• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      以東試早柚為母本創(chuàng)制柑橘三倍體種質(zhì)資源

      2023-10-27 09:00:25劉承浪曹宗洪陶亞文徐祥增高世德岳建強(qiáng)謝宗周葉俊麗柴利軍郭文武鄧秀新
      果樹(shù)學(xué)報(bào) 2023年10期
      關(guān)鍵詞:柑橘

      劉承浪 馮 迪 曹宗洪 陶亞文 徐祥增 高世德 岳建強(qiáng) 謝宗周 葉俊麗 柴利軍 郭文武 鄧秀新

      DOI:10.13925/j.cnki.gsxb.20230179

      摘? ? 要:【目的】三倍體植物由于減數(shù)分離紊亂,難以形成可育的雌雄配子,屬于天然的不育類(lèi)型,配置以2x×4x多個(gè)雜交組合,旨在創(chuàng)制柑橘三倍體種質(zhì),豐富柑橘無(wú)核材料?!痉椒ā恳詥闻咝远扼w品種東試早柚為母本與四倍體柑橘材料ZP(紙皮,四倍體甜橙)、PT(四倍體葡萄柚)、NH(四倍體,諾瓦橘柚+HB柚體細(xì)胞雜種)為父本進(jìn)行倍性雜交,授粉后85 d和100 d采摘幼果并對(duì)未成熟種子實(shí)施幼胚離體挽救培養(yǎng),獲得再生植株后用流式細(xì)胞儀和InDel標(biāo)記對(duì)其倍性及遺傳來(lái)源進(jìn)行鑒定?!窘Y(jié)果】從3個(gè)倍性雜交組合的168株再生植株中,通過(guò)倍性檢測(cè)獲得三倍體幼苗128株且均為雙親雜交后代,其中東試早柚×ZP共計(jì)60株、東試早柚×PT共計(jì)60株、東試早柚×NH共計(jì)8株。【結(jié)論】通過(guò)倍性雜交高效創(chuàng)制三倍體柑橘新種質(zhì),為柑橘早熟無(wú)核育種及相關(guān)基礎(chǔ)研究提供了珍貴的育種材料。

      關(guān)鍵詞:柑橘;東試早柚;胚挽救;倍性育種;InDel

      中圖分類(lèi)號(hào):S666 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)10-2041-09

      Creation of triploid seedling plants of Citrus by crossing Dongshizao pummelo female with tetraploid male parents

      LIU Chenglang1, FENG Di1, CAO Zonghong1, TAO Yawen1, XU Xiangzeng2, GAO Shide2, YUE Jianqiang3, XIE Zongzhou1, YE Junli1, CHAI Lijun1, GUO Wenwu1, DENG Xiuxin1*

      (1National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 2Yunnan Institute of Tropical Crops, Jinghong 666100, Yunnan, China; 3Institute of Tropcal and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, Yunnan, China)

      Abstract: 【Objective】 Citrus is mainly cultivated for fresh consumption in China, so seedless citrus has become the dominant position in market consumption and in breeding programs. In order to enhance the competitiveness of the citrus industry and meet the market demands, it has been the goal of breeders to cultivate seedless varieties of citrus. Triploids are naturally seedless material whose chromosomes are disrupted during meiosis, making it difficult to form normal fertile gametes, resulting in seedless fruits. Triploid citrus typically has larger fruits and possesses stronger resistance and adaptation to the environmental conditions due to chromosome doubling. Ploidy crosses is the most effective strategy to obtain seedless citrus varieties, using monoembryonic diploid and tetraploid ploidy as parents. Therefore, we performed several 2x×4x crosses to create triploid citrus. 【Methods】 In this study, we selected the Dongshizao pummelo [C. grandis (L.) Osbeck Dongshizao pummelo] as the female parent, which is a local specialty cultivar from Yunnan province, characterized by early-maturing, seedlessness, high sugar and low acidity. Then, we used a late-maturing and productive autotetraploid ZP [C. sinensis (L.) Osbeck Paperrind orange], PT [C. paradisi (L.) Osbeck grapefruit] and an allotetraploid somatic hybrids NH [(C. reticulata Blanco×C. paradisi Macf.) + C. grandis (L.) Osbeck Hirado Buntan pummelo], as the male parent for the artificial crosses. In the earlier step, the pollinated styles were stained with aniline blue to observe the cross-compatibility between the parents, and in the subsequent steps, the immature seeds obtained from young fruits at 85 and 100 days after pollination (DAP) were cultured in vitro. When seeds grew into seedlings, the ploidy levels were analyzed by flow cytometry. In addition, we also resequenced the maternal Dongshizao pummelo, then the data was mapped to the HWB [Citrus grandis (L.) Osbeck Wanbai pummelo] reference genome to obtain InDel (insertion/deletion) variant loci, which contained 50-200 bp differences. According to these loci, primers were designed upstream and downstream of them, and PCR amplification was performed using the DNA of Dongshizao pummelo, ZP, PT and NH as templates. The amplified products were detected using 2.5% agarose gel, and clear and stable InDel-specific band patterns were selected for the identification of the genetic origin of the polyploid regenerated plants. 【Results】 The aniline blue staining results of the pollinated styles showed that a large number of pollen tubes could grow down to the bottom of the styles, and showed cross-comptibility in crosses of Dongshizao pummelo × ZP, Dongshizao pummelo × PT and Dongshizao pummelo × NH. Due to the 1∶2 (2x×4x) ratio of maternal and paternal genomes in the endosperm of the progeny, the seeds would be completely sterile in mature fruit. Therefore, the juvenile embryos were cultured in vitro before the seeds were sterilized. At 85 DAP, 771 immature seeds obtained from the young fruits of Dongshizao pummelo × NH cross were cultured in vitro. After shooting and rooting induction, 15 plants were regenerated. Similarily, when 570 and 482 immature seeds of Dongshizao pummelo × PT and Dongshizao pummelo × ZP crosses were rescued at 100 DAP, we obtained 96 and 117 regenerated plants respectively. The regeneration rates of 3 crosses were different, of which the two autotetraploids about 20% were 10 times higher than the allotetraploid (1.9%). We also checked the ploidy levels of the hybrid progenies, 168 out of 228 progeny obtained from the crosses between Dongshizao pummelo and three tetraploid citrus cultivars. In the Dongshizao pummelo × ZP cross, 94 plants were regenerated, in which 60 plants proved to be triploids by flow cytometry analysis, accounting for 63.8%. In the Dongshizao pummelo × PT cross, 1 tetraploid and 60 triploids were detected in 63 regenerated plants, accounting for 95.2% and 1.67% respectively. Similarily, eight plants were detected as triploids in 11 seedlings from the Dongshizao pummelo × NH cross, accounting for 72.7%. In this study, we also developed a group of specific InDel markers for the genetic identification of the polyploid seedlings. Using HWB genome as the reference genome, we developed 10 pairs of InDel primers for hybrid progeny screening using the resequence deta of Dongshizao pummelo, grapefruit and sweet orange, which were called after InDel01-InDel10 respectively. InDel05 and InDel10 could distinguish Dongshizao pummelo from ZP and PT but not NH; InDel07 and InDel08 could distinguish all the parental species, but some of their band patterns were not obvious. Accordingly, the InDel05 primers were selected for the identification of Dongshizao pummelo × PT and Dongshizao pummelo × ZP hybrid progeny, and the InDel07 primers were selected for the identification of Dongshizao pummelo × NH hybrid progeny. The results showed that all the 129 polyploids derived form the crosses were hybrids of both parents. 【Conclusion】 Using the local specialty cultivar Dongshizao pummelo of Yunnan as the female parent and two autotetraploids (ZP, PT) and one allotetraploid somatic hybrids (NH) as the male parents, three crosses of 128 citrus triploids and one tetraploid were created in a relatively short time after cross-pollination. Our work would lay a foundation for the selection and breeding of new seedless varieties and related molecular research in citrus.

      Key words: Citrus; Dongshizao pummelo; Embryo rescue; Ploidy breeding; InDel

      中國(guó)柑橘以鮮食為主,無(wú)籽柑橘成為市場(chǎng)消費(fèi)的主流和育種方向[1]。為提升產(chǎn)業(yè)競(jìng)爭(zhēng)力,滿(mǎn)足市場(chǎng)需求,培育柑橘無(wú)核品種一直是育種者的目標(biāo)。三倍體為天然的無(wú)核材料,其在減數(shù)分裂時(shí)期,染色體發(fā)生紊亂,難以形成正??捎呐渥樱瑢?dǎo)致果實(shí)一般為無(wú)核[2]。由于染色體加倍、倍性增加,三倍體果實(shí)較大、抗逆性增強(qiáng),對(duì)環(huán)境也具有更強(qiáng)的適應(yīng)性。通過(guò)倍性雜交以培育三倍體是獲得柑橘無(wú)核品種最為有效的途徑之一,其中又以單胚性二倍體品種為母本與四倍體雜交方式最為普遍[3]。Soost等[4]以單胚無(wú)酸柚與四倍體馬敘葡萄柚雜交獲得2個(gè)已廣泛推廣的無(wú)核品種Oroblanco和Melgold。Aleza等[5]配置以二倍體Fortune寬皮橘與四倍體Orlando柑橘品種等為親本的77個(gè)雜交組合,獲得4400多株三倍體再生植株,并從中篩選出一個(gè)綜合性狀優(yōu)良的無(wú)核品種IVIA-600。近年來(lái),華中農(nóng)業(yè)大學(xué)柑橘團(tuán)隊(duì)也創(chuàng)制諸多以單胚性二倍體柑橘品種與四倍體體細(xì)胞雜種為親本的雜交組合,獲得一大批柑橘三倍體無(wú)核新種質(zhì)[6]。

      胚挽救在柑橘果樹(shù)育種中是非常重要的技術(shù),其核心是對(duì)由生理等因素導(dǎo)致種子不能成苗的合子胚人工接種于培養(yǎng)基上進(jìn)行離體培育,并結(jié)合試管嫁接手段獲得再生植株,極大地提升果樹(shù)育種效率,加快育種進(jìn)程[7]。彭珺[8]以2個(gè)二倍體柑橘品種與5個(gè)通過(guò)柑橘體細(xì)胞融合得到的四倍體品種進(jìn)行倍性雜交,對(duì)幼胚進(jìn)行離體培養(yǎng),并結(jié)合流式細(xì)胞儀對(duì)再生植株進(jìn)行倍性分析,獲得三倍體141株。周銳[9]以不同柑橘材料為親本,用相同的方法創(chuàng)制出147株三倍體。此外,隨著全基因組重測(cè)序技術(shù)逐漸成熟,對(duì)于特定品系的柑橘品種,開(kāi)發(fā)該品種特異性且擴(kuò)增良好的InDel(Insertion/Deletion)分子標(biāo)記對(duì)雜交后代進(jìn)行遺傳鑒定,具有低成本、高效、遺傳穩(wěn)定性好、準(zhǔn)確性高且結(jié)果可靠的優(yōu)勢(shì)[10]。王淪[11]以甜橙的基因組為參考基因組挖掘到268個(gè)該品種存在的高質(zhì)量InDel標(biāo)記。宋謝天等[12]利用測(cè)序數(shù)據(jù)開(kāi)發(fā)出7對(duì)InDel標(biāo)記能區(qū)分柑橘有性后代和無(wú)性后代。

      筆者在本研究中以云南地方特色早熟品種東試早柚為母本,與2個(gè)同源四倍體(ZP、PT)和1個(gè)異源四倍體(NH)為父本,雜交授粉后利用胚挽救、流式細(xì)胞儀及InDel標(biāo)記等技術(shù)手段獲得具有豐富遺傳背景的柑橘三倍體材料,為柑橘早熟無(wú)核新品種選育和相關(guān)基礎(chǔ)研究奠定材料基礎(chǔ)。

      1 材料和方法

      1.1 試驗(yàn)材料

      用于創(chuàng)制柑橘三倍體無(wú)核種質(zhì)的材料:云南西雙版納州熱帶作物科學(xué)研究所柚試驗(yàn)基地的早熟品種東試早柚[Citrus grandis (L.) Osbeck ‘Dongshizao pummelo],湖北武漢華中農(nóng)業(yè)大學(xué)國(guó)家柑橘育種中心資源圃的紙皮[ZP,四倍體甜橙,C. sinensis (L.) Osbeck ‘Paperrind orange]、四倍體葡萄柚[PT,C. paradise Osbeck ‘Grapefruit]、NH[諾瓦橘柚+HB柚,C. reticulata Blanco×C. paradisi Macf. + C. grandis (L.) Osbeck ‘Hirado Buntan pummelo,四倍體,體細(xì)胞融合雜種]。

      1.2 雜交授粉后親和性鑒定方法

      花粉的收集和保存參照朱晨橋[13]的方法,雜交授粉及授粉后7 d的花柱染色使用苯胺藍(lán)染色法,通過(guò)倒置熒光顯微鏡觀察花粉管的生長(zhǎng)狀態(tài)來(lái)鑒定雜交親和性[14]。

      1.3 雜交后代的胚培育及再生植株的倍性檢測(cè)

      胚挽救參照強(qiáng)瑞瑞[15]的方法并適當(dāng)修改。授粉后85和100 d,采摘未成熟的果實(shí)暫置于4 ℃保存。無(wú)菌條件下,75%乙醇浸泡幼果15 min,立即置于乙醇燈上燃燒消毒滅菌,乙醇燃燒完全后用手術(shù)刀將果實(shí)剝開(kāi),取出種子。將種子尾部劃一條縫并將其接種于萌發(fā)培養(yǎng)基(MT培養(yǎng)基+1 mg·L-1 GA3)中,置于培養(yǎng)室培養(yǎng)。培養(yǎng)1個(gè)月后,未萌發(fā)的種子仍于萌發(fā)培養(yǎng)基中繼續(xù)培養(yǎng);將已萌發(fā)的種子形成的胚狀體置于生芽培養(yǎng)基(MT+0.5 mg·L-1 BA+0.5 mg·L-1 KT+0.1 mg·L-1 NAA+40 g蔗糖+8 g瓊脂)中增殖生芽,待其長(zhǎng)出2~3枚葉片后將莖切下,接種于生根培養(yǎng)基(1/2 MT+0.1 mg·L-1 IBA+0.5 mg·L-1 NAA+0.5 g·L-1活性炭+8 g瓊脂)中誘導(dǎo)生根。

      流式細(xì)胞儀(Cyflow space,Sysmex,Japan)倍性鑒定參照謝善鵬[16]的方法并適當(dāng)修改。以二倍體沙田柚為對(duì)照,從待測(cè)樣品上取0.5 cm2大小的新鮮葉片于干凈的培養(yǎng)皿中,加約500 μL的細(xì)胞提取緩沖液(Nuclei extraction buffer,Cystain DNA 2 step),用刀片將其切碎,靜置30~40 s后加入約1.5 mL的DNA染色液(Staining buffer,Cystain DNA 2 step)進(jìn)行染色,最后用30 μm的微孔濾膜將樣品過(guò)濾到2.5 mL試管中,用流式細(xì)胞儀(Cyflow space,Sysmex,Japan)進(jìn)行上樣檢測(cè),F(xiàn)loMax軟件自動(dòng)生成DNA含量分布曲線。

      1.4 植物基因組DNA的提取與檢測(cè)

      采集東試早柚、ZP、PT、NH及其各雜交子代成熟葉片并提取基因組DNA,提取方法采用改良CTAB法,具體步驟參照程運(yùn)江[17]的博士學(xué)位論文,使用NanoDrop 1000超微量分光光度計(jì)對(duì)DNA進(jìn)行質(zhì)量檢測(cè),將質(zhì)量合格的DNA初提液稀釋至工作質(zhì)量濃度(約200 ng·μL-1),保存于-20 ℃冰箱備用。

      1.5 InDel分子標(biāo)記的篩選

      利用母本東試早柚的重測(cè)序數(shù)據(jù)以晚白柚的基因組為參考基因組進(jìn)行序列比對(duì),獲取InDel變異位點(diǎn),篩選含有50~200 bp差異的位點(diǎn)。在InDel變異位點(diǎn)上下游設(shè)計(jì)引物(表1),以東試早柚、ZP、PT、NH的DNA為模板進(jìn)行PCR擴(kuò)增,PCR擴(kuò)增反應(yīng)體系20 μL,其中包括10 μL Mix,1 μL DNA,InDel上下游引物各0.5 μL,加入ddH2O補(bǔ)足體積。PCR擴(kuò)增產(chǎn)物使用2.5%瓊脂糖凝膠檢測(cè),選擇清晰穩(wěn)定的特異性帶型。

      2 結(jié)果與分析

      2.1 東試早柚與四倍體柑橘雜交授粉后親和性鑒定

      以東試早柚作母本與2個(gè)同源四倍體(ZP、PT)、1個(gè)異源四倍體(NH)作父本進(jìn)行倍性雜交。在東試早柚×ZP、東試早柚×PT、東試早柚×NH的雜交組合中,對(duì)授粉后的花柱進(jìn)行苯胺藍(lán)染色來(lái)觀察花粉管的生長(zhǎng)狀態(tài),發(fā)現(xiàn)大量花粉管能生長(zhǎng)至花柱底部,均表現(xiàn)為親和(圖1)。

      2.2 胚挽救獲得再生植株

      由于子代胚乳中母本和父本基因組比例為2∶2(2x×4x),后期種子完全敗育[2]。故而在種子未敗育之前,對(duì)幼胚進(jìn)行離體挽救培養(yǎng)(圖2)。授粉后85 d,取東試早柚×NH雜交組合的果實(shí)種子進(jìn)行胚挽救,接種771粒種子,獲得再生植株15株。授粉后100 d,取東試早柚×PT、東試早柚×ZP雜交組合的果實(shí)種子進(jìn)行胚挽救,分別接種570、482粒種子,各獲得再生植株96、117株(表2),組合間再生率存在差異,同源四倍體為父本的2個(gè)組合較高,在20%左右,異源四倍體為父本的組合較低,只有1.9%,相差近10倍。

      2.3 再生植株倍性分析

      利用流式細(xì)胞儀對(duì)東試早柚與3個(gè)四倍體柑橘雜交獲得228株子代中的168株再生植株進(jìn)行倍性檢測(cè)(圖3),在東試早柚×ZP雜交組合中,94株再生植株檢測(cè)到三倍體幼苗60株,占再生子代的63.8%;東試早柚×PT雜交組合中,63株再生植株檢測(cè)到三倍體幼苗60株和四倍體幼苗1株,分別占再生植株的95.2%和1.67%;東試早柚×NH雜交組合中11株再生植株檢測(cè)到三倍體植株8株,占再生植株的72.7%(表3)。

      2.4 再生植株的遺傳來(lái)源分析

      以晚白柚的基因組為參考基因組,利用東試早柚、葡萄柚及甜橙重測(cè)序數(shù)據(jù)開(kāi)發(fā)10對(duì)InDel引物進(jìn)行雜交子代篩選,其中InDel05和InDel10能區(qū)分東試早柚與ZP、PT,無(wú)法區(qū)分NH;InDel07和InDel08雖能區(qū)分所有的親本,但是其部分特異性條帶不明顯(圖4)。因此,選擇InDel05引物對(duì)東試早柚×PT和東試早柚×ZP雜交子代進(jìn)行鑒定,InDel07引物對(duì)東試早柚×NH雜交子代進(jìn)行鑒定(圖5)。結(jié)果表明129株多倍體再生植株均擴(kuò)增出具有雙親差異性顯著的帶型。

      3 討 論

      柑橘三倍體育種以獲得果實(shí)無(wú)核為主要目標(biāo)性狀,同時(shí)能兼具不同成熟期、易剝皮、高糖低酸等優(yōu)異性狀。Fatta Del Bosco等[18]以寬皮橘等為親本通過(guò)倍性雜交,以期獲得無(wú)核且易剝皮的新種質(zhì)來(lái)取代Avana和Tardivo di Ciaculli多籽寬皮橘品種。西班牙則以無(wú)核且晚熟為目標(biāo)性狀,通過(guò)三倍體育種獲得Safor[19]和Garbí[20]等具有無(wú)籽、中晚熟柑橘品種。染色體加倍也會(huì)導(dǎo)致三倍體植株表現(xiàn)出果皮增厚、果面粗糙、果實(shí)低糖高酸、枝刺增多且增長(zhǎng)等諸多不利的性狀。Grosser等[21]以二倍體克里曼丁橘為親本,倍性雜交獲得的三倍體后代表現(xiàn)出枝刺長(zhǎng)、枝刺增多等不利性狀;但是以二倍體Sugar Belle為親本,得到的三倍體后代表現(xiàn)出果實(shí)早熟、枝刺短、枝刺減少等優(yōu)良性狀。因此,雜交后代性狀的表現(xiàn)與親本的選擇密切相關(guān)。筆者在本研究中選擇果實(shí)早熟、無(wú)籽、高糖低酸的云南地方特色品種東試早柚為母本,融合雙親優(yōu)良性狀的四倍體體細(xì)胞雜種NH、晚熟且豐產(chǎn)的同源四倍體ZP和PT為父本,通過(guò)三倍體育種以期獲得果實(shí)早熟、豐產(chǎn)、品質(zhì)更佳等諸多綜合雙親優(yōu)良性狀的柑橘無(wú)核新種質(zhì)。

      在柑橘中,常以二倍體(♀)與四倍體(♂)、四倍體(♀)與二倍體(♂)進(jìn)行倍性雜交,不正常的胚與胚乳的倍性比會(huì)致使雜交獲得的合子胚提前敗育[22]。胚挽救是對(duì)受各種不利因素影響而致使早期敗育的合子胚離體培養(yǎng),是大多數(shù)果樹(shù)育種中普遍使用的一種方法[7]。解凱東等[23]創(chuàng)制以8個(gè)二倍體柑橘品種、6個(gè)四倍體柑橘品種為親本,通過(guò)倍性雜交獲得再生植株2832株,并結(jié)合流式細(xì)胞儀對(duì)再生植株檢測(cè)獲得三倍體植株401株等一大批倍性材料。筆者在本研究中以二倍體單胚性東試早柚為母本,2個(gè)同源四倍體和1個(gè)異源四倍體柑橘品種為父本,利用胚挽救手段獲得228株再生植株,并使用流式細(xì)胞儀對(duì)168株再生植株進(jìn)行倍性檢測(cè),獲得三倍體植株128株,還意外獲得1株四倍體材料。

      目前,在柑橘育種中特異性InDel標(biāo)記已成為鑒定雜交子代遺傳來(lái)源的重要手段。湯雨晴等[24]利用金蘭柚全基因組重測(cè)序數(shù)據(jù)開(kāi)發(fā)出24對(duì)InDel標(biāo)記,均能夠有效區(qū)分金蘭柚不同于其他的柚類(lèi)品種。韓健等[25]基于基因組重測(cè)序數(shù)據(jù)開(kāi)發(fā)出可有效檢測(cè)沙田柚與枳雜交子代的InDel標(biāo)記,從1279株子代中鑒定獲得698株雜種苗。筆者在本研究中以晚白柚的基因組為參考基因組,開(kāi)發(fā)10對(duì)候選InDel標(biāo)記用于區(qū)分東試早柚及ZP、PT、NH柑橘種質(zhì),篩選出2對(duì)高質(zhì)量InDel標(biāo)記對(duì)倍性檢測(cè)獲得的128株三倍體和1株四倍體再生植株進(jìn)行遺傳鑒定,均擴(kuò)增出親本特異性條帶。因此,結(jié)合倍性檢測(cè)的結(jié)果,獲得的流式細(xì)胞儀129株多倍體植株均為雙親雜交子代,其中獲得1株四倍體是由東試早柚×PT雜交而來(lái),推測(cè)其可能是由母本產(chǎn)生未減數(shù)的雌配子與父本產(chǎn)生的二倍體雄配子雜交授粉受精而來(lái)的。

      4 結(jié) 論

      通過(guò)有性雜交,結(jié)合胚胎搶救、流式細(xì)胞儀及InDel分子標(biāo)記等技術(shù)在較短時(shí)間內(nèi)創(chuàng)制出3個(gè)組合的柑橘三倍體128株和四倍體雜種1株,為柑橘三倍體無(wú)核育種提供了材料。

      參考文獻(xiàn) References:

      [1] 鄧秀新. 中國(guó)柑橘育種60年回顧與展望[J]. 園藝學(xué)報(bào),2022,49(10):2063-2074.

      DENG Xiuxin. A review and perspective for Citrus breeding in China during the last six decades[J]. Acta Horticulturae Sinica,2022,49(10):2063-2074.

      [2] 宋健坤. 柑橘三倍體種質(zhì)資源的創(chuàng)造及遺傳分析[D]. 武漢:華中農(nóng)業(yè)大學(xué),2006.

      SONG Jiankun. Creation and genetic analysis of triploid Citrus germplasm[D]. Wuhan:Huazhong Agricultural University,2006.

      [3] OLLITRAULT P,DAMBIER D,LURO F,F(xiàn)ROELICHER Y. Ploidy manipulation for breeding seedless triploid Citrus[J]. Plant Breeding Reviews,2008,30:323-352.

      [4] SOOST R K,CAMERON J W. ‘Melogold,A triploid pummelo-grapefruit hybrid[J]. HortScience,1985,20(6):1134-1135.

      [5] ALEZA P,JU?REZ J,CUENCA J,OLLITRAULT P,NAVARRO L. Extensive citrus triploid hybrid production by 2x × 4x sexual hybridizations and parent-effect on the length of the juvenile phase[J]. Plant Cell Reports,2012,31(9):1723-1735.

      [6] 解凱東,王惠芹,王曉培,梁武軍,謝宗周,伊華林,鄧秀新,GROSSER J W,郭文武. 單胚性二倍體為母本與異源四倍體雜交大規(guī)模創(chuàng)制柑橘三倍體[J]. 中國(guó)農(nóng)業(yè)科學(xué),2013,46(21):4550-4557.

      XIE Kaidong,WANG Huiqin,WANG Xiaopei,LIANG Wujun,XIE Zongzhou,YI Hualin,DENG Xiuxin,GROSSER J W,GUO Wenwu. Extensive Citrus triploid breeding by crossing monoembryonic diploid females with allotetraploid male parents[J]. Scientia Agricultura Sinica,2013,46(21):4550-4557.

      [7] 梁青,陳學(xué)森,劉文,吳燕. 胚搶救在果樹(shù)育種上的研究及應(yīng)用[J]. 園藝學(xué)報(bào),2006,33(2):445-452.

      LIANG Qing,CHEN Xuesen,LIU Wen,WU Yan. Research and application of embryo rescue techniques in fruit tree breeding[J]. Acta Horticulturae Sinica,2006,33(2):445-452.

      [8] 彭珺. 以2個(gè)多胚性寬皮柑橘為母本倍性雜交培育三倍體新種質(zhì)[D]. 武漢:華中農(nóng)業(yè)大學(xué),2019.

      PENG Jun. Production of citrus triplouid plants by interploid crosses with two ployembryonic Mandarins as female parents[D]. Wuhan:Huazhong Agricultural University,2019.

      [9] 周銳. 柑橘特異資源四倍體發(fā)掘及倍性雜交創(chuàng)制三倍體[D]. 武漢:華中農(nóng)業(yè)大學(xué),2020.

      ZHOU Rui. Exploration of tetraploid seedlings and production of triploid plants via sexual ploidy hybridization in Citrus[D]. Wuhan:Huazhong Agricultural University,2020.

      [10] FANG Q Y,WANG L,YU H W,HUANG Y,JIANG X L,DENG X X,XU Q. Development of species-specific InDel markers in Citrus[J]. Plant Molecular Biology Reporter,2018,36(4):653-662.

      [11] 王淪. 柑橘馴化選擇及體細(xì)胞變異的基因組基礎(chǔ)[D]. 武漢:華中農(nóng)業(yè)大學(xué),2018.

      WANG Lun. Genomic basis of Citrus domestication and somatic mutation[D]. Wuhan:Huazhong Agricultural University,2018.

      [12] 宋謝天,田嘯宇,王楠,周銀,謝源源,謝宗周,柴利軍,葉俊麗,鄧秀新. 利用InDel標(biāo)記篩選多胚山金柑珠心苗后代[J]. 果樹(shù)學(xué)報(bào),2023,40(7):1312-1317.

      SONG Xietian,TIAN Xiaoyu,WANG Nan,ZHOU Yin,XIE Yuanyuan,XIE Zongzhou,CHAI Lijun,YE Junli,DENG Xiuxin. InDel marker-assisted selection of nucellar seedlings in polyembryonic Fortunella hindsii[J]. Journal of Fruit Science,2023,40(7):1312-1317.

      [13] 朱晨橋. 柑橘模式材料的開(kāi)發(fā)與金柑屬植物系統(tǒng)發(fā)育學(xué)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2020.

      ZHU Chenqiao. Development of Citrus model material and phylogenetic study of genus Fortunella[D]. Wuhan:Huazhong Agricultural University,2020.

      [14] HU J B,XU Q,LIU C C,LIU B H,DENG C L,CHEN C W,WEI Z M,AHMAD M H,PENG K,WEN H,CHEN X L,CHEN P,LARKIN R M,YE J L,DENG X X,CHAI L J. Downregulated expression of S2-RNase attenuates self-incompatibility in ‘Guiyou No. 1 pummelo[J]. Horticulture Research,2021,8:199.

      [15] 強(qiáng)瑞瑞. 以寬皮柑橘為母本倍性雜交培育三倍體[D]. 武漢:華中農(nóng)業(yè)大學(xué),2016.

      QIANG Ruirui. Triploid citrus plants obtained from crossing the diploid Citrus reticulata Blanco with tetraploid somatic hybrids[D]. Wuhan:Huazhong Agricultural University,2016.

      [16] 謝善鵬. 柑橘11個(gè)地方品種資源四倍體高效發(fā)掘及三倍體新種質(zhì)創(chuàng)制[D]. 武漢:華中農(nóng)業(yè)大學(xué),2022.

      XIE Shanpeng. Efficient exploration of tetraploid seedlings from 11 local Citrus cultivars and production of triploid plants[D]. Wuhan:Huazhong Agricultural University,2022.

      [17] 程運(yùn)江. 柑橘體細(xì)胞胞質(zhì)遺傳及葉綠體SSR引物開(kāi)發(fā)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2004.

      CHENG Yunjiang. Somatic cell cytoplasmic inheritance and chloroplast simple sequence repeat (SSR) primer development in Citrus[D]. Wuhan:Huazhong Agricultural University,2004.

      [18] FATTA DEL BOSCO S,SIRAGUSA M,ABBATE L,LUCRETTI S,TUSA N. Production and characterization of new triploid seedless progenies for mandarin improvement[J]. Scientia Horticulturae,2007,114(4):258-262.

      [19] CUENCA J,ALEZA P,JU?REZ J,PINA J A,NAVARRO L. ‘Safor mandarin:A new Citrus mid-late triploid hybrid[J]. HortScience,2010,45(6):977-980.

      [20] ALEZA P,CUENCA J,JU?REZ J,PINA J A,NAVARRO L. ‘Garbí mandarin:A new late-maturing triploid hybrid[J]. HortScience,2010,45(1):139-141.

      [21] GROSSER J W,GMITTER F G. Protoplast fusion for production of tetraploids and triploids:Applications for scion and rootstock breeding in citrus[J]. Plant Cell,Tissue and Organ Culture,2011,104(3):343-357.

      [22] GUO W W,XIAO S X,DENG X X. Somatic cybrid production via protoplast fusion for citrus improvement[J]. Scientia Horticulturae,2013,163:20-26.

      [23] 解凱東,王曉培,王惠芹,梁武軍,謝宗周,郭大勇,伊華林,鄧秀新,GROSSER J W,郭文武. 以柑橘多胚性二倍體母本倍性雜交培育三倍體[J]. 園藝學(xué)報(bào),2014,41(4):613-620.

      XIE Kaidong,WANG Xiaopei,WANG Huiqin,LIANG Wujun,XIE Zongzhou,GUO Dayong,YI Hualin,DENG Xiuxin,GROSSER J W,GUO Wenwu. High efficient and extensive production of triploid Citrus plants by crossing polyembryonic diploids with tetraploids[J]. Acta Horticulturae Sinica,2014,41(4):613-620.

      [24] 湯雨晴,楊惠棟,閆承璞,王斯妤,王雨亭,胡鐘東,朱方紅. 基于重測(cè)序的‘金蘭柚基因組InDel標(biāo)記的開(kāi)發(fā)及應(yīng)用[J]. 園藝學(xué)報(bào),2023,50(1):15-26.

      TANG Yuqing,YANG Huidong,YAN Chengpu,WANG Siyu,WANG Yuting,HU Zhongdong,ZHU Fanghong. Development and application of Jinlan pummelo (Citrus maxima) InDel markers based on genome re-sequencing[J]. Acta Horticulturae Sinica,2023,50(1):15-26.

      [25] 韓健,夏文文,楊貴兵,羅旭釗,蔣松良,李先信,鄧子牛,馬先鋒. 沙田柚×枳雜交群體創(chuàng)建與InDel標(biāo)記鑒定[J]. 果樹(shù)學(xué)報(bào),2023,40(2):223-229.

      HAN Jian,XIA Wenwen,YANG Guibing,LUO Xuzhao,JIANG Songliang,LI Xianxin,DENG Ziniu,MA Xianfeng. Establishment of Shatian pomelo × P. trifoliata hybrid population and InDel marker identification[J]. Journal of Fruit Science,2023,40(2):223-229.

      收稿日期:2023-05-08 接受日期:2023-07-12

      基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)(柑橘)產(chǎn)業(yè)技術(shù)體系(CARS-26);云南省科技廳對(duì)外科技合作專(zhuān)項(xiàng)(202003AD150014)

      作者簡(jiǎn)介:劉承浪,男,在讀碩士研究生,研究方向?yàn)楦涕俜N質(zhì)資源收集與利用。Tel:15687111894,E-mail:448827890@qq.com

      *通信作者Author for correspondence. Tel:027-87281712,E-mail:xxdeng@mail.hzau.edu.cn

      猜你喜歡
      柑橘
      吃柑橘何來(lái)黃疸——認(rèn)識(shí)橘黃病
      冬末春初是防治柑橘木虱好時(shí)期
      丹江口柑橘價(jià)格“破紀(jì)錄”啦
      柑橘大實(shí)蠅綜合治理
      “五及時(shí)”柑橘凍害恢復(fù)技術(shù)
      浙江柑橘(2016年4期)2016-03-11 20:12:59
      2016年春黃巖區(qū)柑橘凍害調(diào)查
      浙江柑橘(2016年2期)2016-03-11 20:12:42
      《浙江柑橘》(第32卷)2015年總目次
      浙江柑橘(2016年1期)2016-03-11 20:12:37
      柑橘“湘軍”再升級(jí)之絆
      全力打造“綠色柑橘”
      柑橘栽培管理知識(shí)與技術(shù)(5)柑橘病蟲(chóng)害防治
      伽师县| 安塞县| 萨迦县| 额尔古纳市| 永康市| 惠安县| 澳门| 凤城市| 霍城县| 济阳县| 凤城市| 新余市| 柏乡县| 安化县| 淮南市| 禄丰县| 平罗县| 寻乌县| 湄潭县| 安阳县| 昭觉县| 中江县| 湖口县| 乐平市| 台东市| 常熟市| 镇雄县| 和平县| 合川市| 阿拉善右旗| 广汉市| 郧西县| 马龙县| 东安县| 雷波县| 建水县| 德清县| 寻乌县| 南澳县| 仙游县| 安义县|