• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于輕量化卷積神經(jīng)網(wǎng)絡(luò)的蘋果表皮損傷分級(jí)研究

      2023-10-27 05:26:01付夏暉王菊霞崔清亮張燕青王毅凡陰妍
      果樹學(xué)報(bào) 2023年10期
      關(guān)鍵詞:遷移學(xué)習(xí)輕量化

      付夏暉 王菊霞 崔清亮 張燕青 王毅凡 陰妍

      DOI:10.13925/j.cnki.gsxb.20230213

      摘? ? 要:【目的】蘋果在銷售過程中,其表皮的損傷情況會(huì)直接影響果實(shí)的經(jīng)濟(jì)價(jià)值。運(yùn)用相機(jī)采集蘋果表皮的損傷圖像,對(duì)獲取到的圖像進(jìn)行分類和數(shù)據(jù)預(yù)處理,基于遷移學(xué)習(xí)的方法對(duì)蘋果表皮損傷進(jìn)行直接分級(jí)研究,為提高蘋果表皮損傷分級(jí)效率進(jìn)而更好地指導(dǎo)蘋果采收后的分類售賣提供理論依據(jù)?!痉椒ā渴紫葘?duì)采集到的富士和丹霞兩個(gè)蘋果品種圖像進(jìn)行對(duì)比度調(diào)整、旋轉(zhuǎn)、翻轉(zhuǎn)、添加噪聲等11種批量操作,將數(shù)據(jù)集擴(kuò)充到9360張,同時(shí)對(duì)擴(kuò)充后的樣本集統(tǒng)一調(diào)整為224×224像素。針對(duì)預(yù)處理好的數(shù)據(jù)集,選取5種20 MB以下的輕量化卷積神經(jīng)網(wǎng)絡(luò)在相同超參數(shù)設(shè)置條件下進(jìn)行初始化訓(xùn)練、引入遷移學(xué)習(xí)訓(xùn)練以及在遷移學(xué)習(xí)基礎(chǔ)上增加凍結(jié)網(wǎng)絡(luò)層權(quán)重3種方法進(jìn)行訓(xùn)練對(duì)比?!窘Y(jié)果】5種網(wǎng)絡(luò)初始化訓(xùn)練后的測(cè)試精度僅為56.32%~71.98%;基于遷移學(xué)習(xí)的MobileNet-v2模型最終訓(xùn)練精度達(dá)99.04%,在輕量級(jí)卷積神經(jīng)網(wǎng)絡(luò)中,比表現(xiàn)性能最差的EfficientNet-b0模型最終訓(xùn)練精度高18.79%;在基于遷移學(xué)習(xí)的MobileNet-v2模型基礎(chǔ)上凍結(jié)不同模塊參數(shù),得出模型選擇凍結(jié)至第1個(gè)卷積模塊到Bottleneck 3-1模塊時(shí)均可在縮短模型訓(xùn)練時(shí)間的基礎(chǔ)上提高模型驗(yàn)證精度,其中在凍結(jié)到Bottleneck 3-1模塊時(shí)比基于遷移學(xué)習(xí)的MobileNet-v2模型訓(xùn)練時(shí)間縮短了29.32%,同時(shí)驗(yàn)證精度提高了0.93%,測(cè)試精度提升了1.12個(gè)百分點(diǎn)達(dá)91.58%,檢測(cè)單張圖片所用平均時(shí)間為0.14 s,網(wǎng)絡(luò)大小為8.15 MB,可以滿足快速識(shí)別需求?!窘Y(jié)論】基于遷移學(xué)習(xí)加凍結(jié)訓(xùn)練的MobileNet-v2模型具有較好的魯棒性和分級(jí)性能,可為移動(dòng)終端和嵌入式設(shè)備在蘋果損傷直接分級(jí)方面提供技術(shù)參考。

      關(guān)鍵詞:蘋果表皮;損傷分級(jí);輕量化;遷移學(xué)習(xí);凍結(jié)訓(xùn)練

      中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)10-2263-12

      Research on apple epidermal damage grading based on lightweight convolutional neural network

      FU Xiahui, WANG Juxia*, CUI Qingliang, ZHANG Yanqing, WANG Yifan, YIN Yan

      (College of Agricultural Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China)

      Abstract: 【Objective】 In the process of apple selling, the damage of its epidermis will directly affect the economic value of the fruit. The presence and severity of apple surface damage directly affect the sales link, and customers often care about the epidermis damage when choosing apples. At present, most studies focus on apple size, color and appearance classification, and the use of high-end instruments to detect the damage inside the apple, while the study on the direct classification of surface damage is rare. The camera was used to collect apple epidermis damage images, classify and preprocess the acquired images, and conduct a direct classification on apple epidermis damage based on transfer learning method, which can provide a theoretical basis for improving the classification efficiency of apple epidermis damage and guiding the classification and apple sale after harvesting. 【Methods】 Firstly, the camera was used to collect the top, side and bottom images of Fuji and Danxia apples to form the first-stage data set. Then, 11 batch of operations, such as contrast adjustment, rotation, flip and noise addition, were carried out to expand the data set to 9360 pieces to form the second-stage data set. At the same time, the expanded sample set was uniformly adjusted to 224×224 pixels to form the final data set. According to the ratio of 7∶3∶3, the preprocessed data set was divided into training set, verification set and test set. Five lightweight convolutional neural networks less than 20 MB, MobileNet-v2, SqueezeNet, ShuffleNet, NASNet-Mobile and EfficientNet-b0, were selected for initial training, introduction of migration learning training and migration learning under the same super-parameter Settings On a Bottleneck basis, and three methods were added for detailed freezing network layer weights (the MobileNet-v2 network structure is specifically divided into 21 modules for freezing training, which contain 3 convolutional modules, 1 average pooling module, and 17 Bottleneck modules). 【Results】 The test accuracy of the five kinds of networks after initial training was only 56.32%-71.98%. The final training accuracy of MobileNet-v2 model based on transfer learning was 99.04%, 18.79% higher than that of the worst EfficientNet-b0 model among lightweight convolutional neural networks. After freezing different module parameters on the basis of the MobileNet-v2 model were based on transfer learning, it was concluded that models Bottleneck 3-1, when they select to freeze to the first convolutional module, can shorten model training time and improve model validation accuracy. When Bottleneck 3-1 module was frozen, the training time for Bottleneck 3-1 was shortened by 29.32% compared to MobileNet-v2 model based on transfer learning, the verification accuracy increased by 0.93%, and the test accuracy increased by 1.12 percentage points to 91.58%. The average time for detecting a single image was 0.14 s. The network size was 8.15 MB, which can meet the requirements of fast identification. The final training loss value of the MobileNet-v2 model based on transfer learning was less than 0.04, which was 0.5 lower than that of the worst performing EfficientNet-b0 model in lightweight convolutional neural networks. The test results showed the recall rate and precision rate of MobileNet-v2 confusion matrix diagram based on transfer learning and five kinds of lightweight convolutional neural networks were based on transfer learning in the test set. Among them, the MobileNet-v2 model based on transfer learning had the best performance, and the recall rate of 6 types of data in the test set ranged from 89.40% to 100%. The precision ranged from 53.52% to 99.78%. The Grad-CAM visualization comparison of the trained network showed that the SqueezeNet model based on transfer learning had the worst visualization effect and the lowest recognition accuracy. The visualization effect of NASNet-Mobile model based on transfer learning was poor. It can only display a large range of concern areas, and the recognition degree of some pictures was not high. The visualization effect of the MobileNet-v2 model based on transfer learning was obviously better than the previous two models, but the key areas identified by the model were different from the reality. A MobileNet-v2 model based on transfer learning tended to have the best visualization effect on a network that was Bottleneck 3-1 when it was frozen to a Bottleneck 3-1 module, and the key areas identified by the model had the highest compatibility with the actual situation. 【Conclusion】 In this study, five kinds of lightweight models with Bottleneck 3-1 were selected for initialization training and transfer learning training, and it was concluded that MobileNet-v2 model with transfer learning had the best effect. Then, the freezing strategy was used for hierarchical training. The verification accuracy reached 92.23% when Bottleneck 3-1 was frozen. The test accuracy was 91.58%, the average recognition time was 0.14 s, and the network size was 8.15 MB, which can provide technical reference for mobile terminals and embedded devices in the direct classification of apple fruit damage.

      Key words: Apple epidermis; Damage classification; Lightweight; Transfer learning; Freezing training

      蘋果作為人類膳食營養(yǎng)的重要來源之一,其含水量高,口感酸甜,具有促進(jìn)食欲、降低心血管疾病及冠心病發(fā)病率等功效,深受大眾喜愛[1]。蘋果的品質(zhì)直接決定著果實(shí)的價(jià)格和銷量,但蘋果在采摘、運(yùn)輸、包裝和售賣等環(huán)節(jié)中會(huì)存在不同程度的擠壓、摩擦、碰撞,導(dǎo)致蘋果表皮發(fā)生不同程度的損傷[2]。損傷是影響蘋果品質(zhì)的重要因素之一,蘋果表面損傷產(chǎn)生缺陷后,缺陷部位會(huì)加速腐爛,散發(fā)出更多的催熟激素,造成整批次蘋果品質(zhì)的降低[3]。蘋果損傷的檢測(cè)方法,一方面常用人工的方法來辨別蘋果的損傷等級(jí),使得分級(jí)穩(wěn)定性較差且不明確[4];另一方面采用光譜儀器、紅外熱成像儀等高端設(shè)備對(duì)損傷進(jìn)行檢測(cè),檢測(cè)成本相對(duì)較高。因此,研發(fā)蘋果表皮快速、低成本、高精度的損傷直接分級(jí)檢測(cè)方法,為豐富蘋果表皮品質(zhì)檢測(cè)方法提供技術(shù)參考,同時(shí)對(duì)減少商家損失、優(yōu)化蘋果售賣品質(zhì)等方面具有深遠(yuǎn)的意義。

      國內(nèi)外學(xué)者在蘋果的損傷檢測(cè)和分級(jí)方面進(jìn)行了大量研究,研究主要采用光譜儀器、紅外熱成像儀、磁共振分析儀等高端設(shè)備對(duì)蘋果的損傷進(jìn)行檢測(cè)。在利用光譜儀器研究方面,沈宇等[5]和蔣金豹等[6]運(yùn)用高光譜儀器分別基于特征波段和高光譜端元完成對(duì)蘋果表面的輕微損傷進(jìn)行無損檢測(cè),檢測(cè)正確率均在90%之上;Lu等[7]開發(fā)了一種基于液晶可調(diào)諧濾光片的多光譜成像系統(tǒng)用于蘋果損傷檢測(cè),總體檢測(cè)誤差為11.7%~14.2%;Keresztes等[8]研發(fā)了一種基于HSI的短波紅外蘋果早期傷痕實(shí)時(shí)檢測(cè)系統(tǒng),能夠同時(shí)檢測(cè)30個(gè)蘋果的早期損傷,識(shí)別準(zhǔn)確率達(dá)到了98%;邵志明等[9]利用近紅外相機(jī)和閾值分割法對(duì)蘋果圖像進(jìn)行分割和缺陷提取達(dá)到損傷檢測(cè)目標(biāo),對(duì)即時(shí)損傷和損傷0.5 h的判別準(zhǔn)確率均超過90%;Fan等[10]提出了一種基于Yolo v4深度學(xué)習(xí)算法和近紅外圖像的蘋果缺陷檢測(cè)方法,在每秒檢測(cè)5個(gè)蘋果基礎(chǔ)上將平均檢測(cè)準(zhǔn)確率提升至93.9%。在運(yùn)用紅外熱成像儀研究方面,門洪等[11]借助紅外熱像儀采集蘋果的損傷樣本圖片,根據(jù)蘋果不同部位和損傷的溫差范圍研究其識(shí)別方法,其中輕微損傷和重度損傷分別在1.3~2.6 ℃和2.6~3.2 ℃之間;周其顯[12]針對(duì)蘋果熱力學(xué)圖像的不同區(qū)域溫度和降溫曲線兩方面特性進(jìn)行分析,從傳熱學(xué)角度檢測(cè)蘋果的早期損傷,缺陷判別準(zhǔn)確率為87.5%。在利用磁共振分析儀檢測(cè)蘋果表皮損傷方面,熊婷[13]運(yùn)用低場(chǎng)核磁共振加權(quán)像和圖像偽彩色處理技術(shù),結(jié)果表明,在重復(fù)時(shí)間為1500 ms、回波時(shí)間為200 ms時(shí)得到的T2加權(quán)像可正確檢測(cè)蘋果的表皮損傷。

      近年來,神經(jīng)網(wǎng)絡(luò)被大量研究者運(yùn)用到農(nóng)作物的智能識(shí)別當(dāng)中。為提高北方日光溫室番茄產(chǎn)量預(yù)測(cè)結(jié)果,尹義志等[14]利用小波神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)溫室番茄產(chǎn)量,模型預(yù)測(cè)結(jié)果與實(shí)際產(chǎn)量平均相對(duì)誤差僅1.02%;針對(duì)番茄生產(chǎn)中作業(yè)背景復(fù)雜、枝葉遮擋、光照分布不均勻的問題,陳新等[15]將MobileNetV3模塊引入SSD(single shot multibox detector)算法中,相比原始SSD算法,番茄花果的平均識(shí)別率提高了7.9%;為提高蘋果損傷判別度,寧景苑等[16]通過自主搭建的弛豫光譜采集系統(tǒng)采集光譜信號(hào),使用標(biāo)準(zhǔn)正態(tài)變量交換算法(standard normal variable transformation,SNV)優(yōu)化光譜數(shù)據(jù),基于反向傳播神經(jīng)網(wǎng)絡(luò)算法構(gòu)建蘋果損傷檢測(cè)模型對(duì)蘋果機(jī)械損傷進(jìn)行檢測(cè),準(zhǔn)確率達(dá)91.48%;針對(duì)現(xiàn)有蘋果損傷檢測(cè)儀器價(jià)格高、體積大的問題,Ning等[17]提出基于松弛單波長激光和卷積神經(jīng)網(wǎng)絡(luò)的富士蘋果損傷檢測(cè)方法,預(yù)測(cè)準(zhǔn)確率達(dá)93%;為提高蘋果產(chǎn)品質(zhì)量和生產(chǎn)效率,Ismail等[18]研究詞袋(bag-of-words,BOW)、空間金字塔匹配(spatial pyramid matching,SPM)和卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural networks,CNN)三種圖像識(shí)別方法用于蘋果表皮缺陷的識(shí)別和分級(jí),基于支持向量機(jī)的空間金字塔匹配算法最優(yōu),識(shí)別準(zhǔn)確率達(dá)98.15%。

      消費(fèi)者在購買蘋果時(shí)會(huì)著重挑選無傷和輕微損傷的蘋果,因而蘋果表皮的損傷情況會(huì)直接影響其售賣環(huán)節(jié)的經(jīng)濟(jì)效益。目前針對(duì)蘋果的檢測(cè)和分級(jí)研究主要是采用高端昂貴儀器對(duì)蘋果的損傷進(jìn)行檢測(cè),對(duì)蘋果表皮損傷進(jìn)行直接檢測(cè)分級(jí)的研究較少。鑒于上述研究,筆者在本研究中提出一種基于遷移學(xué)習(xí)的蘋果表皮損傷分級(jí)方法。首先使用相機(jī)采集蘋果表皮的早期損傷圖像,然后對(duì)獲取到的圖像進(jìn)行分類和數(shù)據(jù)預(yù)處理,最后選擇輕量化的卷積神經(jīng)網(wǎng)絡(luò)MobileNet-v2,運(yùn)用遷移學(xué)習(xí)和凍結(jié)訓(xùn)練技術(shù)訓(xùn)練模型,完成蘋果表皮損傷分級(jí),提升蘋果表皮損傷的分級(jí)效率,并為表皮損傷檢測(cè)方面的移動(dòng)終端和嵌入式設(shè)備提供技術(shù)參考。

      1 材料和方法

      1.1 圖像采集

      我國蘋果品種評(píng)價(jià)標(biāo)準(zhǔn)中的蘋果等級(jí)規(guī)格把果面缺陷分為3類:極輕微、輕微和有部分缺陷,而在歐盟的蘋果等級(jí)標(biāo)準(zhǔn)中進(jìn)一步說明了果面輕微缺陷的指標(biāo):輕微瘀傷面積不超1 cm2,條狀缺陷不超2 cm,其他缺陷總面積不超1 cm2 [19]。筆者在本研究中以歐盟蘋果等級(jí)標(biāo)準(zhǔn)為基礎(chǔ),極輕微缺陷代表無傷,有輕微缺陷代表輕傷,超過輕微缺陷標(biāo)準(zhǔn)代表重傷。

      試驗(yàn)蘋果全部來自于山西省農(nóng)業(yè)科學(xué)院果樹研究所,選取丹霞和富士2個(gè)品種。圖像采集設(shè)備為iPhone Xs Max,考慮圖像多樣性,采集蘋果頂部、側(cè)部、底部3個(gè)方位圖像,分為丹霞無傷185張、丹霞輕傷131張、丹霞重傷121張、富士無傷164張、富士輕傷157張、富士重傷圖像22張,共780張,圖像分辨率為3024×3024像素,格式為png,2個(gè)品種蘋果部分樣本實(shí)例如圖1所示。

      1.2 圖像預(yù)處理

      由于初始數(shù)據(jù)樣本量較少,為防止模型訓(xùn)練發(fā)生過擬合,對(duì)初始采集的780張圖像統(tǒng)一進(jìn)行左右翻轉(zhuǎn)、上下翻轉(zhuǎn)、隨機(jī)旋轉(zhuǎn)、隨機(jī)平移、調(diào)整對(duì)比度、加入高斯噪聲和椒鹽噪聲等操作將圖像擴(kuò)充至9360張。

      在總體樣本集中,適當(dāng)增加驗(yàn)證集和測(cè)試集的比例,使用自編函數(shù)批量隨機(jī)抽取圖像,將訓(xùn)練集、驗(yàn)證集和測(cè)試集劃分為7∶3∶3,使得驗(yàn)證結(jié)果和測(cè)試結(jié)果更可靠,具體數(shù)量分別為5040幅、2160幅、2160幅。如圖2所示,對(duì)圖1-a丹霞頂部無傷圖像進(jìn)行左右翻轉(zhuǎn)、上下翻轉(zhuǎn)、隨機(jī)旋轉(zhuǎn)、隨機(jī)平移4個(gè)操作;對(duì)圖1-d富士頂部重傷圖像增強(qiáng)對(duì)比度、減弱對(duì)比度、添加椒鹽噪聲、添加高斯噪聲,得到的圖像如圖3所示;同時(shí)為適應(yīng)模型訓(xùn)練,將擴(kuò)充后的圖像樣本全部調(diào)整為224×224像素。

      1.3 模型構(gòu)建

      1.3.1 MobileNet-v2整體網(wǎng)絡(luò)結(jié)構(gòu) MobileNet-v2網(wǎng)絡(luò)由標(biāo)準(zhǔn)卷積、全局平均池化以及大量的瓶頸結(jié)構(gòu)構(gòu)成[20](表1),其中q代表分類數(shù),在本試驗(yàn)中分類數(shù)為6。

      1.3.2 倒殘差結(jié)構(gòu)(瓶頸結(jié)構(gòu)) 圖4為MobileNet-v1、MobileNet-v2以及ResNet三種網(wǎng)絡(luò)的核心模塊思想。由圖4可知,Cin為輸入通道數(shù),Cout為輸出通道數(shù),DW為深度卷積,PW為逐點(diǎn)卷積,Standard Conv為標(biāo)準(zhǔn)卷積。

      MobileNet-v1網(wǎng)絡(luò)于2017年問世,其主要思想是采用深度可分離卷積(depthwise separable convolution)來縮減參數(shù)量和運(yùn)算量,而在結(jié)構(gòu)上沒有采用殘差思想[21]。ResNet模型的殘差結(jié)構(gòu),運(yùn)用1×1的卷積核對(duì)輸入矩陣先降維再升維[22],但在MobileNet-v2模型中,采用與ResNet模型相反的倒殘差結(jié)構(gòu),先升維,提取特征后再降維。MobileNet-v2模型維度的波動(dòng)類似瓶頸,所以其倒殘差結(jié)構(gòu)也稱為瓶頸結(jié)構(gòu)[23-24];MobileNet-v2倒殘差結(jié)構(gòu)分為兩種形式(圖5),當(dāng)輸入與輸出大小相同且步長為1時(shí),將輸入與輸出通過一條殘差邊(shortcut)相連進(jìn)行直接相加;當(dāng)步長為2時(shí)不使用殘差邊連接。

      1.3.3 遷移學(xué)習(xí) 通過遷移學(xué)習(xí)[25],在ImageNet數(shù)據(jù)集上訓(xùn)練得到的預(yù)訓(xùn)練網(wǎng)絡(luò),確立目標(biāo)任務(wù)為蘋果表皮損傷分級(jí),使源領(lǐng)域的知識(shí)通過蘋果數(shù)據(jù)集和MobileNet-v2網(wǎng)絡(luò)得到重用,完成對(duì)蘋果表皮的損傷分級(jí)。在基于遷移學(xué)習(xí)的MobileNet-v2模型基礎(chǔ)上引入目標(biāo)檢測(cè)任務(wù)中的凍結(jié)訓(xùn)練策略[26],比較凍結(jié)不同網(wǎng)絡(luò)層參數(shù)在訓(xùn)練后的效果。

      1.3.4 評(píng)價(jià)指標(biāo) 選擇識(shí)別準(zhǔn)確率(accuracy)、精確率(precision)、召回率(recall)、損失值(loss)、訓(xùn)練時(shí)間(training time)、識(shí)別時(shí)間(recognition time)以及網(wǎng)絡(luò)大?。╪etwork size)作為模型訓(xùn)練結(jié)果的評(píng)價(jià)指標(biāo)。

      準(zhǔn)確率A是指識(shí)別圖像結(jié)果中識(shí)別正確的數(shù)量占整體識(shí)別數(shù)量的比重,能夠直接表達(dá)模型的訓(xùn)練效果[27];精確率P代表結(jié)果中對(duì)正樣本的預(yù)測(cè)準(zhǔn)確程度;召回率R是以真實(shí)類為基礎(chǔ),正樣本中被正確識(shí)別的比例[28]。其運(yùn)算公式為:

      A=[Tp+TnTp+Tn+Fp+Fn],? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(1)

      P=[TpTp+Fp],? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (2)

      R=[TpTp+Fn]。? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (3)

      其中:Tp為正樣本被模型識(shí)別正確的數(shù)量;Tn為負(fù)樣本被模型識(shí)別正確的數(shù)量;Fp代表被模型預(yù)測(cè)為正樣本實(shí)際為負(fù)樣本的數(shù)量;Fn代表被模型預(yù)測(cè)為負(fù)樣本實(shí)際為正樣本的數(shù)量。

      損失值L能夠表現(xiàn)出模型預(yù)測(cè)值與真實(shí)值之間的偏差情況,損失值小,表明模型的預(yù)測(cè)值與真實(shí)值之間相近,反之則相遠(yuǎn)[29],其運(yùn)算公式為:

      L=-[1m][ilogefijefi]。? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (4)

      其中:i表示對(duì)應(yīng)樣本;yi表示第i個(gè)樣本對(duì)應(yīng)的標(biāo)簽;j是求和變量;m是樣本總量;f為模型輸出函數(shù)。

      訓(xùn)練時(shí)間指模型訓(xùn)練完成所需時(shí)間;識(shí)別時(shí)間具體表示檢測(cè)單張圖片平均所用時(shí)間;網(wǎng)絡(luò)大小為訓(xùn)練完成后所得網(wǎng)絡(luò)占用的空間。

      1.3.5 試驗(yàn)環(huán)境 試驗(yàn)所用計(jì)算機(jī)版本為Windows 10專業(yè)版;CPU為Intel酷睿i7-7700HQ,頻率為2.80 GHz;16 GB運(yùn)行內(nèi)存;系統(tǒng)類型為64位操作系統(tǒng),基于x64的處理器;NVIDIA GeForce GTX 1050 Ti顯卡,4 GB顯存。模型訓(xùn)練環(huán)境為MATLAB R2021b版本。

      1.3.6 超參數(shù)設(shè)置 試驗(yàn)統(tǒng)一超參數(shù)設(shè)置,網(wǎng)絡(luò)訓(xùn)練采用帶動(dòng)量的隨機(jī)梯度下降法(stochastic gradient descent with momentum,SGDM),動(dòng)量因子(momentum)設(shè)為0.90;尺寸大?。╞atch size)設(shè)為16,使用L2正則化,正則化參數(shù)λ=0.000 5;遷移學(xué)習(xí)需要保留預(yù)訓(xùn)練網(wǎng)絡(luò)中遷移層的權(quán)重,降低學(xué)習(xí)速率,可將初始學(xué)習(xí)速率(initial learning rate)設(shè)為較小的值0.000 1;考慮數(shù)據(jù)集體量較小以及進(jìn)行遷移學(xué)習(xí)時(shí)所需的訓(xùn)練輪數(shù)(epoch)相對(duì)較少,將訓(xùn)練輪數(shù)設(shè)為20,同時(shí)采用每輪打亂一次的數(shù)據(jù)打亂策略;因訓(xùn)練周期中每輪的迭代次數(shù)(iteration)為314,將驗(yàn)證頻率(validation frequency)也設(shè)置為同樣大小,即每314次迭代驗(yàn)證1次。

      2 結(jié)果與分析

      2.1 5種輕量級(jí)模型對(duì)比

      為了使試驗(yàn)結(jié)論更具有說服力,選擇具有代表性的適合于移動(dòng)終端和嵌入式設(shè)備的MobileNet-v2、SqueezeNet、ShuffleNet、NASNet-Mobile及EfficientNet-b0共5種20 MB以下的輕量級(jí)模型,首先在相同超參數(shù)設(shè)置的條件下進(jìn)行初始化訓(xùn)練得出5種模型的測(cè)試精度在56.32%~71.98%之間,難以滿足分級(jí)需求,所以繼續(xù)利用遷移學(xué)習(xí)技術(shù)進(jìn)行5種輕量級(jí)模型的訓(xùn)練與驗(yàn)證。

      訓(xùn)練精度曲線和訓(xùn)練損失曲線分別如圖6、圖7所示。模型訓(xùn)練精度曲線表達(dá)的是迭代次數(shù)和準(zhǔn)確率之間的關(guān)系。由圖6可知MobileNet-v2、SqueezeNet、ShuffleNet及NASNet-Mobile模型的最終訓(xùn)練精度均在90%以上,EfficientNet-b0模型訓(xùn)練精度最低(80.25%);5種模型中,收斂速度最快、效果最好的是MobileNet-v2模型,在迭代第1837次時(shí)已經(jīng)達(dá)到了90.01%的精度,最終訓(xùn)練精度達(dá)到了99.04%。

      損失曲線表達(dá)的是迭代次數(shù)和損失值之間的關(guān)系。由圖7可知,除EfficientNet-b0模型外,其余4種模型的最終訓(xùn)練損失值均在0.50以下;其中收斂速度最快、效果最好的是MobileNet-v2模型,損失值在迭代第988次時(shí)已經(jīng)降到了0.50以下,最終訓(xùn)練損失值降到了0.04。

      如圖8所示,基于遷移學(xué)習(xí)MobileNet-v2模型利用測(cè)試集得出的混淆矩陣,可以直觀地看出每一分類的識(shí)別情況以及各分級(jí)的召回率。表2、表3分別為基于遷移學(xué)習(xí)的5種網(wǎng)絡(luò)模型在各分類上的召回率、精確率的對(duì)比。根據(jù)上述試驗(yàn)結(jié)論,可選擇精度和各分類召回率最高的基于遷移學(xué)習(xí)的MobileNet-v2模型繼續(xù)進(jìn)行凍結(jié)訓(xùn)練研究,進(jìn)一步探究是否可以加快網(wǎng)絡(luò)訓(xùn)練時(shí)間以及提升精度。

      2.2 基于遷移學(xué)習(xí)的MobileNet-v2模型凍結(jié)訓(xùn)練

      表4為基于遷移學(xué)習(xí)的MobileNet-v2模型凍結(jié)訓(xùn)練。具體展開MobileNet-v2網(wǎng)絡(luò)結(jié)構(gòu)中的Bottleneck模塊,在基于遷移學(xué)習(xí)的MobileNet-v2模型基礎(chǔ)上凍結(jié)不同模塊參數(shù)。

      不凍結(jié)任何參數(shù)權(quán)重的驗(yàn)證精度為91.30%,訓(xùn)練時(shí)間為7816 s。從表4中可以看出模型從淺層至深層凍結(jié)時(shí),訓(xùn)練時(shí)間和模型的驗(yàn)證精度總體呈下降趨勢(shì),凍結(jié)至Bottleneck 7時(shí)模型驗(yàn)證精度已經(jīng)低于70%,所以不再繼續(xù)凍結(jié)網(wǎng)絡(luò)的最后3層。同時(shí)從表4還可知,選擇凍結(jié)至第1個(gè)卷積模塊到Bottleneck 3-1模塊時(shí)均可在縮短模型訓(xùn)練時(shí)間的基礎(chǔ)上提高模型驗(yàn)證精度。在凍結(jié)第1個(gè)卷積層參數(shù)時(shí)比不凍結(jié)任何參數(shù)權(quán)重模型驗(yàn)證精度提高了1.48%,訓(xùn)練時(shí)間縮短了189 s。在凍結(jié)到Bottleneck 3-1模塊時(shí)比不凍結(jié)任何參數(shù)權(quán)重模型訓(xùn)練時(shí)間縮短了29.32%,驗(yàn)證準(zhǔn)確度提高了0.93%。

      如表5所示,分別是基于遷移學(xué)習(xí)和凍結(jié)至Bottleneck 3-1模塊后訓(xùn)練的MobileNet-v2模型(MobileNet-v2*)、基于遷移學(xué)習(xí)的MobileNet-v2模型、基于遷移學(xué)習(xí)的NASNet-Mobile模型、基于遷移學(xué)習(xí)的ShuffleNet模型、基于遷移學(xué)習(xí)的SqueezeNet模型和基于遷移學(xué)習(xí)的EfficientNet-b0模型基于測(cè)試集在測(cè)試精度、識(shí)別時(shí)間、網(wǎng)絡(luò)大小三方面的對(duì)比,基于遷移學(xué)習(xí)的MobileNet-v2模型在凍結(jié)到Bottleneck 3-1模塊后訓(xùn)練所得網(wǎng)絡(luò)測(cè)試精度最高,達(dá)91.58%,識(shí)別時(shí)間0.14 s,網(wǎng)絡(luò)大小8.15 MB,能夠在保證最高識(shí)別精度的前提下較好地適配于移動(dòng)終端和嵌入式設(shè)備。

      2.3 Grad-CAM可視化

      Grad-CAM翻譯為梯度加權(quán)類激活映射(gradient-weighted class activation map),用于對(duì)神經(jīng)網(wǎng)絡(luò)的輸出進(jìn)行可視化,可直觀地展示出卷積神經(jīng)網(wǎng)絡(luò)做出分類決策的重要部位[30-31]。選擇富士重傷側(cè)部原圖、添加高斯噪聲的富士輕傷側(cè)部圖、增強(qiáng)對(duì)比度的丹霞重傷頂部圖、添加椒鹽噪聲的丹霞無傷底部圖以及順時(shí)針旋轉(zhuǎn)30°的丹霞輕傷側(cè)部圖,使用Grad-CAM技術(shù)得出熱力圖的可視化展示,如圖9所示,從藍(lán)色到紅色顏色的加深代表模型對(duì)圖片區(qū)域關(guān)注度的增加。從圖9可以看出,基于遷移學(xué)習(xí)的SqueezeNet模型可視化效果最差,同時(shí)也驗(yàn)證了該模型的識(shí)別精度最低;基于遷移學(xué)習(xí)的NASNet-Mobile模型可視化效果較差,只能顯示大范圍的關(guān)注區(qū)域,部分圖片識(shí)別度不高;基于遷移學(xué)習(xí)的MobileNet-v2模型可視化效果明顯優(yōu)于前兩種模型,但模型識(shí)別的重點(diǎn)區(qū)域與實(shí)際有所偏差;基于遷移學(xué)習(xí)的MobileNet-v2模型在凍結(jié)到Bottleneck 3-1模塊后訓(xùn)練所得網(wǎng)絡(luò)的可視化效果最優(yōu),模型識(shí)別圖片的重點(diǎn)區(qū)域與實(shí)際吻合度最高,可以直觀地顯示出該模型在識(shí)別蘋果表皮圖像時(shí)的穩(wěn)定性與精確度。

      3 討 論

      眾所周知,蘋果的種質(zhì)資源豐富,其果實(shí)的大小、硬度、表皮顏色等特征不盡相同,這將直接影響著蘋果表皮損傷識(shí)別的準(zhǔn)確度;同時(shí)采集損傷圖片比較困難、識(shí)別難度較大是對(duì)蘋果表皮損傷研究較少的主要原因之一。目前,普遍使用光譜儀器、紅外熱成像儀等高端設(shè)備對(duì)蘋果損傷進(jìn)行檢測(cè)和分級(jí),成本相對(duì)較高且不適合大眾消費(fèi)者使用;而使用普通相機(jī)采集蘋果表皮的損傷圖像進(jìn)行分級(jí)的研究較少,普通相機(jī)采集圖像有成本低、硬件兼容性強(qiáng)、獲取圖片來源廣等優(yōu)點(diǎn),Ismail等[18]選取了5個(gè)品種共550張?zhí)O果圖像進(jìn)行試驗(yàn)分析,雖然品種多樣,但數(shù)據(jù)量較少,容易發(fā)生訓(xùn)練過擬合,且得出的模型泛化能力較弱。筆者在本研究中選取山西地區(qū)具有代表性的富士和丹霞2個(gè)蘋果品種,共采集780張圖像,并將初始數(shù)據(jù)集擴(kuò)充到9360張;專注于卷積神經(jīng)網(wǎng)絡(luò)的研究,使用較少品種、大量數(shù)據(jù)的思想防止模型訓(xùn)練過擬合,同時(shí)提升了測(cè)試集和驗(yàn)證集的比例,讓結(jié)果更貼近實(shí)際;在選取網(wǎng)絡(luò)上,挑選5個(gè)20 MB以下的輕量級(jí)卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行試驗(yàn)對(duì)比,目的是為針對(duì)移動(dòng)端和嵌入式設(shè)備的研究者提供技術(shù)參考,從而推進(jìn)蘋果商家的分類售賣;在模型的訓(xùn)練上,使用遷移學(xué)習(xí)技術(shù)的同時(shí)增加凍結(jié)訓(xùn)練策略,在縮短模型訓(xùn)練時(shí)間的基礎(chǔ)上將驗(yàn)證精度提升到了92.78%。其中,在凍結(jié)到Bottleneck 3-1模塊時(shí)比基于遷移學(xué)習(xí)的MobileNet-v2模型訓(xùn)練時(shí)間縮短了29.32%,同時(shí)驗(yàn)證精度提高了0.93%,測(cè)試精度為91.58%,能夠滿足基本的分級(jí)需求,具有較強(qiáng)的泛化能力。

      在進(jìn)一步的研究中,可增加蘋果的種類,擴(kuò)大損傷部位采集的數(shù)據(jù)量,探尋輕量級(jí)卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)化或?qū)ι疃染矸e神經(jīng)網(wǎng)絡(luò)進(jìn)行壓縮,提高識(shí)別的速度和壓縮網(wǎng)絡(luò)大?。惶剿髂繕?biāo)檢測(cè)領(lǐng)域,對(duì)比優(yōu)化目前流行的Yolo算法和Faster R-CNN算法,提高定位和分級(jí)效果。

      4 結(jié) 論

      筆者在本研究中選用5種20 MB以下的輕量化模型進(jìn)行初始化訓(xùn)練與遷移學(xué)習(xí)訓(xùn)練對(duì)比,得出經(jīng)過遷移學(xué)習(xí)的MobileNet-v2模型效果最優(yōu),隨后使用凍結(jié)策略進(jìn)行分層訓(xùn)練,其中在凍結(jié)到Bottleneck 3-1模塊時(shí)驗(yàn)證精度達(dá)92.23%,測(cè)試精度為91.58%,平均識(shí)別時(shí)間為0.14 s,網(wǎng)絡(luò)大小為8.15 MB,為移動(dòng)終端和嵌入式設(shè)備在蘋果損傷直接分級(jí)方面提供技術(shù)參考。

      參考文獻(xiàn)References:

      [1] 王皎,李赫宇,劉岱琳,宋新波,於洪建. 蘋果的營養(yǎng)成分及保健功效研究進(jìn)展[J]. 食品研究與開發(fā),2011,32(1):164-168.

      WANG Jiao,LI Heyu,LIU Dailin,SONG Xinbo,YU Hongjian. Research progress of apple nutrition components and health function[J]. Food Research and Development,2011,32(1):164-168.

      [2] 屠鵬,邊紅霞,石萍,黎虹,楊晰. 壓力損傷對(duì)蘋果貯藏期品質(zhì)的影響[J]. 食品工業(yè)科技,2018,39(14):239-243.

      TU Peng,BIAN Hongxia,SHI Ping,LI Hong,YANG Xi. Effect of pressure injury on the quality during storage period in apple[J]. Science and Technology of Food Industry,2018,39(14):239-243.

      [3] 王艷穎,胡文忠,龐坤,朱蓓薇,范圣第. 機(jī)械損傷對(duì)富士蘋果生理生化變化的影響[J]. 食品與發(fā)酵工業(yè),2007,33(7):58-62.

      WANG Yanying,HU Wenzhong,PANG Kun,ZHU Beiwei,F(xiàn)AN Shengdi. Effect of mechanical damage on the physiology and biochemistry in Fuji apple[J]. Food and Fermentation Industries,2007,33(7):58-62.

      [4] 趙康. 蘋果表面損傷光學(xué)檢測(cè)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D]. 哈爾濱:黑龍江大學(xué),2021.

      ZHAO Kang. Design and implementation of optical detection system for apple surface damage[D]. Harbin:Heilongjiang University,2021.

      [5] 沈宇,房勝,鄭紀(jì)業(yè),王風(fēng)云,張琛,李哲. 基于高光譜成像技術(shù)的富士蘋果輕微機(jī)械損傷檢測(cè)研究[J]. 山東農(nóng)業(yè)科學(xué),2020,52(2):144-150.

      SHEN Yu,F(xiàn)ANG Sheng,ZHENG Jiye,WANG Fengyun,ZHANG Chen,LI Zhe. Detection of slight mechanical damage of fuji apple fruits based on hyperspectral imaging technology[J]. Shandong Agricultural Sciences,2020,52(2):144-150.

      [6] 蔣金豹,尤笛,汪國平,張政,門澤成. 蘋果輕微機(jī)械損傷高光譜圖像無損檢測(cè)[J]. 光譜學(xué)與光譜分析,2016,36(7):2224-2228.

      JIANG Jinbao,YOU Di,WANG Guoping,ZHANG Zheng,MEN Zecheng. Study on the detection of slight mechanical injuries on apples with hyperspectral imaging[J]. Spectroscopy and Spectral Analysis,2016,36(7):2224-2228.

      [7] LU Y Z,LU R F. Development of a multispectral structured illumination reflectance imaging (SIRI) system and its application to bruise detection of apples[J]. Transactions of the ASABE,2017,60(4):1379-1389.

      [8] KERESZTES J C,GOODARZI M,SAEYS W. Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques[J]. Food Control,2016,66:215-226.

      [9] 邵志明,王懷彬,董志城,原育慧,李軍會(huì),趙龍蓮. 基于近紅外相機(jī)成像和閾值分割的蘋果早期損傷檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S1):134-139.

      SHAO Zhiming,WANG Huaibin,DONG Zhicheng,YUAN Yuhui,LI Junhui,ZHAO Longlian. Early bruises detection method of apple surface based on near infrared camera imaging technology and image threshold segmentation method[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S1):134-139.

      [10] FAN S X,LIANG X T,HUANG W Q,ZHANG V J,PANG Q,HE X,LI L J,ZHANG C. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network[J]. Computers and Electronics in Agriculture,2022,193:106715.

      [11] 門洪,陳鵬,鄒麗娜,朱斌. 基于主動(dòng)熱紅外技術(shù)的蘋果損傷檢測(cè)[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2013,34(6):220-224.

      MEN Hong,CHEN Peng,ZOU Lina,ZHU Bin. Apples damage detection based on active thermal infrared technique[J]. Journal of Chinese Agricultural Mechanization,2013,34(6):220-224.

      [12] 周其顯. 蘋果早期機(jī)械損傷的紅外熱成像檢測(cè)研究[D]. 南昌:華東交通大學(xué),2011.

      ZHOU Qixian. Research on infrared thermography technique for detecting early chanical damage in apples[D]. Nanchang:East China Jiaotong University,2011.

      [13] 熊婷. 基于低場(chǎng)磁共振技術(shù)的果品無損檢測(cè)[D]. 杭州:中國計(jì)量學(xué)院,2014.

      XIONG Ting. Nondestructive detection of fruit quality based on low-field magnetic resonance technology[D]. Hangzhou:China Jiliang University,2014.

      [14] 尹義志,王永剛,張楠楠,劉宇航. 基于小波神經(jīng)網(wǎng)絡(luò)的溫室番茄產(chǎn)量預(yù)測(cè)[J]. 中國瓜菜,2020,33(8):53-59.

      YIN Yizhi,WANG Yonggang,ZHANG Nannan,LIU Yuhang. Study on tomato yield prediction in greenhouse based on wavelet neural network[J]. China Cucurbits and Vegetables,2020,33(8):53-59.

      [15] 陳新,伍萍輝,祖紹穎,徐丹,張?jiān)弃Q,董靜. 基于改進(jìn)SSD輕量化神經(jīng)網(wǎng)絡(luò)的番茄疏花疏果農(nóng)事識(shí)別方法[J]. 中國瓜菜,2021,34(9):38-44.

      CHEN Xin,WU Pinghui,ZU Shaoying,XU Dan,ZHANG Yunhe,DONG Jing. Study on identification method of thinning flower and fruit of tomato based on improved SSD lightweight neural network[J]. China Cucurbits and Vegetables,2021,34(9):38-44.

      [16] 寧景苑,葉海芬,孫雨玘,熊思怡,梅正昊,蔣晨豪,黃科濤,張?zhí)K婕,朱哲琛,李昱權(quán),惠國華,易曉梅,郜園園,吳鵬. 一種基于弛豫動(dòng)態(tài)光譜技術(shù)的蘋果損傷檢測(cè)方法研究[J]. 傳感技術(shù)學(xué)報(bào),2022,35(8):1150-1156.

      NING Jingyuan,YE Haifen,SUN Yuqi,XIONG Siyi,MEI Zhenghao,JIANG Chenhao,HUANG Ketao,ZHANG Sujie,ZHU Zhechen,LI Yuquan,HUI Guohua,YI Xiaomei,GAO Yuanyuan,WU Peng. Study of apple slight damage detecting method based on dynamic relaxation spectrum[J]. Chinese Journal of Sensors and Actuators,2022,35(8):1150-1156.

      [17] NING J Y,YE H F,SUN Y Q,ZHANG J Y,MEI Z H,XIONG S Y,ZHANG S J,LI Y Q,HUI G H,YI X M,GAO Y Y,WU P. Study on apple damage detecting method based on relaxation single-wavelength laser and convolutional neural network[J]. Journal of Food Measurement and Characterization,2022,16(5):3321-3330.

      [18] ISMAIL A,IDRIS M Y I,AYUB M N,POR L Y. Vision-based apple classification for smart manufacturing[J]. Sensors,2018,18(12):4353.

      [19] 李泰,盧士軍,黃家章,陳磊,范協(xié)裕. 蘋果品質(zhì)評(píng)價(jià)標(biāo)準(zhǔn)研究進(jìn)展[J]. 中國農(nóng)業(yè)科技導(dǎo)報(bào),2021,23(11):121-130.

      LI Tai,LU Shijun,HUANG Jiazhang,CHEN Lei,F(xiàn)AN Xieyu. Research progress of apple quality evaluation standards[J]. Journal of Agricultural Science and Technology,2021,23(11):121-130.

      [20] 軒勃娜,李進(jìn),宋亞飛,馬澤煊. 基于改進(jìn)MobileNetV2的惡意代碼分類方法[J]. 計(jì)算機(jī)應(yīng)用,2023,43(7):2217-2225.

      XUAN Bona,LI Jin,SONG Yafei,MA Zexuan. Malicious code classification method based on improved MobileNetV2[J]. Journal of Computer Applications,2023,43(7):2217-2225.

      [21] HOWARD A G,ZHU M L,CHEN B,KALENICHENKO D,WANG W J,WEYAND T,ANDREETTO M,ADAM H. MobileNets:efficient convolutional neural networks for mobile vision applications[Z]. ArXiv,2017. DOI:10.48550/arXiv.1704.

      04861.

      [22] HE K M,ZHANG X Y,REN S Q,SUN J. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,NV,USA:IEEE,2016:770-778.

      [23] SANDLER M,HOWARD A,ZHU M L,ZHMOGINOV A,CHEN L C. MobileNetV2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE,2018:4510-4520.

      [24] 葛淑偉,張永茜,秦嘉欣,李雪,王曉. 基于優(yōu)化SSD-MobileNetV2的煤礦井下錨孔檢測(cè)方法[J]. 采礦與巖層控制工程學(xué)報(bào),2023,5(2):66-74.

      GE Shuwei,ZHANG Yongqian,QIN Jiaxin,LI Xue,WANG Xiao. Rock bolt borehole detection method for underground coal mines based on optimized SSD-MobileNetV2[J]. Journal of Mining and Strata Control Engineering,2023,5(2):66-74.

      [25] PAN S J,YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.

      [26] BROCK A,LIM T,RITCHIE J M,WESTON N. FreezeOut:accelerate training by progressively freezing layers[Z]. ArXiv,2017. DOI:10.48550/arXiv.1706.04983.

      [27] 孔德宇. 基于Kinect骨骼時(shí)空特征的步態(tài)人物識(shí)別研究[D]. 南寧:廣西大學(xué),2022.

      KONG Deyu. Research on gait recognition based on kinect skeletal spatiotemporal features[D]. Nanning:Guangxi University,2022.

      [28] 謝圣橋,宋健,湯修映,白陽. 基于遷移學(xué)習(xí)和殘差網(wǎng)絡(luò)的葡萄葉部病害識(shí)別[J]. 農(nóng)機(jī)化研究,2023,45(8):18-23.

      XIE Shengqiao,SONG Jian,TANG Xiuying,BAI Yang. Identification of grape leaf diseases based on transfer learning and residual networks[J]. Journal of Agricultural Mechanization Research,2023,45(8):18-23.

      [29] 高博,陳琳,嚴(yán)迎建. 基于CNN-MGU的側(cè)信道攻擊研究[J]. 信息網(wǎng)絡(luò)安全,2022,22(8):55-63.

      GAO Bo,CHEN Lin,YAN Yingjian. Research on side channel attack based on CNN-MGU[J]. Netinfo Security,2022,22(8):55-63.

      [30] SELVARAJU R R,COGSWELL M,DAS A,VEDANTAM R,PARIKH D,BATRA D. Grad-CAM:Visual explanations from deep networks via gradient-based localization[C]. Italy:2017 IEEE International Conference on Computer Vision (ICCV),2017:618-626.

      [31] PAPANDRIANOS N I,F(xiàn)ELEKI A,MOUSTAKIDIS S,PAPAGEORGIOU E I,APOSTOLOPOULOS I D,APOSTOLOPOULOS D J. An explainable classification method of SPECT myocardial perfusion images in nuclear cardiology using deep learning and grad-CAM[J]. Applied Sciences,2022,12(15):7592.

      收稿日期:2023-05-24 接受日期:2023-07-26

      基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(11802167);山西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(202102020101012);山西省應(yīng)用基礎(chǔ)研究項(xiàng)目(201901D211364)

      作者簡(jiǎn)介:付夏暉,男,在讀碩士研究生,主要從事機(jī)器學(xué)習(xí)、農(nóng)產(chǎn)品加工及智能裝備研究。Tel:13294552666,E-mail:13294552666@163.com

      通信作者 Author for correspondence. Tel:18634418916,E-mail:wangjuxia79@163.com

      猜你喜歡
      遷移學(xué)習(xí)輕量化
      汽車輕量化集成制造專題主編
      四點(diǎn)接觸球轉(zhuǎn)盤軸承的輕量化材料應(yīng)用
      哈爾濱軸承(2020年4期)2020-03-17 08:13:52
      一種輕量化自卸半掛車結(jié)構(gòu)設(shè)計(jì)
      遷移學(xué)習(xí)研究綜述
      從認(rèn)知角度探討大學(xué)英語網(wǎng)絡(luò)教學(xué)模式
      425輕量化橋軸承座工藝改進(jìn)
      基于多特征融合的跨域情感分類模型研究
      奇異值分解與移移學(xué)習(xí)在電機(jī)故障診斷中的應(yīng)用
      瞄準(zhǔn)掛車輕量化 鑼響掛車正式掛牌成立
      專用汽車(2016年1期)2016-03-01 04:13:19
      一種基于遷移極速學(xué)習(xí)機(jī)的人體行為識(shí)別模型
      新龙县| 盐城市| 通道| 沂源县| 汉中市| 通河县| 榆树市| 金华市| 武陟县| 锦屏县| 达尔| 乌海市| 鱼台县| 汉阴县| 阿拉善左旗| 五华县| 罗江县| 仁寿县| 周至县| 灵武市| 循化| 高唐县| 周口市| 彭泽县| 临泉县| 福清市| 宁安市| 通州区| 泽州县| 肥乡县| 博乐市| 潼南县| 滨州市| 准格尔旗| 清徐县| 南投县| 赤水市| 长岛县| 乌什县| 马关县| 松阳县|