陳汪林,李喆,黃勇浩,鄧陽(yáng),李聰,孟顯娜,李蘇洋*
螺紋絲錐表面處理研究進(jìn)展
陳汪林1,李喆1,黃勇浩1,鄧陽(yáng)1,李聰2,孟顯娜3,李蘇洋1*
(1.廣東工業(yè)大學(xué),廣州 510006;2.清遠(yuǎn)市粵博科技有限公司,廣東 清遠(yuǎn) 511500;3.仲愷農(nóng)業(yè)工程學(xué)院,廣州 510006)
絲錐是內(nèi)螺紋加工的一種專用刀具,與車刀、銑刀等傳統(tǒng)刀具不同,其加工屬于半封閉、多切削刃成形加工方式。絲錐加工通常是機(jī)加工中的最后一道工序,絲錐質(zhì)量的好壞直接影響了內(nèi)螺紋的加工質(zhì)量和加工效率。概述了市場(chǎng)上典型絲錐的類型、加工主要失效方式與失效機(jī)理,并查明絲錐刃口機(jī)加工缺陷及嚴(yán)重的黏結(jié)磨損和磨粒磨損是誘導(dǎo)絲錐切削性能與壽命顯著降低的主因。因此,對(duì)絲錐進(jìn)行表面處理也是行業(yè)的研究熱點(diǎn)。在表面處理技術(shù)方面,重點(diǎn)分析了絲錐刃口鈍化技術(shù)對(duì)絲錐刃口幾何特征形態(tài)和加工性能的影響規(guī)律;同時(shí)也探討了PVD技術(shù)類型及特點(diǎn);在絲錐涂層方面,重點(diǎn)分析了氮化物涂層、含碳膜涂層和特征潤(rùn)滑膜涂層;在絲錐基體預(yù)處理方面,重點(diǎn)介紹了激光微織構(gòu)圖案對(duì)涂層結(jié)合力及刀具摩擦特性的影響規(guī)律;在涂層設(shè)計(jì)方法,重點(diǎn)介紹了常規(guī)氮化物、碳化物涂層和高熵合金氮化涂層的力學(xué)、物理和化學(xué)性質(zhì),以及涂層類型與絲錐切削性能和加工質(zhì)量之間的關(guān)聯(lián)性。最后,總結(jié)了單一表面處理技術(shù)在絲錐性能提升方面存在的問(wèn)題,并提出了絲錐鈍化+基體激光微織構(gòu)+PVD自潤(rùn)滑涂層的復(fù)合技術(shù)方案。
絲錐;失效機(jī)理;物理氣相沉積;鈍化處理;螺紋加工性能
螺紋連接、鉚接和焊接是實(shí)現(xiàn)零部件組裝的3種主要方法,而螺紋連接是最主要也是最常見(jiàn)的連接方法。螺紋連接簡(jiǎn)單,拆卸方便,已經(jīng)被廣泛用于模具、航天航空、石油化工、5G通信、新能源汽車等行業(yè)[1-3]。但隨著科學(xué)技術(shù)的不斷發(fā)展,對(duì)螺紋連接的要求也日益提高,螺紋精度不高、表面粗糙不足等缺點(diǎn)使其發(fā)展面臨著巨大挑戰(zhàn)。
絲錐是一種中小尺寸內(nèi)螺紋加工的專用刀具。與傳統(tǒng)的車刀和銑刀不同,螺紋加工呈開(kāi)放式切削狀態(tài),屬于半封閉、多切削刃成形加工方式[4-6]。螺紋加工過(guò)程較為復(fù)雜,且通常為機(jī)械加工中的最后一道工序,若出現(xiàn)切屑堵塞等情況,易引起絲錐折斷,從而導(dǎo)致零件破損,降低生產(chǎn)效率[7-8]。因此,如何解決絲錐在加工過(guò)程中存在的問(wèn)題,提高絲錐加工壽命、生產(chǎn)率和產(chǎn)品質(zhì)量,是現(xiàn)階段亟待解決的行業(yè)難點(diǎn)。
由于絲錐結(jié)構(gòu)和螺紋加工復(fù)雜,目前有關(guān)改進(jìn)螺紋加工質(zhì)量、優(yōu)化加工性能的研究較少。因此,與車削、鉆孔、銑削等其他加工工藝相比,關(guān)于絲錐的相關(guān)研究及文獻(xiàn)非常有限[9]。本文對(duì)絲錐的典型幾何結(jié)構(gòu)和市場(chǎng)上常見(jiàn)的絲錐類型進(jìn)行了簡(jiǎn)要闡述,指出了絲錐的失效機(jī)理,重點(diǎn)闡述了不同表面處理技術(shù)對(duì)絲錐表面質(zhì)量和加工性能的影響,包括絲錐基體表面鈍化處理對(duì)提升絲錐切削性能的最新成果,以及不同的物理氣相沉積氮化物涂層和特殊薄膜涂層對(duì)絲錐切削性能的影響。最后,結(jié)合上述研究與絲錐失效方式如涂層剝落、黏結(jié)磨損嚴(yán)重等,提出未來(lái)絲錐表面處理的研究方向:利用表面微織構(gòu)技術(shù)、高熵涂層等目前熱門的表面處理技術(shù)來(lái)提升涂層膜基結(jié)合力,進(jìn)一步優(yōu)化涂層的成分和結(jié)構(gòu);改變切屑與刀具的接觸行為,提高抗黏結(jié)性能,從而提高絲錐的加工性能。
絲錐根據(jù)形狀可分為直槽絲錐、螺旋槽絲錐、螺尖絲錐和擠壓絲錐。不同的絲錐適用的加工材料、加工孔的類型、加工環(huán)境等均有不同[10],4種典型絲錐的加工特點(diǎn)及對(duì)應(yīng)加工材料如表1所示。
表1 4種典型絲錐[11-19]
Tab.1 Four typical taps[11-19]
絲錐主要包括工作部分和柄部。工作部分包括切削部分、校正部分和槽型結(jié)構(gòu)。切削部分是主要切削區(qū),其主要影響幾何參數(shù)有前角、后角、切削錐角等;校正部分具有校準(zhǔn)、導(dǎo)向和修光的作用,其目的是使螺紋達(dá)到合格的尺寸和形狀要求;絲錐柄部具有裝夾及驅(qū)動(dòng)作用。典型的絲錐結(jié)構(gòu)如圖1所示[20-23]。
圖1 典型的絲錐結(jié)構(gòu)
為了有針對(duì)性地強(qiáng)化絲錐切削性能,有必要深入了解絲錐加工中常遇見(jiàn)的問(wèn)題以及絲錐的失效形式和機(jī)理。絲錐加工中常見(jiàn)的問(wèn)題主要有[24]內(nèi)螺紋尺寸無(wú)法滿足要求、內(nèi)螺紋表面質(zhì)量無(wú)法滿足要求、使用壽命短等。而造成此類問(wèn)題的因素較多并且各因素之間相互影響,如切削參數(shù)、切削條件選擇不當(dāng);絲錐基體材料、結(jié)構(gòu)及類型選擇不當(dāng);絲錐底孔尺寸存在偏差等。絲錐加工常見(jiàn)的問(wèn)題及解決辦法如表2所示。
表2 絲錐加工常見(jiàn)的問(wèn)題[24]
Tab.2 Common problems in tap processing[24]
除了上述問(wèn)題外,絲錐的失效形式及其機(jī)理也是學(xué)者們關(guān)注的問(wèn)題,許多學(xué)者利用絲錐的切削實(shí)驗(yàn)對(duì)此類問(wèn)題進(jìn)行了研究。張善文等[25]對(duì)擠壓絲錐的失效形式進(jìn)行了研究,研究表明,失效形式主要有絲錐牙嚴(yán)重磨損和絲錐斷裂2種,采用正確的擠壓扭矩和擠壓溫度可以減少絲錐的破損和斷裂,提高螺紋質(zhì)量。鄔本祥等[26]對(duì)高速鋼絲錐的磨損機(jī)理和失效形式進(jìn)行了深入研究,研究發(fā)現(xiàn),高速鋼絲錐的失效形式主要有非正常失效的折斷、崩刃,絲錐的磨損方式主要為磨粒磨損、黏結(jié)磨損和疲勞磨損。Reginaldo等[27]對(duì)淬硬鋼加工中絲錐的磨損情況進(jìn)行了研究,研究發(fā)現(xiàn),材料本身的特性如硬性顆粒導(dǎo)致絲錐在切削過(guò)程中存在嚴(yán)重的磨粒磨損、黏結(jié)磨損,進(jìn)而會(huì)導(dǎo)致絲錐刃口崩缺或折斷,從而造成絲錐失效。
上述對(duì)常規(guī)絲錐加工的分析結(jié)果表明,其主要失效形式有絲錐刃口崩缺、折斷、磨損等,如圖2所示,失效形式如下:1)絲錐折斷(見(jiàn)圖2a)和崩刃(見(jiàn)圖2b)是絲錐常見(jiàn)的失效形式[28],一方面因?yàn)榻z錐的材料特性,使用時(shí)易產(chǎn)生應(yīng)力集中,另一方面因?yàn)榻z錐加工的底孔過(guò)小,從而導(dǎo)致螺紋切削時(shí)空間較小,切屑難以排出,并且存在積屑瘤,進(jìn)而導(dǎo)致扭矩瞬間增大、絲錐崩刃或折斷,此外,加工材料、切削用量等與絲錐不適配,也可能產(chǎn)生絲錐出現(xiàn)崩刃、折斷的現(xiàn)象;2)絲錐磨損是絲錐失效形式中另一種常見(jiàn)形式,絲錐磨損主要發(fā)生在刀齒后刀面上,而最大磨損發(fā)生在切削部分和校準(zhǔn)部分的過(guò)渡區(qū)域上,其中第一個(gè)校準(zhǔn)齒的磨損最嚴(yán)重[29],絲錐磨損機(jī)理主要為黏結(jié)磨損和磨粒磨損。黏結(jié)磨損是由于刀具與切屑、工件間存在高溫高壓和強(qiáng)烈摩擦,形成了新鮮表面接觸而發(fā)生了冷焊黏接,達(dá)到了原子間結(jié)合進(jìn)而產(chǎn)生了黏結(jié)現(xiàn)象,相對(duì)運(yùn)動(dòng)使黏接點(diǎn)破裂而被工件材料帶走,造成黏結(jié)磨損(見(jiàn)圖2c),嚴(yán)重的黏結(jié)磨損會(huì)導(dǎo)致絲錐切削時(shí)的扭矩瞬間增大,更有甚者會(huì)使絲錐崩刃或者發(fā)生折斷失效。磨粒磨損主要是因?yàn)閯兟涞耐繉游⑺槠⒈患庸げ牧蟽?nèi)存在的硬質(zhì)相等硬質(zhì)顆粒充當(dāng)磨料,加速了絲錐加工時(shí)的磨損行為,降低了絲錐的加工性能和加工質(zhì)量[30]。
圖2 絲錐失效形式[30]
通過(guò)對(duì)絲錐失效機(jī)制進(jìn)行分析,發(fā)現(xiàn)其主要失效機(jī)制如下:絲錐基體刃口表面質(zhì)量較差、強(qiáng)度較低,易產(chǎn)生應(yīng)力集中進(jìn)而折斷或者崩缺;絲錐特殊的加工方式和幾何結(jié)構(gòu)致使刃口易出現(xiàn)嚴(yán)重的材料黏附情況。因此,改進(jìn)絲錐基體表面刃口質(zhì)量、減少材料黏附是提升絲錐切削性能的關(guān)鍵。
通過(guò)表面處理技術(shù)可以改善絲錐刃口的質(zhì)量,降低絲錐刃口區(qū)的粗糙度,提高絲錐表面硬度、耐磨性及抗黏結(jié)性能,降低絲錐的切削扭矩、切削力和切削溫度,實(shí)現(xiàn)內(nèi)螺紋孔高效、高精度和高可靠性加工。目前絲錐表面處理技術(shù)主要有表面鈍化、表面涂層強(qiáng)化等。
刀具刃口通常存在大量的加工微缺陷,如磨痕、微裂紋、微崩刃、毛刺等(見(jiàn)圖3a)。這些微缺陷增強(qiáng)了切削刃與工件接觸界面間的摩擦,增大了切削力,導(dǎo)致絲錐發(fā)生過(guò)早失效,從而使扭矩瞬間增大,刀具切削壽命和加工質(zhì)量快速降低[31]。因此,良好的刃口形貌和表面質(zhì)量對(duì)提升絲錐的切削性能具有重要意義。絲錐鈍化是一種微觀表面處理工藝,主要是通過(guò)大幅度減少甚至消除刃口處的加工缺陷,獲得合適的刃口表面形貌(見(jiàn)圖3b),同時(shí)降低殘余應(yīng)力,提高刃口強(qiáng)度和抗疲勞性能,降低刃口區(qū)表面粗糙度,減少積屑瘤的產(chǎn)生,提高絲錐的耐磨性,并可增大后續(xù)PVD涂層的結(jié)合力。
鈍化工藝的理論研究長(zhǎng)期以來(lái)都是絲錐行業(yè)內(nèi)的研究熱點(diǎn)?,F(xiàn)階段,在刀具領(lǐng)域上廣泛應(yīng)用的刃口鈍化方式主要有干/濕噴砂鈍化、拖拽式鈍化、電解鈍化等。國(guó)內(nèi)主要研究的絲錐鈍化方式為電解鈍化,電解鈍化利用陽(yáng)極膜效應(yīng)和尖端效應(yīng)去除刃口微缺陷,達(dá)到鈍化拋光效果,從而提升絲錐刃口質(zhì)量[33],絲錐電解鈍化原理如圖4所示。利用電解拋光方法對(duì)絲錐切削刃進(jìn)行鈍化處理,能去除絲錐表面毛刺、微崩刃等缺陷,研究者們均認(rèn)為,鈍化后的絲錐避免了在初期磨損階段因刃口缺陷造成的扭矩瞬間增大而導(dǎo)致的劇烈磨損,延長(zhǎng)了穩(wěn)定磨損階段周期,降低了絲錐表面粗糙度,穩(wěn)定了切削扭矩,降低了磨損,提高了壽命。電解鈍化參數(shù)詳細(xì)信息如表3所示。電解鈍化對(duì)提高絲錐切削性能有一定的幫助。
相關(guān)研究表明,刀具涂層前處理對(duì)絲錐切削性能有一定作用,涂層后的鈍化拋光處理對(duì)絲錐的影響亦是如此[41],不同的處理工藝效果如圖5所示。涂層前后的鈍化處理可以提高涂層與基體結(jié)合力、降低涂層表面粗糙度、引入殘余壓應(yīng)力等。張明等[42]研究發(fā)現(xiàn),絲錐攻絲面臨嚴(yán)重的黏屑和磨損,利用機(jī)械接觸磨削鈍化方法,能有效去除絲錐前段不完整齒并減少絲錐表面缺陷等,改善絲錐黏結(jié)行為,使攻絲扭矩更為平穩(wěn),加工螺紋表面粗糙度變低,毛刺減少,絲錐加工穩(wěn)定性和使用壽命得到提高。何佳等[32]研究了螺旋槽絲錐過(guò)切現(xiàn)象,利用鋼絲輪去除了螺紋毛刺,然后利用拖拽研磨去除切削刃毛刺,并在刃口處形成微圓弧,減少毛刺導(dǎo)致的過(guò)切,提高了加工螺紋孔的表面光潔度。Elosegui等[43]對(duì)絲錐基體進(jìn)行了拖曳研磨及微噴砂鈍化處理,以改善微粗糙度和表面殘余應(yīng)力。結(jié)果表明,前期鈍化處理能提高涂層與基體的結(jié)合力,而拖曳研磨法鈍化的涂層絲錐磨損率和切削扭矩比無(wú)鈍化絲錐的更低,如圖6所示。徐和平等[44]利用液體噴砂方法對(duì)涂層前和涂層后的絲錐進(jìn)行了鈍化處理,發(fā)現(xiàn)涂層前對(duì)絲錐進(jìn)行鈍化處理可以提高表面粗糙度,從而提高涂層與基體之間的結(jié)合力,并保證刃口半徑均勻;涂層后的鈍化處理可以降低刃口表面粗糙度,減小絲錐切削摩擦力。Fukui等[45]對(duì)涂層絲錐進(jìn)行了磨粒拋光鈍化處理,研究表明,涂層的表面粗糙度是一個(gè)非常重要的因素,當(dāng)涂層的表面粗糙度從2.73 μm降低到1.65 μm時(shí),不會(huì)降低切削刃的鋒利度,而會(huì)減小攻絲過(guò)程中的扭矩,延長(zhǎng)絲錐的切削壽命。
目前研究表明,涂層前處理可以消除微小缺陷,提高膜基結(jié)合力;涂層后處理可以降低涂層的粗糙度以及絲錐切削時(shí)的摩擦力,調(diào)整殘余應(yīng)力,優(yōu)化涂層性能等,從而達(dá)到提升絲錐的切削性能的目的,對(duì)延長(zhǎng)切削壽命有一定的幫助。但是上述研究?jī)H局限于鈍化處理對(duì)絲錐切削性能的影響,并未有相關(guān)研究人員針對(duì)鈍化工藝參數(shù)與絲錐的適配性、不同刃口半徑值與絲錐切削性能的關(guān)聯(lián)性等進(jìn)行深入研究,因此,針對(duì)絲錐涂層前后的鈍化工藝適配性需要進(jìn)行進(jìn)一步研究,如鈍化方式、鈍化時(shí)間、刃口半徑值等因素對(duì)絲錐切削性能的影響,以此獲得與不同絲錐類型、不同加工材料等適配的鈍化工藝,從而提升絲錐的切削性能。鈍化工藝在絲錐上的應(yīng)用仍具有較大的發(fā)展前景。
表3 電解鈍化參數(shù)詳細(xì)信息
圖6 微噴砂與拽曳鈍化絲錐加工性能對(duì)比[43]
由前文可知,鈍化工藝可以有效改善絲錐刃口質(zhì)量,在一定程度上提升絲錐的切削性能,但是僅依靠鈍化工藝無(wú)法滿足現(xiàn)階段的加工要求,因而涂層絲錐應(yīng)運(yùn)而生。PVD技術(shù)利用物理過(guò)程實(shí)現(xiàn)了物質(zhì)轉(zhuǎn)移,將原子或者分子由蒸發(fā)源轉(zhuǎn)移到基體表面,賦予了基體更加優(yōu)異的性能(硬度、耐磨性、耐蝕性等)。常見(jiàn)的PVD方法有真空蒸鍍、電弧離子鍍和磁控濺射鍍膜等[46]。其中,電弧離子鍍因離化率高、組織致密和結(jié)合強(qiáng)度高等優(yōu)點(diǎn)成為市場(chǎng)上絲錐涂層的主流方法,但為了降低電弧離子鍍涂層表面的微顆粒缺陷,磁過(guò)濾或機(jī)械過(guò)濾等技術(shù)應(yīng)運(yùn)而生,但由于沉積效率較低,在工業(yè)應(yīng)用方面仍面臨嚴(yán)峻挑戰(zhàn)。高功率脈沖磁控濺射技術(shù)是絲錐涂層理想的制備方法之一,因離化率高、表面光滑、組織致密等特點(diǎn)而成為行業(yè)研究熱點(diǎn)之一。過(guò)渡金屬氮化物的硬度高、耐磨性優(yōu)異,且與金屬親和性低,在絲錐表面涂覆氮化物陶瓷能有效降低切削力和切削熱,提高絲錐加工壽命、產(chǎn)品質(zhì)量與加工效率,是絲錐等刀具的主流涂層材料。
3.2.1 PVD氮化物涂層
由于絲錐的加工為低中速加工、半封閉式加工,TiN系涂層具有硬度高、耐磨性優(yōu)異、摩擦因數(shù)低等優(yōu)點(diǎn),所以TiN系涂層被廣泛應(yīng)用于絲錐中,對(duì)絲錐的性能提升有較大幫助。Freitas等[47]在高速鋼絲錐表面涂覆了一定厚度的TiN涂層,并對(duì)碳纖維復(fù)合材料進(jìn)行了加工,研究發(fā)現(xiàn),與未涂層絲錐相比,涂層絲錐的切削力和扭矩均更小,螺紋孔表面質(zhì)量更高。趙立新等[48]對(duì)F205鋼絲錐進(jìn)行熱處理后再沉積了TiN涂層,研究發(fā)現(xiàn),基體中的碳化物含有與TiN相同的面心立方點(diǎn)陣結(jié)構(gòu),促進(jìn)了TiN涂層沿(111)TiN晶面擇優(yōu)生長(zhǎng),從而提高了膜基結(jié)合力,減小了內(nèi)應(yīng)力,使TiN涂層具備更優(yōu)性能,絲錐的使用壽命提高了2倍。鄔本祥等[26]對(duì)TiN高速鋼涂層絲錐切削性能進(jìn)行了研究,通過(guò)建立壽命模型,驗(yàn)證了在合適的切削參數(shù)下,TiN涂層可以獲得較長(zhǎng)的切削壽命。Oliveira等[49]研究了不同結(jié)構(gòu)的TiN涂層對(duì)絲錐切削性能的影響,結(jié)果表明,高硬度TiN-T1涂層絲錐的摩擦因數(shù)大,摩擦力大。與傳統(tǒng)的TiN相比,低摩擦因數(shù)的傳統(tǒng)TiN涂層絲錐的切削扭矩和摩擦力更小,絲錐的切削性能更高,不同的涂層切削力-時(shí)間曲線如圖7所示。Carvalho等[50]研究了不同因素對(duì)絲錐切削性能的影響,結(jié)果表明,不同的底孔直徑會(huì)影響涂層性能,偏小的底孔直徑會(huì)使TiN涂層的絲錐切削力和扭矩不減反增,從而降低涂層性能??讖胶偷毒哳愋偷慕换プ饔萌鐖D8所示。
圖7 不同的涂層切削力-時(shí)間曲線[49]
上述研究表明,TiN涂層能改善絲錐的切削性能,但由于其抗氧化性較差,隨著對(duì)內(nèi)螺紋加工效率和加工質(zhì)量的要求越來(lái)越高,在較高的切削溫度下易導(dǎo)致膜層氧化燒蝕嚴(yán)重,從而導(dǎo)致涂層失效。為了解決TiN涂層所遇到的問(wèn)題,絲錐涂層也隨著刀具涂層的發(fā)展而不斷革新,開(kāi)始朝著多元復(fù)合涂層方向發(fā)展,多元復(fù)合涂層具有更優(yōu)異的性能。鄔本祥等[51]在高速鋼絲錐表面涂覆了TiN和AlTiSiXN涂層,研究發(fā)現(xiàn),因添加了Si和微合金元素X,AlTiSiXN涂層呈現(xiàn)出由納米晶鑲嵌非晶基體組成的納米復(fù)合結(jié)構(gòu),該涂層的硬度高且抗磨粒磨損性能優(yōu)異,其絲錐加工壽命是TiN涂層絲錐加工壽命的4倍,且內(nèi)螺紋孔的加工表面質(zhì)量更高。戴翠麗[52]采用TiCN+TiN多元復(fù)合涂層的高速鋼絲錐加工鑄鐵,研究發(fā)現(xiàn),TiCN+TiN多元復(fù)合涂層提高了絲錐的壽命和加工效率。鮮廣等[53]利用共濺射方法在高速鋼表面沉積了TiCN涂層,并利用其涂層絲錐加工了40Cr鋼,研究發(fā)現(xiàn),在涂層與鋼界面處形成了碳轉(zhuǎn)移膜,能起到固體潤(rùn)滑和減磨作用,延長(zhǎng)了絲錐壽命。徐濤[54]研究發(fā)現(xiàn),利用TiAlCrN涂層絲錐加工Q345B鋼時(shí),其加工壽命是無(wú)涂層絲錐加工壽命的2倍,螺紋表面質(zhì)量更高,且加工成本更低。Elosegui等[43]利用陰極電弧技術(shù)在絲錐表面沉積了不同類型的硬質(zhì)涂層,并加工了奧氏體不銹鋼和球墨鑄鐵,與AlTiN、AlCrSiN和AlTiSiN/TiN涂層相比,梯度結(jié)構(gòu)的AlTiSiN-G涂層的綜合性能更好,涂層絲錐后刀面磨損和切削扭矩更低,加工表面質(zhì)量更佳。涂層性能如表4所示PVD氮化物涂層賦予了絲錐基體更加優(yōu)異的性能,如高硬度、高耐磨性、抗氧化性和低摩擦因數(shù)等,降低了切削時(shí)的切削力、切削溫度和切削扭矩,大大提升了絲錐的切削性能。隨著對(duì)內(nèi)螺紋孔加工要求的日益提高,傳統(tǒng)的主流涂層(TiN、TiCN、TiSiN等)存在一些缺陷,如TiN、TiAlN涂層的抗氧化較差,TiCN涂層的摩擦磨損性能會(huì)隨著溫度的升高而急劇降低,無(wú)法滿足絲錐的切削性能要求。
圖8 孔徑和刀具類型交互作用圖[50]
表4 不同的涂層性質(zhì)[43]
Tab.4 Different coating properties[43]
3.2.2 碳膜涂層
基于絲錐半封閉式的連續(xù)切削方式,學(xué)者們研究發(fā)現(xiàn),低摩擦因數(shù)的碳膜涂層對(duì)提升絲錐的切削性能有良好的效果。Henderer等[55]利用陰極電弧和磁控濺射組合技術(shù),在絲錐表面分別涂覆了TiSiN和TiN底層,在表面再沉積了CrC/C低摩擦因數(shù)的自潤(rùn)滑涂層,結(jié)果表明,CrC/C涂層的摩擦因數(shù)較低,抗黏結(jié)磨損性能較好;TiSiN涂層硬度比TiN涂層的更高,賦予了其表面CrC/C涂層更低的扭矩和更高的抵抗磨粒磨損抗力,如圖9所示。Reiter等[56]對(duì)比研究了CrC、CrN、TiAlN、TiCN、AlCrN、DLC和WC/C涂層絲錐加工奧氏體不銹鋼加工行為,具體涂層性能如表5所示。研究表明,涂層磨損率越小,對(duì)切削刃的保護(hù)越好,切削扭矩越穩(wěn)定。其中,TiCN和AlCrN(70/30)涂層的絲錐加工性能最佳,而Cr基涂層(如CrC和CrN)的絲錐加工性能較差;與碳涂層(DLC、WCC等)相比,TiCN和其他Cr基涂層(除CrC外)的抗黏結(jié)效果更好?;谏鲜鲅芯拷Y(jié)果,發(fā)現(xiàn)奧氏體不銹鋼加工的涂層絲錐同時(shí)兼具優(yōu)異的耐磨性、摩擦性能、抗黏附性等性能。
Steininger等[57]系統(tǒng)研究了TiCN、CrN、SCiL- TiCN、TiB2和DLC等涂層絲錐加工鋁硅合金過(guò)程中的工藝穩(wěn)定性,研究發(fā)現(xiàn),涂層絲錐加工性能與黏結(jié)磨損效果緊密相關(guān),DLC涂層的摩擦因數(shù)低且抗黏結(jié)磨損效果優(yōu)異,其涂層絲錐加工表面質(zhì)量高且抗黏結(jié)磨損性能優(yōu)異。Klocke等[58]對(duì)新型CROMTIVIc2涂層絲錐及TiCN涂層絲錐進(jìn)行了對(duì)比,CROMTIVIc2涂層結(jié)構(gòu)如圖10所示,結(jié)果表明,CROMTIVIc2涂層為碳基涂層系統(tǒng),其摩擦因數(shù)低,磨損程度低,與傳統(tǒng)TiCN涂層相比,加工鈦合金時(shí)的扭矩、絲錐磨損、切削溫度更低,絲錐壽命更長(zhǎng)。
Bhowmick等[59]研究發(fā)現(xiàn),DLC的摩擦因數(shù)低,能抑制鋁在絲錐表面的黏附,使涂層絲錐加工時(shí)的扭矩更加穩(wěn)定。Piska等[60]研究了TiN+DLC復(fù)合涂層絲錐,由于DLC涂層的摩擦因數(shù)較低,在絲錐反轉(zhuǎn)時(shí)可以抑制刀具材料的黏附,從而提高內(nèi)螺紋質(zhì)量。Jin等[61]利用磁增強(qiáng)的電弧離子鍍技術(shù)在絲錐表面沉積了c-BN涂層,并與傳統(tǒng)的硬質(zhì)膜涂層絲錐進(jìn)行了對(duì)比,研究發(fā)現(xiàn),c-BN涂層的摩擦因數(shù)低,能有效防止黏結(jié)、降低攻絲阻力、提高絲錐使用壽命和螺紋加工表面質(zhì)量。韓榮第等[62]將硬質(zhì)涂層和軟涂層結(jié)合,對(duì)無(wú)涂層、TiN、TiCN-WS2的3種絲錐進(jìn)行了絲錐切削測(cè)試,結(jié)果表明,三者中摩擦因數(shù)最低的TiCN-WS2的螺紋切削扭矩最小、加工質(zhì)量最好。Gil等[63]對(duì)TiN、TiCN、TiAlN和TiAlN+WC/C 4種涂層的切削性能進(jìn)行了比較,研究發(fā)現(xiàn),TiN、TiCN、TiAlN和TiAlN+WC/C涂層均減少了絲錐的磨損,不同類型的絲錐磨損情況如圖11所示,但是由于TiAlN+WC/C涂層表面存在潤(rùn)滑層WC/C,其摩擦因數(shù)低,該涂層切削時(shí)的切削扭矩和磨損更小,可以強(qiáng)化絲錐的切削性能。
圖9 涂層絲錐加工行為[55]
表5 不同的涂層性質(zhì)[56]
Tab.5 Different coating properties[56]
圖10 不同涂層絲錐涂層結(jié)構(gòu)及扭矩對(duì)比[58]
碳膜涂層如DLC、WC/C、CrC/C等具有較低的摩擦因數(shù),使得絲錐基體具備一定的潤(rùn)滑性,在切削時(shí)可防止材料黏附,降低絲錐切削時(shí)的切削力和扭矩,從而提升絲錐的切削性能。但是碳膜涂層含有碳元素,在加工鋼鐵類材料時(shí),與材料中的鐵元素結(jié)合,會(huì)導(dǎo)致脫碳、磨損、涂層剝落等情況出現(xiàn),因而更適合加工有色金屬的內(nèi)螺紋。
3.2.3 特殊薄膜
在絲錐表面涂覆一層金屬或者非金屬化合物涂層,可明顯提升絲錐性能。研究者嘗試?yán)锰厥獗砻嫣幚砑夹g(shù)在絲錐表面涂覆特殊薄膜,以改善絲錐加工性能。Veldhuis等[64]在絲錐表面涂覆了一層潤(rùn)滑氟有機(jī)表面活性劑(如全氟聚醚、PFPE),研究發(fā)現(xiàn),PFPE薄膜使絲錐表面的摩擦因數(shù)降低了18%,減少了絲錐與被加工材料之間的黏結(jié),降低了攻絲時(shí)的扭矩,使絲錐的壽命提高了2倍。何建國(guó)等[65]在絲錐表面噴涂了含鉬的潤(rùn)滑劑,研究發(fā)現(xiàn),含鉬潤(rùn)滑劑的絲錐的加工孔數(shù)和累計(jì)加工長(zhǎng)度均是無(wú)涂層絲錐的2.15倍,且攻絲時(shí)的切削熱和扭矩均有所降低。Saito等[66]利用化學(xué)法分別沉積了Ni-P/cBN和Ni-P/SiC涂層,并與PVD沉積的TiCN進(jìn)行了比較,結(jié)果表明,Ni-P/c-BN和Ni-P/SiC涂層比TiCN涂層的摩擦因數(shù)更低,絲錐表面磨粒引起的犁溝進(jìn)一步增大了前后刀面與切屑接觸面的界面摩擦,導(dǎo)致切屑更易排除,切屑卷曲直徑更小,即使在高速切削下也能有效防止切屑纏結(jié),如圖12所示。Korhonen等[67]利用超短脈沖激光沉積技術(shù)和兩相電化學(xué)技術(shù)在絲錐表面分別沉積了金剛石涂層(AD,見(jiàn)圖13a)與鉻-納米金剛石涂層。在干式攻絲時(shí),由于金剛石與加工鋁合金材料的界面結(jié)合力比較低,2種金剛石涂層絲錐均表現(xiàn)出良好的抗黏結(jié)效果(見(jiàn)圖13b~c),而無(wú)涂層絲錐表面發(fā)生了明顯的黏結(jié)(見(jiàn)圖13d)。此外,AD涂層的平均扭矩較無(wú)涂層絲錐的降低了37%~51%,較CND涂層的降低了19%,切削性能更佳。
圖11 不同類型絲錐后刀面磨損圖[63]
圖12 不同涂層絲錐切削加工50個(gè)螺紋孔后的圖片[66]
圖13 不同涂層絲錐加工刃口表面SEM形貌像[67]
目前,添加涂層是提高絲錐服役壽命的常用策略。例如:PVD氮化物涂層具備硬度高、抗磨粒磨損、摩擦因數(shù)低等性能;特殊潤(rùn)滑型薄膜具備自潤(rùn)滑性、低摩擦因數(shù)等性質(zhì),可以減小螺紋切削時(shí)的摩擦、阻止黏結(jié)、降低切削溫度和切削扭矩、減小刀具磨損,并防止積屑瘤產(chǎn)生,從而可以提升絲錐的切削性能。但是涂層絲錐依然存在許多問(wèn)題,Gil等[68]針對(duì)加工球墨鑄鐵的絲錐磨損機(jī)理進(jìn)行了研究,結(jié)果表明,絲錐磨損的最嚴(yán)重部位位于最后一個(gè)切削齒和第一個(gè)成形齒之間,主要的磨損形式為黏結(jié)磨損,此外,涂層剝落也是攻絲過(guò)程中的主要失效方式之一。Barooah等[69-70]針對(duì)涂層擠壓絲錐的磨損進(jìn)行了研究,結(jié)果表明,主要的磨損為涂層剝落、黏結(jié)磨損和磨粒磨損,如圖14所示。Fernandes等[71]針對(duì)鋁合金內(nèi)螺紋加工的磨損機(jī)理進(jìn)行了研究,研究表明,在加工過(guò)程中,絲錐存在DLC涂層剝落,切削絲錐入口處鋁黏結(jié)、塑性變形和側(cè)面磨損均較為嚴(yán)重。
上述研究表明,涂層絲錐也存在嚴(yán)重的黏結(jié)磨損和磨粒磨損,而涂層絲錐最主要的失效方式為涂層剝落。涂層剝落后基體的裸露加速了失效,并且涂層剝落后由于涂層本身存在脆性,在半封閉式的加工環(huán)境中可以作為較硬的磨粒[72],從而增大攻絲扭矩、切削力、內(nèi)螺紋表面粗糙度等。造成涂層剝落最主要的原因?yàn)榻z錐基體表面存在一定的缺陷,膜基結(jié)合力較差。此外,黏結(jié)磨損也會(huì)導(dǎo)致涂層與基體分離,從而導(dǎo)致絲錐涂層剝落。
圖14 絲錐磨損失效圖[69]
現(xiàn)階段的絲錐涂層研究仍存在許多問(wèn)題,仍需進(jìn)一步探索不同涂層與不同類型絲錐、不同加工材料的適配性及其失效機(jī)理。因此,要想大幅度提高涂層絲錐的切削性能,需提升膜基結(jié)合力、對(duì)PVD涂層成分和組織結(jié)構(gòu)進(jìn)行重新設(shè)計(jì),如沉積硬度和結(jié)合力高的支撐層,表面涂覆硬度高、表面光滑和與鋼基體親和性低的自潤(rùn)滑涂層,進(jìn)而改善涂層絲錐加工時(shí)的加工特性,從而達(dá)到絲錐提質(zhì)延壽的要求。
綜上可知,無(wú)論是刃口鈍化、PVD涂層還是碳膜涂層,均對(duì)提升絲錐切削性能有重要意義。但如果絲錐涂層膜基結(jié)合力差,將導(dǎo)致涂層剝落、使基體裸露。結(jié)合絲錐的加工方式和特點(diǎn),絲錐和切屑惡劣的接觸行為會(huì)造成嚴(yán)重的材料黏附情況,最終導(dǎo)致絲錐失效,因而絲錐服役性能的提升主要在于改變切屑與刀具的接觸行為和提高抗黏接性能及涂層膜基結(jié)合力,進(jìn)一步優(yōu)化涂層的成分和結(jié)構(gòu)等。綜合現(xiàn)階段的表面處理技術(shù),本文提出了除鈍化處理、PVD涂層外的兩大新途徑:表面微/納織構(gòu)處理技術(shù)及高熵合金涂層,以期為后續(xù)絲錐的提質(zhì)延壽提供一個(gè)方向。
近年來(lái),相關(guān)學(xué)者認(rèn)為微織構(gòu)可以對(duì)表面的摩擦學(xué)特性、力學(xué)特性等有重要的調(diào)控作用[73]。在刀具上利用激光加工技術(shù)、電火花技術(shù)、離子刻蝕技術(shù)以及機(jī)械微磨削加工出具有不同形狀尺寸和分布特征的微凹坑、溝槽等陣列結(jié)構(gòu)時(shí)[74],合理的微織構(gòu)可以有效改善刀具與材料表面的接觸方式和潤(rùn)滑方式,其減摩機(jī)理主要有3個(gè)方面[75-79]:減小刀具與切屑間的接觸長(zhǎng)度和面積,降低切削力和切削溫度;有效地存儲(chǔ)潤(rùn)滑劑,有助于實(shí)現(xiàn)微量潤(rùn)滑;收集磨屑,改善磨粒磨損行為。減磨機(jī)理如圖15所示。
圖15 刀具磨損機(jī)理[79]
相關(guān)研究發(fā)現(xiàn),微織構(gòu)除了可以改善刀-屑界面的接觸特征、減少材料黏附外,還可以改善基體的表面狀態(tài),改變基體表面的粗糙度,增大膜-基結(jié)合界面接觸面積,增大涂層與基體之間的咬合力,從而提升涂層的結(jié)合力[79-80]。Zhang等[81]研究發(fā)現(xiàn),涂層中通常具有較高的殘余應(yīng)力,而具有微/納復(fù)合的織構(gòu)凹槽可以分散涂層的內(nèi)應(yīng)力和摩擦接觸角,從而使涂層具有優(yōu)異的結(jié)合力,涂層與基體界面咬合示意圖如圖16所示。Liu等[82]研究發(fā)現(xiàn),表面納米級(jí)微織構(gòu)可以增大界面面積和降低涂層彈性模量進(jìn)而改變表面結(jié)構(gòu)、提高膜基結(jié)合力,在涂層剝落后納米級(jí)微織構(gòu)表現(xiàn)出衍生切削,進(jìn)而使刀具具備更好的側(cè)面耐磨性,如圖17所示。
上述關(guān)于微/納織構(gòu)的研究均在車刀、銑刀等其他刀具上得到了較好的應(yīng)用,說(shuō)明微/納織構(gòu)對(duì)改善刀-屑界面的接觸特征及摩擦磨損性能、減少材料黏附、提升膜基結(jié)合力等有重要意義。絲錐加工時(shí),刃口與被加工材料接觸面發(fā)生劇烈的摩擦,刃口處切削溫度劇增,材料黏附嚴(yán)重而致使扭矩瞬間增大,最終導(dǎo)致絲錐折斷失效。因此,在絲錐中引入微/納織構(gòu),將能較好地改善絲錐加工過(guò)程中刀-屑界面的接觸特征,改變其摩擦磨損性能,減少材料黏附,從而改善切削過(guò)程中由于黏結(jié)磨損而產(chǎn)生的扭矩增大、絲錐失效等情況。此外,引入微/納織構(gòu)能夠有效提高涂層與基體的結(jié)合力,大幅度延遲涂層絲錐的服役壽命。然而,目前有關(guān)絲錐表面微/納織構(gòu)的研究至今尚未見(jiàn)報(bào)道,但微/納織構(gòu)在車刀、銑刀等切削刀具的應(yīng)用可為高性能絲錐的開(kāi)發(fā)提供依據(jù)。
圖16 涂層與基體界面咬合示意圖[81]
圖17 不同刀具橫界面組織[82]
高熵合金涂層是現(xiàn)階段表面工程領(lǐng)域一個(gè)新的研究熱點(diǎn),作為材料領(lǐng)域的三大突破之一,高熵合金一般由5種或5種以上的合金元素以等摩爾比或近等摩爾比配比組成,由于受到高熵效應(yīng)、緩慢的原子擴(kuò)散效應(yīng)、嚴(yán)重的晶格扭曲效應(yīng)以及雞尾酒效應(yīng)等高熵四大核心效應(yīng)的影響[83],同時(shí)高熵合金氮化物、碳化物等含有金屬鍵、離子鍵和共價(jià)鍵,因此,高熵合金涂層表現(xiàn)出比傳統(tǒng)涂層更優(yōu)異的綜合力學(xué)性能,如高硬度和彈性模量、優(yōu)異的耐腐蝕性能、高耐磨損性能和高熱穩(wěn)定性能等[84],而且可以根據(jù)不同工況的需求,制備相應(yīng)的高熵合金涂層。
目前針對(duì)高熵合金氮化物涂層的研究主要包括FeCoNi基[85]、TiZr基[86]和AlCrTi基[87]。Chen等[88-89]研究了CrN-AlCrN-AlCrTiSiN梯度高熵氮化物涂層,該涂層的硬度高達(dá)36 GPa,涂層可承受1 100 ℃高溫,且表現(xiàn)出高紅硬性(27 GPa),與AlCrN、AlTiN等傳統(tǒng)涂層相比,該涂層具有更好的耐熱、抗熱疲勞與耐腐蝕性能,較高的硬度和彈性模量可以有效降低涂層的磨損率。AlCrTi基高熵合金氮化物涂層表現(xiàn)出更高的紅硬性、熱穩(wěn)定性和抗高溫氧化性。高的紅硬性和熱穩(wěn)定性確保涂層刀具具有優(yōu)異的抗磨粒磨損性能;高的抗高溫氧化性能確保涂層刀具具有優(yōu)異的抗氧化磨損性能,同時(shí),氧化膜與鋼材具有低的親和性,能有效改善涂層刀具的抗黏結(jié)磨損性能。
目前,高熵合金氮化物涂層在刀具中的研究主要集中在車刀、銑刀等,而關(guān)于絲錐涂層的研究?jī)H局限于市場(chǎng)主流的傳統(tǒng)涂層。高熵合金氮化物涂層具備優(yōu)異的綜合性能,如AlCrTi基高熵合金氮化物涂層具有高硬度和彈性模量、優(yōu)異的耐腐蝕性能、高耐磨損性能和高熱穩(wěn)定性能。通過(guò)加強(qiáng)高熵涂層的相關(guān)理論以及合理設(shè)計(jì)合金成分組元和涂層工藝,能夠獲得與絲錐相適應(yīng)的高性能新型高熵合金氮化物涂層。如添加Nb、W等元素提高涂層的硬度和紅硬性;添加Al和Cr元素提高涂層的抗高溫氧化性能;添加Si元素,有助于形成納米結(jié)構(gòu),提高涂層的硬度;添加V和Mo元素可以在摩擦界面上形成自潤(rùn)滑特性的V2O5和MoO3,起減磨作用[90]。因此,高熵合金氮化物涂層絲錐具有很深遠(yuǎn)的研究意義和較好的發(fā)展前景,可為絲錐后續(xù)的涂層表面處理技術(shù)提供一個(gè)新的研究方向。
絲錐是一種內(nèi)螺紋加工的專用刀具。經(jīng)過(guò)長(zhǎng)期發(fā)展,根據(jù)被加工材料的性質(zhì),絲錐主要分為四大類。隨著不銹鋼、鈦合金、淬硬鋼、鎳基高溫合金等典型難加工材料的廣泛應(yīng)用,攻絲工況越加苛刻,這對(duì)絲錐性能提出了更高的要求。截至目前,PVD技術(shù)和鈍化技術(shù)是市場(chǎng)上絲錐主流表面處理技術(shù)。單一表面處理技術(shù)的缺點(diǎn)比較明顯:PVD涂層脆性大,刃口區(qū)易出現(xiàn)微崩刃;涂層與基體結(jié)合力較低,攻絲時(shí)涂層易剝落,剝落涂層碎片充當(dāng)磨料,加速切削刃的磨損;PVD涂層成分和組織結(jié)構(gòu)直接決定了涂層的力學(xué)物理和化學(xué)性能,最終影響了涂層絲錐加工性能;PVD涂層表面的硬質(zhì)微顆粒,在切削時(shí)會(huì)對(duì)涂層產(chǎn)生強(qiáng)烈的剪切作用,產(chǎn)生磨粒磨損。鈍化處理難以大幅度提高絲錐表面硬度和耐磨性,改善絲錐耐磨性能。基于此,未來(lái)絲錐表面處理技術(shù)的研究方向可以概括為:1)利用現(xiàn)有的鈍化工藝,尋找出與不同類型絲錐適配的鈍化工藝,獲得合適的刃口形貌;2)利用激光加工等技術(shù),在絲錐刃口表面上加工出不同形狀尺寸的微/納織構(gòu),從而改變絲錐的刀-屑接觸行為,提升抗黏結(jié)性能,提高涂層膜基結(jié)合力,從而提升絲錐切削性能;3)結(jié)合絲錐的加工方式和特點(diǎn),對(duì)應(yīng)用于絲錐的主流涂層組織成分和結(jié)構(gòu)進(jìn)行優(yōu)化和設(shè)計(jì),并研究高熵涂層相關(guān)理論,開(kāi)發(fā)適用于絲錐的高熵合金氮化物涂層;4)探索出多種表面處理技術(shù)復(fù)合的工藝,如絲錐基體鈍化前處理、表面微織構(gòu)、PVD涂層優(yōu)化設(shè)計(jì)與制備和涂層后拋光處理,進(jìn)而獲得一種表面硬度、耐磨性和結(jié)合力高以及表面光潔的自潤(rùn)滑PVD涂層,以大幅度提高絲錐抗磨損性能、加工性能,實(shí)現(xiàn)內(nèi)螺紋孔高效高質(zhì)和低成本加工。
[1] TSAO C C, KUO K L. Ultrasonic-assisted Vibration Tap-ping Using Taps with Different Coatings[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 764- 768.
[2] PAWAR S, JOSHI S S. Experimental Analysis of Axial and Torsional Vibrations Assisted Tapping of Titanium Alloy[J]. Journal of Manufacturing Processes, 2016, 22: 7-20.
[3] BRAND?O G L, SILVA P M D C, FREITAS S A D, et al. State of the Art on Internal Thread Manufacturing: a Review[J]. The International Journal of Advanced Manu-facturing Technology, 2020, 110(11/12): 3445-3465.
[4] RIPOLL M R, TOMALA A M, TOTOLIN V, et al. Performance of Nano Lubricants Containing MoS2 Nano-tubes during Form Tapping of Zinc-Coated Automotive Components[J]. Journal of Manufacturing Processes, 2019, 39: 167-180.
[5] OEZKAYA E, BIERMANN D. Segmented and Mathema-tical Model for 3D FEM Tapping Simulation to Predict the Relative Torque before Tool Production[J]. Interna-tional Journal of Mechanical Sciences, 2017, 128/129: 695-708.
[6] OEZKAYA E, BIERMANN D. Development of a Geo-metrical Torque Prediction Method (GTPM) to Automa-tically Determine the Relative Torque for Different Tap-ping Tools and Diameters[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1/2/3/4): 1465-1479.
[7] DIAS L D, BRAND?O L C, RIBEIRO F L M, et al. Pro-cessing of Threads on a Magnesium Alloy Using a Spe-cial Process[J]. Materials and Manufacturing Processes, 2014, 29(6): 748-753.
[8] CAO Teng-yun, SUTHERLAND J W. Investigation of Thread Tapping Load Characteristics Through Mechanis-tics Modeling and Experimentation[J]. International Jour-nal of Machine Tools & Manufacture, 2002, 42: 1527- 1538.
[9] MA Y C, WAN M, YANG Y, et al. Dynamics of Tapping Process[J]. International Journal of Machine Tools and Manufacture, 2019, 140: 34-47.
[10] 郭偉民. 絲錐在加工中心上的選用[J]. 工藝與制造, 2020, 10: 102-105.GUO Wei-min. Selection of Taps in MC[J]. Technology and Manufacture, 2020, 10: 102-105.
[11] 何文學(xué), 張加鋒. 紫銅零件小尺寸螺紋孔的攻絲分析[J]. 機(jī)械工程師, 2015, 10: 208-210.HE Wen-xue, ZHANG Jia-feng. Analysis on Tapping the Small Size Threaded Hole of the Copper Parts[J]. Mec-hanical Egineer, 2015, 10: 208-210.
[12] 肖琦, 董向陽(yáng), 王樹(shù)林, 等. 螺旋槽絲錐槽型參數(shù)優(yōu)化及其攻絲過(guò)程分析[J]. 工具技術(shù), 2019, 53(12): 63-66.XIAO Qi, DONG Xiang-yang, WANG Shu-lin, et al. Optimization of Groove Parameters and Analysis of Tap-ping Process of Spiral Groove Tap[J]. Tool Engineering, 2019, 53(12): 63-66.
[13] 高盈佳, 劉海濤, 薛鍇. 螺旋槽絲錐槽型優(yōu)化設(shè)計(jì)[J]. 工具技術(shù), 2017, 51(5): 81-84.GAO Ying-jia, LIU Hai-tao, XUE Kai. Optimal Design of Flute and Cutting Experiment of Spiral Fluted Tap[J]. Tool Engineering, 2017, 51(5): 81-84.
[14] 谷美林, 史文, 劉慧娟. 螺旋槽絲錐的結(jié)構(gòu)優(yōu)化及有限元分析[J]. 工具技術(shù), 2017, 51(2): 83-87.GUO Mei-lin, SHI Wen, LIU Hui-juan. Structural Opti-mization Design and Finite Element Analysis of Spiral Fluted Taps[J]. Tool Engineering, 2017, 51(2): 83-87.
[15] 高盈佳, 楊仕成, 薛鍇. 螺尖絲錐的切削性能分析[J]. 工具技術(shù), 2017, 51(9): 83-86.GAO Ying-jia, YANG Shi-cheng, XUE Kai. Cutting Per-formance Analysis of Spiral Pointed Taps[J]. Tool Engi-neering, 2017, 51(9): 83-86.
[16] 王宗偉, 董向陽(yáng), 王樹(shù)林, 等. 螺尖絲錐槽型幾何參數(shù)對(duì)攻絲的影響[J]. 工具技術(shù), 2020, 54(1): 73-76.WANG Zong-wei, DONG Xiang-yang, WANG Shu-lin, et al. Influence of Geometric Parameters of Screw Taper Groove on Tapping[J]. Tool Engineering, 2020, 54(1): 73-76.
[17] 劉作慶, 劉擁軍, 張建周. 擠壓絲錐的應(yīng)用[J]. 工具技術(shù), 2012, 46(4): 65-67.LIU Zuo-jun, LIU Yong-jun, ZHANG Jian-zhou. The App-lication of Form Taps[J]. Tool Engineering, 2012, 46(4): 65-67.
[18] LI Y Y, ZHAO S D. Numerical Analysis on the Key Technology in Extrusion Tapping of Internal Thread[J]. Advanced Materials Research, 2011(341/342): 436-441.
[19] FROMENTIN G, BIERLA A, MINFRAY C, et al. An Ex-perimental Study on the Effects of Lubrication in Form Tapping[J]. Tribology International, 2010, 43(9): 1726- 1734.
[20] 劉義權(quán). 超高強(qiáng)度鋼加工M3 mm盲孔絲錐的改制及應(yīng)用[J]. 模具制造技術(shù), 2020(6): 78-80.LIU Yi-quan. Modification and Application of M3 mm Blind Hole Tap Made of Ultra High Strength Steel[J]. Die & Mould Manufacture, 2020(6): 78-80.
[21] 黃小龍, 黎向鋒, 左敦穩(wěn), 等. 擠壓絲錐結(jié)構(gòu)參數(shù)對(duì)內(nèi)螺紋冷擠壓成形過(guò)程扭矩的影響[J]. 工具技術(shù), 2012, 46(10): 18-22.HUANG Xiao-long, LI Xiang-feng, ZUO Dun-wen, et al. Effect of Structural Parameters of Extrusion Tap on Tor-que during Forming Process of Internal Thread by Cold Extrusion[J]. Tool Engineering, 2012, 46(10): 18-22.
[22] AGAPIOU J S. Evaluation of the Effect of High Speed Machining on Tapping[J]. Journal of Engineering forIndu-stry, 1994, 116: 457-462.
[23] CHEN N M, SMITH A J R. Modelling of Straight-Flute Machine Tapping[J]. Proceedings of the Institution of Me-chanical Engineers, Part B: Journal of Engineering Manu-facture, 2011, 225(9): 1552-1567.
[24] 郝明. 數(shù)控刀具選用指南[M]. 北京: 機(jī)械工業(yè)出版社, 2014.HAO Ming. NC Tool Selection Guide[M]. Beijing: Mec-hanical Industry Press, 2014.
[25] 張善文, 賀強(qiáng), 湯淋淋, 等. 內(nèi)螺紋冷擠壓絲錐失效試驗(yàn)研究[J]. 工具技術(shù), 2018, 52(3): 103-106.ZHANG Shan-wen, HE Qiang, TANG Lin-lin, et al. Study on Tap Failure Test of Internal Thread by Cold Ext-rusion[J]. Tool Engineering, 2018, 52(3): 103-106.
[26] 鄔本祥, 彭新海, 陳倫, 等. 涂層高速鋼絲錐高速攻絲加工中的性能和壽命試驗(yàn)[J]. 工具技術(shù), 2018, 52(3): 49-55.WU Ben-xiang, PENG Xin-hai, CHEN Lun, et al. Expe-rimental Investigation and Tool Life of TiN Coated HSS Cutting Taps on High Speed Tapping Performance[J]. Tool Engineering, 2018, 52(3): 49-55.
[27] REGINALDO T C, RICARDO A, HUGO M W, et al. An Experimental Investigation on Wear Aspects of Tapping Operation on Hardened Steels[J]. Machining Science and Technology, 2006, 10: 235-250.
[28] 肖琦. 螺旋槽絲錐加工共性技術(shù)的研究[D]. 鎮(zhèn)江: 江蘇大學(xué), 2020.XIAO Qi. Research on Generic Technology of Spiral Groove Tap Processing[D]. Zhenjiang: Jiangsu Universty, 2020.
[29] 沈中. 刀具涂層及其性能評(píng)價(jià)[D]. 上海: 上海交通大學(xué), 2007.SHEN Zhong. Cutting Tool Coating and Its Performance Evaluation[D]. Shanghai: Shanghai Jiao Tong University, 2007.
[30] MONKA P, MONKOVA K, MODRAK V, et al. Study of a Tap Failure at the Internal Threads Machining[J]. En-gineering Failure Analysis, 2019, 100: 25-36.
[31] 劉愛(ài)強(qiáng), 張京, 王社權(quán). 不同刃口鈍化形貌對(duì)數(shù)控刀片切削性能的影響[J]. 金屬加工(冷加工), 2019(1): 66-69.LIU Ai-qiang, ZHANG Jing, WANG She-quan. Influence of Different Edge Passivation Morphology on Cutting Performance of NC Blade[J]. Metal Working(Metal Cut-ting), 2019(1): 66-69.
[32] 何佳, 王詩(shī)凱. 大規(guī)格螺旋槽絲錐過(guò)切現(xiàn)象分析與試驗(yàn)[J]. 工具技術(shù), 2017, 51(12): 98-100.HE Jia, WANG Shi-kai. Analysis and Cutting Test on Thread Over-Cut of Big Size Spiral Fluted Taps[J]. Tool Engineering, 2017, 51(12): 98-100.
[33] REN J, LI T, CHEN Z, et al. Optimization and Modeling of Radial Pitch Diameter Difference in Tapping of AISI H13[J]. Advances in Materials Science and Engineering, 2022, 9459881: 1-9.
[34] 劉永宏. 高速鋼絲錐刀齒切削刃的電解強(qiáng)化技術(shù)的試驗(yàn)研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2011.LIU Yong-hong. Experimental Research on the Enhanced Cutting Edges of Hss Taps with the Method of Elec-trolysis[D]. Harbin: Harbin Institute of Technology, 2011.
[35] 呂雁文. 高速鋼絲錐刃口鈍化參數(shù)優(yōu)化及壽命試驗(yàn)研究[D]. 太原: 太原科技大學(xué), 2015.LYU Yan-wen. Study on Optimization of Passivation Pa-rameters and Life Test of Taper Cutting Edge of High Speed Steel Taps[D]. Taiyuan: Taiyuan University of Sci-ence and Technology, 2015.
[36] 呂雁文, 閆獻(xiàn)國(guó), 馮志陽(yáng), 等. 刃口鈍化對(duì)高速鋼絲錐耐磨性及壽命的影響[J]. 工具技術(shù), 2015, 49(9): 9-13.LYU Yan-wen, YAN Xian-guo, FENG Zhi-yang, et al. Edge Passive Influence on High Speed Steel Tap Wear Resistance and Life[J]. Tool Engineering, 2015, 49(9): 9-13.
[37] 朱曉輝. 高速鋼絲錐刃口鈍化及攻絲試驗(yàn)研究[D]. 太原: 太原科技大學(xué), 2014.ZHU Xiao-hui. Experimental Study on the Passivation and Tapping of the Tap Edge of High-Speed Steel Tap[D]. Taiyuan: Taiyuan University of Science and Technology, 2014.
[38] 閆獻(xiàn)國(guó), 李佳樂(lè), 郭蕊, 等. 高速鋼絲錐刃口鈍化工藝研究[J]. 工具技術(shù), 2018, 52(9): 55-60.YAN Xian-guo, LI Jia-le, GUO Rui, et al. Study on Pas-sivation Process of High-speed steel Taps' Cutting Edge[J]. Tool Engineering, 2018, 52(9): 55-60.
[39] 馮志陽(yáng), 陳玉華, 李俊吉, 等. 深冷與鈍化處理對(duì)高速鋼絲錐使用壽命的影響[J]. 工具技術(shù), 2016, 50(11): 45-47.FENG Zhi-yang, CHEN Yu-hua, LI Jun-ji, et al. Effect of Service Life of HSS Taps with Cryogenic and Passivation Treatment[J]. Tool Engineering, 2016, 50(11): 45-47.
[40] 付健巍, 王春燕, 閆獻(xiàn)國(guó), 等. 刃口鈍化對(duì)高速鋼絲錐可靠性的研究[J]. 工具技術(shù), 2017, 51(4): 38-43.FU Jian-wei, WANG Chun-yan, YAN Xian-guo, et al. Research of Edge Passivation on Reliability of High Speed Steel Tap[J]. Tool Engineering, 2017, 51(4): 38-43.
[41] BASSETT E, KOHLER J, DENKENA B. On the Honed Cutting Edge and Its Side Effects during Orthogonal Tur-ning Operations of AISI1045 with Coated WC-Co Inse-rts[J]. CIRP Journal of Manufacturing Science and Tec-hnology, 2012, 5(2): 108-126.
[42] 張明, 劉海濤, 薛鍇. 擠壓絲錐的工藝優(yōu)化與應(yīng)用[J]. 工具技術(shù), 2017, 51(10): 101-103.ZHANG Ming, LIU Hai-tao, XUE Kai. Technological Optimization and Application on Forming Taps[J]. Tool Engineering, 2017, 51(10): 101-103.
[43] ELOSEGUI I, ALONSO U, LOPEZ L L N. PVD Coa-tings for Thread Tapping of Austempered Ductile Iron[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5/6/7/8): 2663-2672.
[44] 徐和平, 鄔本祥, 陳倫, 等. 高硬高強(qiáng)度鋼專用絲錐的開(kāi)發(fā)與應(yīng)用[J]. 工具技術(shù), 2020, 54(9): 56-59.XU He-ping, WU Ben-xiang, CHEN Lun, et al. Develop-ment and Application of Taps for Hardened Ultra-high Strength Steels[J]. Tool Engineering, 2020, 54(9): 56-59.
[45] FUKUI Y, YAMAKAWA K. Tap Cutting Performance Improvement by Granular Abrasive Grain Polishing[J]. Key Engineering Materials, 2004, 257/258: 571-574.
[46] 王成勇, 鄧陽(yáng), 何醒榮, 等. 微細(xì)鉆銑刀具表面涂層制備及應(yīng)用研究進(jìn)展I[J]. 硬質(zhì)合金, 2019, 36(1): 1-13.WANG Cheng-yong, DENG Yang, HE Xing-rong, et al. Fabrication and Application Research of Surface Coatings on Micro-Drills and Micro-Milling Tools (I)[J]. Cemented Carbide, 2019, 36(1): 1-13.
[47] FREITAS S A, VIEIRA J T, FILHO S L M R, et al. Ex-perimental Investigation of Tapping in CFRP with Anal-ysis of Torque-Tension Resistance[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(1/2/3/4): 757-766.
[48] 趙立新, 鄭立允, 陳亦仁, 等. 離子鍍提高W4Mo3 Cr4VSiN鋼制絲錐使用壽命的研究[J]. 機(jī)械工程材料, 2006, 30(5): 69-71.ZHAO Li-xin, ZHENG Li-yun, CHEN Yi-ren, et al. Ion Plating to Improve Service Life of W4M03Cr4vSiN Steel Tap[J]. Materials for Mechanical Engineering, 2006, 30(5): 69-71.
[49] OLIVEIRA J A, RIBEIRO F S L M, BRAND?O L C. Investigation of the Influence of Coating and the Tapered Entry in the Internal Forming Tapping Process[J]. The In-ternational Journal of Advanced Manufacturing Techno-logy, 2018, 101(1/2/3/4): 1051-1063.
[50] CARVALHO A O, BRAND?O L C, PANZERA T H, et al. Analysis of Form Threads using Fluteless Taps in Cast Magnesium Alloy (AM60)[J]. Journal of Materials Processing Technology, 2012, 212(8): 1753-1760.
[51] 鄔本祥, 彭新海, 徐啟明, 等. PVD+微合金化涂層AlTiSiXN在C70+S6材料連桿攻絲中的應(yīng)用[J]. 工具技術(shù), 2016, 50(8): 70-72.WU Ben-xiang, PENG Xin-hai, XU Qi-ming, et al. App-lication of PVD Coating AlTiSiXN on Threading Connec-ting-Rods Based on C70S6 Steel[J]. Tool Engineering, 2016, 50(8): 70-72.
[52] 戴翠麗. PVD高性能超硬涂層刀具的應(yīng)用[J]. 科技視界, 2012, 29: 159-163.DAI Cui-li. Application of PVD High Performance Super Hard Coating Tool[J]. Science & Technology Vision, 2012, 29: 159-163.
[53] 鮮廣, 趙海波, 范洪遠(yuǎn), 等. 石墨靶和鈦靶共濺射制備的TiCN薄膜的結(jié)構(gòu)和性能[J]. 真空科學(xué)與技術(shù)學(xué)報(bào), 2015, 35(5): 614-619.XIAN Guang, ZHAO Hai-bo, FAN Hong-yuan, et al. Growth of TiCN Coatings by Co-Sputtering of Graphite and Titanium Targets[J]. Chinese Journal of Vacuum Scie-nce and Technology, 2015, 35(5): 614-619.
[54] 徐濤. PVD涂層技術(shù)在高速鋼刀具上的應(yīng)用[J]. 金屬加工, 2016, 11: 59-60.XU Tao. Application of PVD Coating Technology on High-Speed Steel Cutting Tools[J]. Metal Working, 2016, 11: 59-60.
[55] HENDERER W, XU F. Hybrid TiSiN, CrC/C PVD Coa-tings Applied to Cutting Tools[J]. Surface and Coa-tings Technology, 2013, 215: 381-385.
[56] REITER A E, BRUNNER B, ANTE M, et al. Investi-gation of Several PVD Coatings for Blind Hole Tapping in Austenitic Stainless Steel[J]. Surface and Coatings Tec-hnology, 2006, 200(18/19): 5532-5541.
[57] STEININGER A, SILLER A, BLEICHER F. Investiga-tions Regarding Process Stability Aspects in Thread Tap-ping Al-Si Alloys[J]. Procedia Engineering, 2015, 100: 1124-1132.
[58] KLOCKE F, GERSCHWILER K, SCHIFFLER M, et al. Adapted DLC Coatings for Increasing Tapping Performa-nce in TiAl6V4[J]. Material Wissenschaft und Werkstoff-technik, 2013, 44(8): 710-715.
[59] BHOWMICK S, LUKITSCH M J, ALPAS A T. Tapping of Al-Si Alloys with Diamond-like Carbon Coated Tools and Minimum Quantity Lubrication[J]. Journal of Mate-rials Processing Technology, 2010, 210(15): 2142-2153.
[60] PISKA M, SLIWKOVA P. Surface Parameters, Tribolo-gical Tests and Cutting Performance of Coated HSS Taps[J]. Procedia Engineering, 2015, 100: 125-134.
[61] JIN M, WATANABE S, MIYAKE, et al. Trial Fabrication and Cutting Performance of c-BN-Coated Taps[J]. Sur-face and Coatings Technology, 2000, 133/134: 443-447.
[62] 韓榮第, 胡廣義, 韓濱. 刀具涂層技術(shù)及涂層刀具切削性能的試驗(yàn)研究[J]. 現(xiàn)代金屬加工技術(shù), 2004(10): 17-19.HAN Rong-di, HU Guang-yi, HAN Bin. Experimental Investigation on Coating Technology and Cutting Perfor-mance of Coated Tool[J]. Modern Metal Working Techno-logy, 2004(10): 17-19.
[63] GIL D V A, VEIGA F, PEREIRA O, et al. Threading Performance of Different Coatings for High Speed Steel Tapping[J]. Coatings, 2020, 10(464): 1-19.
[64] VELDHUIS S C, DOSBAEVA G K, BENGA G. App-lication of Ultra-thin Fluorine-content Lubricating Films to Reduce Tool/Workpiece Adhesive Interaction during Thread-Cutting Operations[J]. International Journal of Machine Tools and Manufacture, 2007, 47(3/4): 521-528.
[65] 何建國(guó), 吳良佩. 高速鋼機(jī)用絲錐新型涂層[J]. 工具技術(shù), 2013, 47(10): 76.HE Jian-guo, WU Liang-pei. New Coating for High Speed Steel Machine Taps[J]. Tool Engineering, 2013, 47(10): 76.
[66] SAITO Y, TAKIGUCHI S, YAMAGUCHI T, et al. Effect of Friction at Chip-tool Interface on Chip Geometry and Chip Snarling in Tapping Process[J]. International Journal of Machine Tools and Manufacture, 2016, 107: 60-65.
[67] KORHONEN H, KOISTINEN A, LAPPALAINEN R. Improvements in the Thread Cutting Torque for A6082- T6 Aluminum-based Alloy with Tapping Tools Utilizing Diamond Coating[J]. Machining Science and Technology, 2018, 22(4): 696-728.
[68] GIL D V A, DIéGUEZ P M, ARIZMENDI M, et al. Experimental Study of Tapping Wear Mechanisms on Nodular Cast Iron[J]. Procedia Engineering, 2015, 132: 190-196.
[69] BAROOAH R K, PAIVA J M, ARIF A F M, et al. Investigation on Wear Mechanisms of PVD Coatings for Form Taps in Threading of Al-Si Alloy[J]. Wear, 2021, 464/465: 203528.
[70] BAROOAH R K, ARIF A F M, PAIVA J M, et al. Wear of Form Taps in Threading of Al-Si Alloy Parts: Mecha-nisms and Measurements[J]. Wear, 2020, 442/443: 203153.
[71] FERNANDES G H N, LOPES G H F, BARBOSA L M Q, et al. Wear Mechanisms of Diamond-like Carbon Coated Tools in Tapping of AA6351 T6 Aluminium Alloy[J]. Pro-cedia Manufacturing, 2021, 53: 293-298.
[72] 朱小清, 葛順蘭. TiN涂層絲錐易崩碎的原因分析[J]. 工具技術(shù), 1996(2): 13-14.ZHU Xiao-qing, GE Shun-lan. Analysis of the Reasons for TiN Coated Taps to Collapse[J]. Tool Engineering, 1996(2): 13-14.
[73] 劉思思, 劉強(qiáng), 劉金鋼, 等. 表面微織構(gòu)化石墨涂層對(duì)鋁合金表面的協(xié)同減摩機(jī)理研究[J]. 表面技術(shù), 2019, 48(8): 29-38.LIU Si-si, LIU Qiang, LIU Jin-gang, et al. Synergistic Antifriction Mechanism of Surface Micro-textured Grap-hite Coating on Aluminum Alloy Surface[J]. Surface Tec-hnology, 2019, 48(8): 29-38.
[74] 郭江, 王興宇, 趙勇, 等. 微織構(gòu)刀具制備技術(shù)及加工性能研究新進(jìn)展[J]. 機(jī)械工程學(xué)報(bào), 2021, 57(13): 172- 200.GUO Jiang, WANG Xing-yu, ZHAO Yong, et al. Recent Progress on Fabrication Technologies and Machining Per-formance of Textured Cutting Tools[J]. Journal of Mec-hanical Engineering, 2021, 57(13): 172-200.
[75] 劉偉, 劉順, 梁桂強(qiáng), 等. 微織構(gòu)刀具切削性能及減摩效果的仿真分析[J].表面技術(shù), 2022, 51(2): 338-346.LIU Wei, LIU Shun, LIANG Gui-qiang, et al. Finite Ele-ment Analysis on Cutting Performance and Friction Redu-ction Effect of Micro-Texture Tools[J]. Surface Techno-logy, 2022, 51(2): 338-346.
[76] LI X, LI Y, TONG Z, et al. Enhanced Lubrication Effect of Gallium-based Liquid Metal with Laser Textured Surface[J]. Tribology International, 2019, 129: 407-415.
[77] OLLEAK A, ?ZEL T. 3D Finite Element Modeling based Investigations of Micro-textured Tool Designs in Machi-ning Titanium Alloy Ti6Al4V[J]. Procedia Manufactu-ring, 2017, 10: 536-545.
[78] PANG M H, LIU X L, LIU K. Effect of Conical Micro- grooved Textureon Tool-chip Friction Property and Cut-ting Performance of WC-TiC/Co Cemented Carbide Tools[J]. Journal of Engineering Tribology, 2018, 233(5): 1-14.
[79] MENG Y, DENG J X, LU Y, et al. Fabrication of AlTiN Coatings Deposited on the Ultrasonic Rolling Textured Substrates for Improving Coatings Adhesion Strength[J]. Applied Surface Science, 2021, 550(1): 1-21.
[80] ZHANG K, GUO X, WANG C, et al. Effect of Scale and Sequence of Surface Textures on the Anti-adhesive Wear Performance of PVD Coated Tool in Dry Machining SLM-Produced Stainless Steel[J]. International Journal of Precision Engineering and Manufacturing-Green Techno-logy, 2020, 8(5): 1571-1586.
[81] ZHANG K D, DENG J X, GUO X H, et al. Study on the Adhesion and Tribological Behavior of PVD TiAlN Coa-tings with a Multi-scale Textured Substrate surface[J]. In-ternational Journal of Refractory Metals& Hard Materials, 2018, 72: 292-305.
[82] LIU Y Y, DENG J X, LIU L, et al. Effect of Nano-scale Texture Pretreatment on Wear Resistance of WC/Co Tools with/without TiAlN Coated Flank-face in Dry Turning of Green Al2O3Ceramics[J]. Ceramics International, 2018, 44: 21176-21187.
[83] BRAIC V, VLADESCU A, BALACEANU M, et al. Nano-structured Multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C Hard Coatings[J]. Surface and Coatings Technology, 2012, 211: 117-121.
[84] 范其香, 林靜, 王鐵鋼. 刀具涂層材料的最新研究進(jìn)展[J]. 表面技術(shù), 2022, 51(2): 1-19.FAN Qi-xiang, LIN Jing, WANG Tie-gang. The Latest Research Progress of Tool Coating Materials[J]. Surface Technology, 2022, 51(2): 1-19.
[85] LIU L, ZHU J B, ZHANG C, et al. Microstructure and the Properties of FeCoCuNiSnx High Entropy Alloys[J]. Mate-rials Science & Engineering A, 2012, 548: 64-68.
[86] FIRSTOV S A, GORBAN V F, DANILENKO N I, et al. Thermal Stability of Superhard Nitride Coatings from High- Entropy Multicomponent Ti-V-Zr-Nb-Hf Alloy[J]. Powder Metallurgy & Metal Ceramics, 52(9/10): 560-566.
[87] YALAMANCHILI K, WANG F, SCHRAMM I, et al. Exploring the High Entropy Alloy Concept in (AlTiVNbCr) N[J]. Thin Solid Films, 2017, 636: 346-352.
[88] CHEN W L, YAN A, WANG C Y, et al. Microstructures and Mechanical Properties of AlCrN/TiSiN Nanomultilayer Coatings Consisting of Fcc Single-Phase Solid Solution[J]. Applied Surface Science, 2020(509): 145303.
[89] CHEN W L, HU T, WANG C Y, et al. The Effect of Micros-tructure on Corrosion Bhavior of a Novel AlCrTiSiN Cera-mic Coating[J]. Ceramics International, 2020(46): 12584- 12592.
[90] WEI-LI LO, SHENG-YU HSU, YU-CHIA LIN, et al. Improvement of High Entropy Alloy Nitride Coatings (AlCrNbSiTiMo)N on Mechanical and High Temperature Tribological Properties by Tuning Substrate Bias[J]. Surf-ace and Coatings Technology, 2020(401): 126247.
Research Progress on Surface Treatment of Thread Tap
1,1,1,1,2,3,1*
(1. Guangdong University of Technology, Guangzhou 510006, China; 2. Qingyuan Yuebo Technology Co., Ltd., Guangdong Qingyuan 511500, China; 3. Zhongkai University of Agriculture and Engineering, Guangzhou 510006, China)
Thread connection is one of the most common connection methods, which has been widely used in mold, aerospace, petrochemical, 5G communications, new energy vehicles and other industries. Tap is a special tool for small and medium-sized internal thread machining. It is almost the only effective process method for small thread hole machining. It is different from the traditional tools such as turning tools and milling cutters. It is closed for cutting and belongs to semi-closed and multi-cutting edge forming processing. Its quality directly affects the internal thread processing quality and processing efficiency. Starting from four common types of tap, the processing characteristics, processing materials and application scope of different taps are expounded and the geometric structures of taps are briefly introduced. Secondly, the common processing problems and failure forms of tap are introduced. Then, the effect of single surface treatment technology on the surface quality and processing performance of the tap is emphatically expounded, and the relationship between the surface treatment technology of the tap in China and abroad, including edge passivation, physical vapor deposition (PVD) nitride coating and special film and cutting performance is investigated. At the same time, the strengthening mechanism of different surface technologies is summarized, and the future prospect is put forward according to the research status in China and abroad.
Tap surface treatment technology mainly includes edge passivation, physical vapor deposition nitride coating, etc. The edge passivation greatly reduces or even eliminates the machining defects at the edge of the tap, and obtains the appropriate surface morphology of the edge. At the same time, it reduces the residual stress, improves the edge strength and fatigue resistance, reduces the surface roughness of the edge area, inhibits the generation of chip tumors, improves the wear resistance of the tap, and enhances the adhesion of the subsequent PVD coating. Good edge morphology and surface quality are of great significance to improve the cutting performance of the tap. PVD technology is the mainstream method to improve the machining performance of taps. For example, TiN, TiCN, TiSiN and other coatings have the advantages of high hardness, excellent wear resistance, and low affinity with metal, which can effectively reduce the cutting force and cutting heat. Improving the processing life of taps, product quality and processing efficiency can reduce the friction during thread cutting, prevent adhesion, reduce the cutting temperature and cutting torque, reduce tool wear, and prevent the formation of chip tumors, thereby improving the cutting performance of taps. However, spalling, adhesive wear and abrasive wear of PVD coating are the main factors affecting its life improvement.
Finally, the advantages and disadvantages of Chinese and foreign tap surface treatment technology are comprehensively analyzed, and a composite tap surface strengthening technology is proposed. Firstly, the passivation treatment is used to remove the defects such as processing lines, micro cracks and burrs at the edge, and the edge with appropriate arc radius is obtained. Secondly, the feature processing technology (mainly laser) is used to process different geometric patterns in the edge area, which greatly improves the bonding force of PVD coating, improves the friction characteristics of cutting edge and chip, and enhances the anti-adhesion performance. Finally, the composition and structure of PVD coating are designed to prepare PVD high entropy coating with strong anti-bonding and anti-abrasive wear. The above composite processing technology is expected to achieve high quality and efficient processing of internal thread hole, which is the development direction of improving the performance of the tap.
tap; failure mechanism; physical vapor deposition; passivation treatment; thread machining performance
2022-07-04;
2022-09-05
TG722
A
1001-3660(2023)10-0124-17
10.16490/j.cnki.issn.1001-3660.2023.10.009
2022-07-04;
2022-09-05
廣東省重點(diǎn)研發(fā)計(jì)劃(2020B010185001);國(guó)家自然科學(xué)基金(52301184);廣東省自然科學(xué)基金(2022A1515010210,2022A1515110035);清遠(yuǎn)市科技項(xiàng)目(2022KJJH023);江西省重點(diǎn)研發(fā)項(xiàng)目(20212BBE53044)
The Key-Area Research and Development Program of Guangdong Province (2020B010185001); the National Natural Science Foundation of China (52301184); the Natural Science Foundation of Guangdong Province (2022A1515010210, 2022A1515110035); the Project of Science and Technology of Qingyuan City (2022KJJH023); the Key Research and Development Program of Jiangxi Province (20212BBE53044)
陳汪林, 李喆, 黃勇浩, 等. 螺紋絲錐表面處理研究進(jìn)展[J]. 表面技術(shù), 2023, 52(10): 124-140.
CHEN Wang-lin, LI Zhe, HUANG Yong-hao, et al. Research Progress on Surface Treatment of Thread Tap[J]. Surface Technology, 2023, 52(10): 124-140.
通信作者(Corresponding author)
責(zé)任編輯:蔣紅晨