測蝦的新鮮度,CGZh薄膜的顏色變化與蝦的總揮發(fā)性鹽基氮、pH值和總活菌數(shù)的變化高度相關(guān),在食品新鮮度監(jiān)測中具有重要的應(yīng)用價值。Wagh等[58]將甘藍花青素(BOA)和甘藍廢棄物衍生碳點(BO-CD)和纖維素納米纖維(CNF)進行集成,制備智能納米復(fù)合膜CNF/BO-CDs/BOA。在25 ℃、pH為2~12條件下,CNF/BO-CDs/BOA復(fù)合膜具有pH感色性能,呈現(xiàn)從紅色到無色/黃色的顏色變化,可以肉眼實時監(jiān)測豬肉、魚肉和蝦的新鮮度。CNF/BO-CDs/BOA智能食品接觸材料有望應(yīng)用于多功能包裝行業(yè),指示食品品質(zhì)變化。
1.2.2.3 氣體指示劑和生物傳感指示劑
氣體指示劑和生物傳感指示劑也陸續(xù)被開發(fā),常應(yīng)用于肉制品的智能包裝領(lǐng)域。Kwon等[59]利用Ag NPs的氣敏特性合成纖維素納米晶-銀納米粒子(CNC-Ag NPs),即新鮮度比色指示劑,再通過流延法制備了CNC-Ag NP復(fù)合指示劑薄膜。薄膜與雞胸肉中的腐敗氣體接觸時顏色會發(fā)生變化,根據(jù)變化程度來評估食品腐敗等級。這種薄膜最初呈淡黃色或深酒紅色,逐漸變成無色,最后變成金屬灰色。這種轉(zhuǎn)變歸因于硫化氫(H2S)與Ag NPs之間的反應(yīng),它改變了Ag NPs表面等離子體共振,致使膜顏色發(fā)生變化。針對那些變質(zhì)后釋放硫化氫的食品(家禽產(chǎn)品或西蘭花),智能型食品接觸材料中的CNC-Ag NP可以精準監(jiān)控食品的品質(zhì),在配送或儲存過程中具有重要意義。You等[60]以-卡拉膠聚合物(CAR)為基底膜,以紅葡萄皮提取物(GSE)為顯色劑,以Ag NPs為抗菌劑,基于三者之間良好的分子相互作用和兼容性,制備傳感器指示薄膜CAR/Ag NPs/GSE。薄膜在紫外線照射下顏色穩(wěn)定不變,但對總揮發(fā)性鹽基氮(TVB-N)微小的濃度差異也具有顯著的顏色變化,可對魚肉制品的新鮮度進行高效監(jiān)測,進而推廣到其他肉類制品的應(yīng)用上。納米技術(shù)在智能型食品接觸材料中的應(yīng)用,實現(xiàn)了對食品的智能監(jiān)測和實時控制,為追求更安全、更健康的食品提供了新思路。
傳統(tǒng)的塑料包裝材料多為石油基聚合物,如聚苯乙烯(PS)和聚乙烯(PE),是環(huán)境污染的主要因素。新型可生物降解的聚合物基塑料,如聚乳酸(PLA)、聚乙烯醇(PVA)、聚羥基丁酸酯共戊酸鹽(PHBV)等具有良好的生物降解性、可再生性,將這些基底材料和功能性納米物質(zhì)相結(jié)合,替代石油基塑料,可更好地應(yīng)用于食品包裝領(lǐng)域中[61]。
Arun等[62]利用農(nóng)業(yè)廢棄物椰子殼合成纖維素納米纖維(CNF),然后與亞麻油和檸檬油結(jié)合,摻入聚乙烯醇(PVA)聚合物基質(zhì)中,制備了PVA-CNF-油基復(fù)合薄膜。由于PVA和CNF可作為微生物生長的碳源,使得該薄膜具有優(yōu)異的生物降解性能,第45天的降解率為(87.34±0.91)%。因此,該生物納米復(fù)合薄膜可以替代不可生物降解食品接觸材料,減少了塑料污染,還增加了工業(yè)廢物的利用價值。Mathew等[63]采用一步法制備了聚乙烯醇/大米淀粉/原位銀納米粒子混合薄膜(PVA/BRS/sAg NPs)。通過90 d土埋實驗發(fā)現(xiàn),混合薄膜變得又硬又脆,自身質(zhì)量減少了77.3%,證明了此薄膜是一種可生物降解的、生態(tài)友好型包裝材料。Luo等[64]將金屬納米顆粒(MgO NPs)和茶多酚(TP)摻入可生物降解的馬鈴薯淀粉(Potato Starch,PS)基底材料中,制備了生物降解復(fù)合膜PS/TP/MgO NPs。將薄膜埋入土壤中5 cm深,并在溫度為25 ℃和相對濕度為50%的模擬環(huán)境條件下,對薄膜進行生物降解性能評估,20 d后只剩下少量碎片(如圖2所示)。可生物降解的納米復(fù)合薄膜是一種有前途的新型食品包裝材料。隨著科學(xué)技術(shù)的不斷發(fā)展和人們環(huán)保意識的增強,這種生物降解型食品接觸材料有望替代石油基塑料,從而被廣泛應(yīng)用于食品包裝領(lǐng)域。
NFCM因其優(yōu)異的性能備受食品包裝領(lǐng)域的青睞,但是納米物質(zhì)本身的潛在危害可能會帶來負面影響。因此,非常有必要通過遷移研究對這些食品接觸材料進行安全風險評估。遷移速率和遷移水平受以下多種因素影響。如基底材料類型、納米填料的類型(尺寸、形狀、初始濃度)、食物體系的理化性質(zhì)、遷移條件(濕度、溫度、光照)等[65]。
納米填料的類型(尺寸、形狀、初始濃度)影響其遷移水平。根據(jù)歐盟FCM食品接觸材料法規(guī)(EU)2020/1245,銅、鋅從塑料包裝到食品系統(tǒng)的遷移限量為5 mg/kg。Jiang等[66]將質(zhì)量分數(shù)為1%的Cu NPs摻入聚丙烯基質(zhì)(PP-H)中制備食品接觸材料PP-H/Cu NPs。以3%的醋酸食品模擬液和70 ℃遷移溫度作為最嚴苛的遷移條件。結(jié)果表明,Cu NPs的最高遷移水平可達4.5 mg/kg,并開始損傷肝細胞L-02,這為研究Cu NPs在食品接觸材料中的應(yīng)用提供了重要信息。Gvozdenko等[67]將氧化銅納米顆粒(CuO NPs)用明膠穩(wěn)定后制備食品接觸用材料CMC/CuO NPs。包裝奶酪后置于(35±1)℃的恒溫箱中儲存7 d,測得CuO NPs的最大遷移量為0.12 mg/kg,不會造成遷移風險。但是已有研究表明,ZnO NPs的遷移水平多在0.52~14.17 mg/kg。因此,明膠穩(wěn)定的CuO NPs在食品包裝中具有較高的應(yīng)用潛力,而含ZnO NPs的食品接觸材料卻存在一定的安全隱患,需進一步優(yōu)化制備方法[68]。
食物體系的理化性質(zhì)影響納米材料的遷移速率。Deng等[69]通過熔體擠出和熔體復(fù)合的方法制備復(fù)合膜LDPE/Ag NPs。分別以醋酸(3%)、乙醇(50%)和蒸餾水為食品模擬液進行遷移研究(圖3)。結(jié)果發(fā)現(xiàn),Ag NPs在酸性食品模擬物中的遷移速度遠高于其在乙醇(50%)和蒸餾水中的遷移速度,推測低pH值有助于溶解Ag NPs,但是目前尚未發(fā)現(xiàn)食品接觸材料中Ag NPs所造成安全問題的報道。
圖2 納米復(fù)合食品接觸材料類型[57, 64]
圖3 復(fù)合納米材料LDPE/Ag NPs中納米物質(zhì)向不同食品模擬物中的遷移水平[69]
遷移條件(溫度、光照等)也影響遷移水平。升溫、紫外線等常規(guī)使用條件都能促進納米物質(zhì)的遷移水平。Deng等[69]在不同溫度下觀察Ag NPs從復(fù)合膜LDPE/Ag NPs向食品模擬物中的遷移情況。發(fā)現(xiàn)隨著溫度升高,遷移水平顯著增高(圖4)。Lajarrige等[70]在生物聚酯(PBSA/PHBV)中加入有機改性的蒙脫土黏石C-30B(質(zhì)量分數(shù)為5%),制備了納米復(fù)合材料PBSA/PHBV/C-30B,通過紫外線、濕度和溫度等條件對材料進行加速老化。根據(jù)(EU)2020/1245推薦的測試條件,評估它們與食品接觸的實用性。結(jié)果發(fā)現(xiàn),紫外線處理和納米黏土的添加降低了納米復(fù)合食品接觸材料的安全隱患。推測由于紫外線照射增加了結(jié)晶度,改變了包裝材料的傳輸特性,降低了總遷移率和特定遷移率;此外,納米黏土還可以發(fā)揮屏障作用。2種因素相互作用,增加了納米物質(zhì)對包裝材料的親和性,降低其遷移水平。
圖4 復(fù)合納米材料LDPE/Ag NPs中納米物質(zhì)在不同溫度下向食品模擬物中的遷移水平[69]
基底材料類型也會影響納米物質(zhì)的遷移水平。目前,納米物質(zhì)的遷移研究主要集中于塑料基食品接觸材料。歐盟FCM食品接觸材料法規(guī)(EU)2020/1245規(guī)定的納米物質(zhì)的遷移限制及遷移測試條件也都是針對塑料基食品接觸材料的。但是,當基底材料為生物可降解聚合物時更需要關(guān)注聚合物材料對食品安全造成潛在威脅。因為隨著時間的推移,這些聚合物的結(jié)構(gòu)是不穩(wěn)定的。目前,生物基食品接觸材料中納米物質(zhì)的遷移特性和安全性研究還很少,因此還需要更詳細的研究。探索歐盟提供建議的適用性,為制定生物基食品接觸材料的法規(guī)制度做理論支撐。
此外,納米物質(zhì)的遷移形式也影響遷移的安全性。Enescu等[71]對殼聚糖薄膜中二氧化鈦(TiO2)進行了遷移研究。結(jié)果發(fā)現(xiàn)大部分TiO2仍保留在薄膜中,只有極少量以四價鈦離子(Ti4+)的形式遷移,遷移量可以忽略不計,且對人結(jié)腸癌Caco-2細胞沒有任何毒性作用。Alizadeh-Sani等[72]將TiO2NPs摻入纖維素納米纖維/乳清分離蛋白(CNF/WPI)中,制備生物基納米復(fù)合食品接觸材料CNF/WPI/TiO2NPs。羔羊肉在冷藏條件(4 ℃)下包裝并存放15 d后,僅檢測到極低含量的Ti4+遷移(<0.064×10–9),遠低于歐洲食品安全局(EFSA)定義的遷移限量10 mg/kg。此外,還有研究表明,NFCM中大約12%的銀(Ag+和Ag NPs)以Ag NPs的形式釋放,在不同的食品模擬物中,它們的遷移方式和反應(yīng)不同,這可能會影響銀的釋放速率和安全水平[19]。
通過毒性研究發(fā)現(xiàn)納米材料有可能對人體細胞造成損害,如改變線粒體功能、產(chǎn)生活性氧、增加膜通透性等。進而引發(fā)各種炎癥、心血管等慢性疾病[73-74]。有機納米顆粒對細胞毒性和腸通透性有調(diào)節(jié)作用,而無機納米顆粒則顯示了較大的毒性。主要有以下兩方面的原因:金屬納米顆粒的高表面積有利于離子的釋放,影響細胞的生物學(xué)功能;無機納米顆粒的生物降解速率低于有機材料的,易在細胞中累積[75]。
納米顆粒體積小,易穿透黏液層,誘導(dǎo)黏液生化成分改變,削弱黏液的保護作用。腸細胞和杯狀細胞在TiO2、SiO2、ZnO、Fe2O3NPs中暴露4 h后,細胞黏液的生化成分發(fā)生變化,中性黏蛋白顯著降低。在回腸和直腸中,Ag NPs促進黏液分泌。在接觸100 nm聚苯乙烯微塑料(PS-MPs)后,斑馬魚腸道黏液分泌增加[76],中性和酸性黏蛋白的組成也發(fā)生了變化[77]。
納米顆粒會影響凝血系統(tǒng),誘導(dǎo)心血管疾病產(chǎn)生。TiO2NPs誘導(dǎo)白細胞、血細胞含量發(fā)生顯著變化。使紅細胞數(shù)量減少,肝酶水平升高,進而引起肝部疾病[78]。SiO2NPs吸附在紅細胞上,刺透紅細胞并最終溶血[79]。銀膠體能夠誘導(dǎo)血小板聚集和纖維蛋白聚合[80]。
納米顆粒還會對組織器官產(chǎn)生影響。大鼠口服銀離子(Ag+)和銀納米顆粒(Ag NPs)后,其肝臟和脾臟增大,骨髓有異常嗜酸性浸潤,血液中淋巴細胞增多。在脾臟中Ag NPs比Ag+更具毒性。暴露于Ag NPs的大鼠也比其他大鼠的骨橫截面表現(xiàn)出更多的中空、脆性和骨質(zhì)疏松等癥狀;骨組織出現(xiàn)異常鈣堆積,比如沿內(nèi)襯增厚;骨組織內(nèi)白細胞發(fā)生溶解和細胞空泡化[81]。
盡管納米物質(zhì)在食品科學(xué)方面具有較高的應(yīng)用價值,但是其生物學(xué)效應(yīng)還不是十分清楚,有必要繼續(xù)深入理解納米物質(zhì)與食物體系、食品接觸材料體系、生命體系的分子間相互作用機制,為食品接觸材料中納米物質(zhì)的安全評價、風險管控和標準制定提供基礎(chǔ)的科學(xué)支撐[62]。
基于納米復(fù)合食品接觸材料在食品工業(yè)中的理論研究及潛在應(yīng)用,本文依次從功能增強、活性智能、可生物降解三方面詳細概述了食品接觸材料的發(fā)展現(xiàn)狀。納米材料可能會引發(fā)特殊的生物學(xué)效應(yīng),對人類健康造成威脅,但是其風險研究還比較少。隨后,綜述了當前“納米物質(zhì)/食品接觸材料/接觸食物”體系的遷移研究及暴露評估研究,同時遍檢主要的數(shù)據(jù)庫,并篩選近幾年的相關(guān)文獻,分析了納米物質(zhì)在從食品接觸材料向接觸食物中的遷移研究,并介紹了納米物質(zhì)對人體器官和組織的影響。但是,當前的研究還存在一些不足之處。例如,NFCM的長期穩(wěn)定性和生物降解性等問題需要更加深入的研究;智能型納米傳感器實現(xiàn)對食物體系的精確監(jiān)測;NFCM如何從研究型向應(yīng)用型和產(chǎn)業(yè)化發(fā)展。本文為NFCM在食品包裝領(lǐng)域的應(yīng)用和安全性評價提供了參考。
[1] HOU Xiu-bin, XUE Zhi-xin, XIA Yan-zhi, et al. Effect of SiO2Nanoparticle on the Physical and Chemical Properties of Eco-Friendly Agar/Sodium Alginate Nanocomposite Film[J]. International Journal of Biological Macromolecules, 2019, 125: 1289-1298.
[2] 劉仁, 魯鵬, 吳敏, 等. 納米纖維素在氣體阻隔包裝材料中的應(yīng)用進展[J]. 包裝工程, 2019, 40(7): 51-59.
LIU Ren, LU Peng, WU Min, et al. Application Progress of Nano-Cellulose in Gas Barrier Packaging Materials[J]. Packaging Engineering, 2019, 40(7): 51-59.
[3] 李玲, 劉秋, 于基成. 納米食品保鮮膜研究進展[J]. 包裝工程, 2023, 44(7): 10-21.
LI Ling, LIU Qiu, YU Ji-cheng. Research Progress of Nanomaterial Food Fresh-Keeping Film[J]. Packaging Engineering, 2023, 44(7): 10-21.
[4] 許耀之, 李碩, 林肯, 等. PLA/PBSA納米活性包裝薄膜的性能研究[J]. 包裝工程, 2018, 39(15): 76-81.
XU Yao-zhi, LI Shuo, LIN Ken, et al. Properties of PLA/PBSA Active Packaging Nanofilm[J]. Packaging Engineering, 2018, 39(15): 76-81.
[5] ZHANG Wan-li, JIANG Wei-bo. Antioxidant and Antibacterial Chitosan Film with Tea Polyphenols-Mediated Green Synthesis Silver Nanoparticle via a Novel One-Pot Method[J]. International Journal of Biological Macromolecules, 2020, 155: 1252-1261.
[6] DE MATTEIS V, CASCIONE M, COSTA D, et al. Aloe Vera Silver Nanoparticles Addition in Chitosan Films: Improvement of Physicochemical Properties for Eco-Friendly Food Packaging Material[J]. Journal of Materials Research and Technology, 2023, 24: 1015-1033.
[7] YANG Dan-min, LIU Qun, GAO Ya-hui, et al. Characterization of Silver Nanoparticles Loaded Chitosan/Polyvinyl Alcohol Antibacterial Films for Food Packaging[J]. Food Hydrocolloids, 2022, 136(11): 108305.
[8] ZHAO Xi-xi, TIAN Ruo-fei, ZHOU Jing-yi, et al. Multifunctional Chitosan/Grape Seed Extract/Silver Nanoparticle Composite for Food Packaging Application[J]. International Journal of Biological Macromolecules, 2022, 207: 152-160.
[9] KHALILI M, RAZMJOU A, SHAFIEI R, et al. High Durability of Food Due to the Flow Cytometry Proved Antibacterial and Antifouling Properties of TiO2Decorated Nanocomposite Films[J]. Food and Chemical Toxicology, 2022, 168: 113291.
[10] ATHIR N, SHAH S, SHEHZAD F, et al. Rutile TiO2Integrated Zwitterion Polyurethane Composite Films as Efficient Photostable Food Packaging Material[J]. Reactive and Functional Polymers, 2020, 157: 104733.
[11] PERERA K Y, SHARMA S, DUFFY B, et al. An Active Biodegradable Layer-by-Layer Film based on Chitosan-Alginate-TiO2for the Enhanced Shelf Life of Tomatoes[J]. Food Packaging and Shelf Life, 2022, 34: 100971.
[12] DIAS M V, DE AZEVEDO V M, FERREIRA L F, et al. Chitosan-Nanocomposites as a Food Active Packaging: Effect of Addition of Tocopherol and Modified Montmorillonite[J]. Journal of Food Process Engineering, 2021, 44(11): 13843.
[13] MAO L, WANG C, YAO J, et al. Design and Fabrication of Anthocyanin Functionalized Layered Clay/Poly(Vinyl Alcohol) Coatings on Poly(Lactic Acid) Film for Active Food Packaging[J]. Food Packaging and Shelf Life, 2023, 35: 101007.
[14] 林悅, 劉倩, 林振宇, 等. 有機納米材料的應(yīng)用及分析方法研究進展[J]. 分析測試學(xué)報, 2018, 37(10): 1139-1146.
LIN Yue, LIU Qian, LIN Zhen-yu, et al. Progresses in Application and Analytical Methods of Organic Nanomaterials[J]. Journal of Instrumental Analysis, 2018, 37(10): 1139-1146.
[15] OMANOVI?-MIKLI?ANIN E, BADNJEVI? A, KAZLAGI? A, et al. Nanocomposites: a Brief Review[J]. Health and Technology, 2020, 10(1): 51-59.
[16] DEEN S. Nano-Composites and Their Applications: A Review[J]. Characterization and Application of Nanomaterials, 2019, 2(1): 1-9.
[17] DONG W, SU J, CHEN Y, et al. Characterization and Antioxidant Properties of Chitosan Film Incorporated with Modified Silica Nanoparticles as an Active Food Packaging[J]. Food Chemistry, 2022, 373: 131414.
[18] MARANGONI J L, JAMRóZ E, GON?ALVES S de á, et al. Preparation and Characterization of Sodium Alginate Films with Propolis Extract and Nano-SiO2[J]. Food Hydrocolloids for Health, 2022, 2: 100094.
[19] ADEYEYE S, ASHAOLU T J. Applications of Nano-Materials in Food Packaging: A Review[J]. Journal of Food Process Engineering, 2021, 44(7): 13708.
[20] PERES L G S, MALAFATTI J O D, BERNARDI B, et al. Biodegradable Starch Sachets Reinforced with Montmorillonite for Packing ZnO Nanoparticles: Solubility and Zn2+Ions Release[J]. Journal of Polymers and the Environment, 2023, 31(6): 2388-2398.
[21] PEIGHAMBARDOUST S J, ZAHED-KARKAJ S, PEIGHAMBARDOUST S H, et al. Characterization of Carboxymethyl Cellulose-Based Active Films Incorporating Non-Modified and Ag or Cu-Modified Cloisite 30B and Montmorillonite Nanoclays[J]. Iranian Polymer Journal, 2020, 29(12): 1087-1097.
[22] LóPEZ DE DICASTILLO C, VELáSQUEZ E, ROJAS A, et al. The Use of Nanoadditives within Recycled Polymers for Food Packaging: Properties, Recyclability, and Safety[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4): 1760-1776.
[23] CHEN J, CHAI J, CHEN X, et al. Development of Edible Films by Incorporating Nanocrystalline Cellulose and Anthocyanins into Modified Myofibrillar Proteins[J]. Food Chemistry, 2023, 417: 135820.
[24] KESARI A K, MANDAVA S, MUNAGALA C K, et al. DES-Ultrasonication Processing for Cellulose Nanofiber and Its Compounding in Biodegradable Starch Based Packaging Films Through Extrusion[J]. Industrial Crops and Products, 2022, 188: 115566.
[25] WU Wei-na, WU Ying-ying, LIN Yang, et al. Facile Fabrication of Multifunctional Citrus Pectin Aerogel Fortified with Cellulose Nanofiber as Controlled Packaging of Edible Fungi[J]. Food Chemistry, 2022, 374: 131763.
[26] TEHRI N, VASHISHTH A, GAHLAUT A, et al. Biosynthesis, Antimicrobial Spectra and Applications of Silver Nanoparticles: Current Progress and Future Prospects[J]. Inorganic and Nano-Metal Chemistry, 2020, 52(1): 1-19.
[27] NING P, LIU C C, MA X, et al. ROS-Related Antibacterial Mechanism and Ca-Enhanced Osteogenetic Property of Ca-Doped Magnetite Nanoparticles[J]. Ceramics International, 2022, 48(15): 21972-21981.
[28] SAXENA V, PANDEY L M. Bimetallic Assembly of Fe(III) Doped ZnO as an Effective Nanoantibiotic and Its ROS Independent Antibacterial Mechanism[J]. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 2020, 57: 126416.
[29] WU Yang-min, WU Wen-ting, ZHAO Wen-jie, et al. Revealing the Antibacterial Mechanism of Copper Surfaces with Controllable Microstructures[J]. Surface and Coatings Technology, 2020, 395: 125911.
[30] MU?OZ-VILLAGRáN C, CONTRERAS F, CORNEJO F, et al. Understanding Gold Toxicity in Aerobically-Grown Escherichia Coli[J]. Biological Research, 2020, 53(1): 26.
[31] ARMIJO L M, WAWRZYNIEC S J, KOPCIUCH M, et al. Antibacterial Activity of Iron Oxide, Iron Nitride, and Tobramycin Conjugated Nanoparticles Against Pseudomonas Aeruginosa Biofilms[J]. Journal of Nanobiotechnology, 2020, 18(1): 35.
[32] ZAKIA M, KOO J, KIM D, et al. Development of Silver Nanoparticle-Based Hydrogel Composites for Antimicrobial Activity[J]. Green Chemistry Letters and Reviews, 2020, 13(1): 34-40.
[33] YE Qian, CHEN Wei, HUANG He, et al. Iron and Zinc Ions, Potent Weapons Against Multidrug-Resistant Bacteria[J]. Applied Microbiology and Biotechnology, 2020, 104(12): 5213-5227.
[34] LIU Wei, WORMS I, SLAVEYKOVA V I. Interaction of Silver Nanoparticles with Antioxidant Enzymes[J]. Environmental Science: Nano, 2020, 7(5): 1507-1517.
[35] GODOY-GALLARDO M, ECKHARD U, DELGADO L M, et al. Antibacterial Approaches in Tissue Engineering Using Metal Ions and Nanoparticles: From Mechanisms to Applications[J]. Bioactive Materials, 2021, 6(12): 4470-4490.
[36] AYHAN M. A Single-Step Fabrication of Ag Nanoparticles and CVD Graphene Hybrid Nanostructure as SERS Substrate[J]. Microelectronic Engineering, 2020, 233(19): 111421.
[37] ZHU M, XU H, TAN Z, et al. Synthesis of Uniform Two-Dimensional Non-Layered α-MnSe by Molecular Sieves Modified Chemical Vapor Deposition[J]. Results in Physics, 2023, 47: 106321.
[38] PEREIRA V M, WU C N, LIU C E, et al. Molecular Beam Epitaxy Preparation and in Situ Characterization of FeTe Thin Films[J]. Physical Review Materials, 2020, 4(2): 023405.
[39] PARHI A, TANG J, SABLANI S S. Functionality of Ultra-High Barrier Metal Oxide-Coated Polymer Films for In-Package, Thermally Sterilized Food Products[J]. Food Packaging and Shelf Life, 2020, 25: 100514.
[40] HUANG Ya, YANG Cheng, LANG Jia-liang, et al. Metal Nanoparticle Harvesting by Continuous Rotating Electrodeposition and Separation[J]. Matter, 2020, 3(4): 1294-1307.
[41] BEKISSANOVA Z, RAILEAN V, BRZOZOWSKA W, et al. Synthesis, Characterization of Silver/Kaolinite Nanocomposite and Studying its Antibacterial Activity[J]. Colloids and Surfaces B: Biointerfaces, 2022, 220: 112908.
[42] TRUONG V I T T, KUMAR S R, PANG J H S, et al. Synergistic Antibacterial Activity of Silver-Loaded Graphene Oxide towards Staphylococcus Aureus and Escherichia Coli[J]. Nanomaterials, 2020, 10(2): 366.
[43] RIZZOTTO F, VASILJEVIC Z Z, STANOJEVIC G, et al. Antioxidant and Cell-Friendly Fe2TiO5Nanoparticles for Food Packaging Application[J]. Food Chemistry, 2022, 390: 133198.
[44] AMETA S K, RAI A K, HIRAN D, et al. Use of Nanomaterials in Food Science[M]. Singapore: Springer, 2020: 457-488.
[45] MITTAL M, AHUJA S, YADAV A, et al. Development of Poly(Hydroxybutyrate) Film Incorporated with Nano Silica and Clove Essential Oil Intended for Active Packaging of Brown Bread[J]. International Journal of Biological Macromolecules, 2023, 233: 123512.
[46] XIONG Yun, LI Shu-min, WARNER R, et al. Effect of Oregano Essential Oil and Resveratrol Nanoemulsion Loaded Pectin Edible Coating on the Preservation of Pork Loin in Modified Atmosphere Packaging[J]. Food Control, 2020, 114: 107226.
[47] SARAVANAKUMAR K, SATHIYASEELAN A, MARIADOSS A V A, et al. Physical and Bioactivities of Biopolymeric Films Incorporated with Cellulose, Sodium Alginate and Copper Oxide Nanoparticles for Food Packaging Application[J]. International Journal of Biological Macromolecules, 2020, 153: 207-214.
[48] PIRSA S, SANI I K, MIRTALEBI S S. Nano-Biocomposite based Color Sensors: Investigation of Structure, Function, and Applications in Intelligent Food Packaging[J]. Food Packaging and Shelf Life, 2022, 31: 100789.
[49] LI H, WEI J, JIN M, et al. Colorimetric Analysis through Electrospun WO3/PAN Membrane for Indication of Oxygen in Food Packaging Using a Smartphone[J]. Composites Communications, 2022, 35: 101321.
[50] WANG Y, LIU K, ZHANG M, et al. Sustainable Polysaccharide-Based Materials for Intelligent Packaging[J]. Carbohydrate Polymers, 2023, 313: 120851.
[51] CHENG J H, DAI Q, SUN D W, et al. Applications of Non-Destructive Spectroscopic Techniques for Fish Quality and Safety Evaluation and Inspection[J]. Trends in Food Science & Technology, 2013, 34(1): 18-31.
[52] ALIZADEH SANI M, TAVASSOLI M, SALIM S A, et al. Development of Green Halochromic Smart and Active Packaging Materials: TiO2Nanoparticle- and Anthocyanin-Loaded Gelatin/κ-Carrageenan Films[J]. Food Hydrocolloids, 2022, 124: 107324.
[53] HUANG Shi-rong, LIU Bin, GE Du, et al. Effect of Combined Treatment with Supercritical CO2and Rosemary on Microbiological and Physicochemical Properties of Ground Pork Stored at 4 ℃[J]. Meat Science, 2017, 125: 114-120.
[54] WAGH R V, CHATLI M K, RUUSUNEN M, et al. Effect of Various Phyto-Extracts on Physico-Chemical, Colour, and Oxidative Stability of Pork Frankfurters[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(8): 1178-1186.
[55] KUMAR V, CHATLI M K, WAGH R V, et al. Effect of the Combination of Natural Antioxidants and Packaging Methods on Quality of Pork Patties during Storage[J]. Journal of Food Science and Technology, 2015, 52(10): 6230-6241.
[56] JAGTAP N S, WAGH R V, CHATLI M K, et al. Chevon Meat Storage Stability Infused with Response Surface Methodology Optimized Origanum vulgare Leaf Extracts[J]. Agricultural Research, 2020, 9(4): 663-674.
[57] LU Min, ZHOU Qi, YU Hui, et al. Colorimetric Indicator Based on Chitosan/Gelatin with Nano-ZnO and Black Peanut Seed Coat Anthocyanins for Application in Intelligent Packaging[J]. Food Research International, 2022, 160: 111664.
[58] WAGH RAJESH V, AJAHAR K, RUCHIR P, et al. Cellulose Nanofiber-Based Multifunctional Films Integrated with Carbon Dots and Anthocyanins from Brassica Oleracea for Active and Intelligent Food Packaging Applications[J]. International Journal of Biological Macromolecules, 2023, 233: 123567.
[59] KWON S, KO S. Colorimetric Freshness Indicator Based on Cellulose Nanocrystal-Silver Nanoparticle Composite for Intelligent Food Packaging[J]. Polymers, 2022, 14(17): 3695.
[60] YOU S, ZHANG X, WANG Y, et al. Development of Highly Stable Color Indicator Films Based on κ-Carrageenan, Silver Nanoparticle and Red Grape Skin Anthocyanin for Marine Fish Freshness Assessment[J]. International Journal of Biological Macromolecules, 2022, 216: 655-669.
[61] ONYEAKA H, PASSARETTI P, MIRI T, et al. The Safety of Nanomaterials in Food Production and Packaging[J]. Current Research in Food Science, 2022, 5: 763-774.
[62] ARUN R, SHRUTHY R, PREETHA R, et al. Biodegradable Nano Composite Reinforced with Cellulose Nano Fiber from Coconut Industry Waste for Replacing Synthetic Plastic Food Packaging[J]. Chemosphere, 2022, 291: 132786.
[63] MATHEW S, JAYAKUMAR A, KUMAR V P, et al. One-Step Synthesis of Eco-Friendly Boiled Rice Starch Blended Polyvinyl Alcohol Bionanocomposite Films Decorated with in Situ Generated Silver Nanoparticles for Food Packaging Purpose[J]. International Journal of Biological Macromolecules, 2019, 139: 475-485.
[64] LUO D, XIE Q, GU S, et al. Potato Starch Films by Incorporating Tea Polyphenol and MgO Nanoparticles with Enhanced Physical, Functional and Preserved Properties[J]. International Journal of Biological Macromolecules, 2022, 221: 108-120.
[65] ZHANG W, RHIM J W. Titanium Dioxide (TiO2) for the Manufacture of Multifunctional Active Food Packaging Films[J]. Food Packaging and Shelf Life, 2022, 31: 100806.
[66] JIANG Z W, YU W W, LI Y, et al. Migration of Copper from Nanocopper/Polypropylene Composite Films and Its Functional Property[J]. Food Packaging and Shelf Life, 2019, 22: 100416.
[67] GVOZDENKO A A, SIDDIQUI S A, BLINOV A V, et al. Synthesis of CuO Nanoparticles Stabilized with Gelatin for Potential Use in Food Packaging Applications[J]. Scientific Reports, 2022, 12(1): 12843.
[68] 黃皓, 李莉, 秦雨, 等. 納米氧化鋅改性LDPE食品包裝薄膜中鋅粒子的遷移規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報, 2018, 34(2): 278-283.
HUANG Hao, LI Li, QIN Yu, et al. Migration Rules of Zn from Nano-ZnO Modified LDPE Food Packaging Films[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 278-283.
[69] DENG Jing, DING Quan-ming, LI Wen, et al. Preparation of Nano-Silver-Containing Polyethylene Composite Film and Ag Ion Migration into Food-Simulants[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(3): 1613-1621.
[70] LAJARRIGE A, GONTARD N, GAUCEL S, et al. Evaluation of the Food Contact Suitability of Aged Bio-Nanocomposite Materials Dedicated to Food Packaging Applications[J]. Applied Sciences, 2020, 10(3): 877.
[71] ENESCU D, DEHELEAN A, GON?ALVES C, et al. Evaluation of the Specific Migration According to EU Standards of Titanium from Chitosan/Metal Complexes Films Containing TiO2Particles into Different Food Simulants A Comparative Study of the Nano-Sized vs Micro-Sized Particles[J]. Food Packaging and Shelf Life, 2020, 26: 100579.
[72] ALIZADEH-SANI M, MOHAMMADIAN E, MCCLEMENTS D J. Eco-Friendly Active Packaging Consisting of Nanostructured Biopolymer Matrix Reinforced with TiO2and Essential Oil: Application for Preservation of Refrigerated Meat[J]. Food Chemistry, 2020, 322: 126782.
[73] WANG Z, HE Y, LIU S, et al. Toxic Effects of Zinc Oxide Nanoparticles as a Food Additive in Goat Mammary Epithelial Cells[J]. Food Research International, 2023, 167: 112682.
[74] YAN L, MAO J, SHI W, et al. Subchronic Toxicity Study of Ferric Oxide Nanoparticles through Intragastric Administration: A 94-d, Repeated Dose Study in Sprague Dawley Rats[J]. Regulatory Toxicology and Pharmacology, 2023, 140: 105381.
[75] STALDER T, ZAITER T, EL-BASSET W, et al. Interaction and Toxicity of Ingested Nanoparticles on the Intestinal Barrier[J]. Toxicology, 2022, 481: 153353.
[76] GU Wei-qing, LIU Su, CHEN Ling, et al. Single-Cell RNA Sequencing Reveals Size-Dependent Effects of Polystyrene Microplastics on Immune and Secretory Cell Populations from Zebrafish Intestines[J]. Environmental Science & Technology, 2020, 54(6): 3417-3427.
[77] MERCIER-BONIN M, DESPAX B, RAYNAUD P, et al. Exposition Orale et Devenir Dans L'intestin des Nanoparticules Alimentaires: Exemple de L'argent et Du Dioxyde de Titane[J]. Cahiers De Nutrition et De DiétéTique, 2016, 51(4): 195-203.
[78] CHEN Zhang-jian, WANG Yun, ZHUO Lin, et al. Effect of Titanium Dioxide Nanoparticles on the Cardiovascular System after Oral Administration[J]. Toxicology Letters, 2015, 239(2): 123-130.
[79] ZHAO Yan-nan, SUN Xiao-xing, ZHANG Guan-nan, et al. Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects[J]. ACS Nano, 2011, 5(2): 1366-1375.
[80] GUILDFORD A L, POLETTI T, OSBOURNE L H, et al. Nanoparticles of a Different Source Induce Different Patterns of Activation in Key Biochemical and Cellular Components of the Host Response[J]. Journal of the Royal Society, Interface, 2009, 6(41): 1213-1221.
[81] RYAN J, JACOB P, LEE A, et al. Biodistribution and Toxicity of Antimicrobial Ionic Silver (Ag+) and Silver Nanoparticle (AgNP+) Species after Oral Exposure, in Sprague-Dawley Rats[J]. Food and Chemical Toxicology, 2022, 166: 113228.
Research Progress on Nano-composite Food Contact Materials
YUAN Xiao-yu1a, FENG Jing-yuan1a, GE Bei-ning1, ZHANG Xin-yu1a, ZHANG Ying-ying1a, JIANG Fang-kai1a, YAN Jian-wei2*
(1. a. College of Food Science and Technology b. International Education College, Henan Agricultural University, Zhengzhou 450002, China; 2. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China)
The work aims to conduct a more in-depth exploration on the current research of nano-composite food contact materials (NFCM), in order to promote the integrated development of food packaging in functional, intelligent and green ecological terms. The diversified development of NFCM was firstly summarized and the impact of nanotechnology on the mechanical strength, gas barrier, antibacterial preservation, intelligent activity monitoring and biodegradation properties of NFCM was outlined. Then, the migration behavior of nanomaterials from NFCM under actual working conditions (ambient temperature, contact time and food pH) was analyzed deeply. Finally, the potential toxicity of nanomaterials on human cells and tissue organs was explored, which was the key factor in the safety assessment of NFCM. Modern nanotechnology improves the performance of flexible polymer and realizes the multifunction of NFCM. This has broad application prospects in food packaging for meat, bread, fruits and vegetables, and also provides reference value for the development of food packaging industry.
nano-composite food contact materials; active antibacterial; intelligent monitoring; biodegradation properties; migration study
TS206.4
A
1001-3563(2023)17-0066-11
10.19554/j.cnki.1001-3563.2023.17.009
2023-05-12
河南省重點研發(fā)與推廣專項(科技攻關(guān))(232102320295);國家自然科學(xué)基金面上項目(12072112);中國博士后科學(xué)基金(2021M700306)
責任編輯:曾鈺嬋