侯永波 余駿馬 朱海娟
摘要:心肌梗死是致死率較高的疾病之一,且疾病后期進展常導致慢性心力衰竭的發(fā)生,探索新的治療方法對于心肌梗死的預后十分重要。外泌體是由細胞或組織液釋放的直徑為30~150 nm的納米級囊泡,其囊泡內攜帶著來自親代細胞分泌的特異DNA、RNA、蛋白質、脂質和代謝廢物等物質,其作為心肌梗死的潛在治療方法在基礎實驗中早已被證實。就不同細胞組織來源的外泌體、工程化外泌體以及外泌體細胞膜融合策略在心肌梗死治療中的研究進展進行綜述,為外泌體在臨床上的應用提供科學證據。
關鍵詞:心肌梗死;外泌體;間質干細胞;成纖維細胞;巨噬細胞;膜融合;微RNAs
中圖分類號:R541文獻標志碼:ADOI:10.11958/20230440
New research progress of exosomes in the treatment of myocardial infarction
HOU Yongbo YU Junma ZHU Haijuan
1 College of Anesthesiology-Wannan Medical College, Wuhu 241002, China; 2 Department of Anesthesiology, the Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital; 3 Department of Anesthesiology,
Maternal and Child Health Hospital Affiliated to Anhui Medical University
Corresponding Author E-mail: 35880762@qq.com
Abstract: Myocardial infarction is one of the most lethal diseases, and the progression of the disease often leads to the occurrence of chronic heart failure. Therefore, it is very important to explore new treatment methods for the prognosis of myocardial infarction. Exosomes are nanoscale vesicles with a diameter of 30-150 nm released from cells or tissue fluid. The vesicles carry specific DNA, RNA, proteins, lipids, metabolic waste and other substances secreted by parental cells. As a potential treatment for myocardial infarction, it has long been confirmed in basic experiments. This article reviews the latest research progress of exosomes from different cells and tissues, engineered exosomes and exosome cell membrane fusion strategies in the treatment of myocardial infarction, and provides scientific evidence for the clinical application of exosomes.
Key words: myocardial infarction; exosomes; mesenchymal stem cells; fibroblasts; macrophages; membrane fusion; microRNAs
急性心肌梗死(AMI)可造成心肌細胞永久性死亡和組織繼發(fā)性纖維化瘢痕,嚴重影響患者生存質量。盡管臨床上再灌注治療獲得了一定療效,但由于心室重構的原因,部分患者最終進展為慢性心力衰竭。因此探索新的治療藥物和技術對于心肌梗死治療具有重要意義。外泌體是一類細胞外囊泡,由Johnstone于1983年從綿羊的網織紅細胞中發(fā)現(xiàn)。起初研究者認為外泌體僅作為細胞代謝過程中的“垃圾袋”這一角色存在。隨著對外泌體的深入研究,發(fā)現(xiàn)其還具有細胞信號轉導、組織發(fā)育與修復、免疫調節(jié)等多個重要的病理生理作用[1]。機體多種細胞均可分泌外泌體,其攜帶的獨特蛋白質和遺傳物質基于親代細胞類型及細胞生理狀態(tài)而存在差異[2]。不同細胞來源的外泌體以不同機制在缺血心肌處發(fā)揮保護效應。此外,通過構建工程化外泌體和外泌體細胞膜融合策略,提高了外泌體靶向能力和治療效率,為外泌體生物制劑開發(fā)提供了新的方向。
1 不同細胞來源外泌體的心肌保護作用
1.1 間充質干細胞(mesenchymal stem cell,MSCs)源性外泌體 MSCs是一種多能干細胞,具有自我更新和多向分化的潛能。近年來,越來越多的研究證明MSCs衍生的外泌體通過遞送囊泡內信號分子至缺血心肌,對受損的心肌細胞同樣具有保護能力[3-5]。Tang等[3]發(fā)現(xiàn),間充質干細胞源性外泌體(mesenchymal stem cell-derived exosomes,MSC-exos)可通過遞送miR-320b至受體細胞,下調受體細胞中的NOD樣受體熱蛋白結構域相關蛋白3(NLRP3)蛋白表達,抑制大鼠梗死區(qū)心肌細胞焦亡,減小心肌梗死面積。在另一項研究中,MSC-exos來源的miR-486-5p通過抑制H9C2心肌細胞缺氧狀態(tài)中磷酸酶基因(PTEN)的表達,從而激活下游磷脂酰肌醇3-激酶/磷酸激酶B(PI3K/AKT)通路,最終誘導H9C2心肌細胞增殖并減少其凋亡[4]。此外,MSC-exos還可通過基因修飾使外泌體富集特定基因,來調節(jié)受體細胞的生物學行為。Sun等[5]將過表達缺氧誘導因子-1α(HIF-1α)慢病毒載體轉染至MSCs中,將過表達HIF-1α的MSC-exos經尾靜脈血管注入到心肌梗死大鼠體循環(huán)中,28 d后發(fā)現(xiàn)梗死心肌纖維化程度降低,心室重構減輕,同時超聲結果顯示大鼠左心室收縮末期內徑和右心室舒張末期內徑降低,左心室射血分數(shù)和左心室短軸縮短率提高,保護了心臟泵功能,對心肌梗死起到明顯治療作用。
1.2 心臟祖細胞源性外泌體(cardiac progenitor cells,CPCs-exos) 祖細胞也稱前體細胞,分化程度處于干細胞和成體細胞兩者之間,擁有向心肌、心臟血管等心臟組織結構分化的潛能[6]。CPCs-exos通過調節(jié)蛋白質或靶基因的表達,修復受損心肌和實現(xiàn)心臟保護效應。Youn等[7]利用生物合成技術構建高表達具有促血管生成作用的miR-322的CPCs-exos,與單獨注射CPCs-exos相比,高表達的miR-322通過煙酰胺腺嘌呤二核苷酸磷酸氧化酶2(NOX2)調節(jié)內皮細胞遷移和刺激毛細血管生成,促進心肌修復。除促血管生成作用外,CPCs-exos中的一些miRNA也可通過降低心肌細胞缺血缺氧狀態(tài)下的氧化應激來發(fā)揮心肌保護效應。Xiao等[8]研究發(fā)現(xiàn),心肌缺血再灌注期間,缺血心肌處活性氧大量生成,受氧化應激刺激的CPCs分泌高表達miR-21的外泌體,旁分泌的外泌體通過與鄰近細胞膜融合傳遞miR-21,抑制靶細胞中的程序性細胞死亡因子4(PDCD4)的表達,從而減少心肌細胞氧化應激繼發(fā)的細胞凋亡。
1.3 血漿源性外泌體 除了干細胞來源之外,一些研究發(fā)現(xiàn)循環(huán)血液中的一些外泌體同樣具有心肌保護效應。Vicencio等[9]研究證實血漿來源的外泌體其囊泡膜表面的熱休克蛋白(HSP70)通過調控Toll樣受體4-細胞外調節(jié)蛋白激酶1/2-P38絲裂原活化蛋白激酶(TLR4-ERK1/2-P38 MAPK)信號軸,使HSP27磷酸化,從而產生心肌保護效應。此外,當慢性心力衰竭的心肌經歷缺血時,血漿來源的外泌體對心肌也同樣具有保護作用。Luo等[10]通過永久性結扎大鼠心臟冠狀動脈28 d構建梗死后慢性心力衰竭模型,于心肌缺血前輸注缺血預處理后的供體大鼠血漿外泌體,發(fā)現(xiàn)心肌缺血面積顯著降低,同時乳酸脫氫酶、肌鈣蛋白,以及肌酸激酶同工酶指標均優(yōu)于對照組。但血漿來源的外泌體并非全部具有保護作用,不同疾病狀態(tài)下的外泌體因內容物含量差異而發(fā)揮不同的病理生理作用。研究發(fā)現(xiàn),健康志愿者血漿中的外泌體所包含的miR-342-3p能分別靶向心肌細胞中的SRY-box轉錄因子6(SOX6)和轉錄因子EB(TFEB)基因,抑制心肌細胞的凋亡和自噬,然而處于急性心肌梗死康復期(梗死后3~7 d)患者的血漿外泌體中miR-342-3p的含量是顯著下調的,對心臟修復不利[11]。因此,血漿源性的外泌體對缺血心肌的作用可能是多方面復雜的,還需要進一步探究。
1.4 心肌細胞源性外泌體 不同微環(huán)境下的心肌細胞分泌的外泌體內容物會有所差異,從而發(fā)揮出不同的心肌修復能力。此外,心肌細胞與心臟中其他細胞(如內皮細胞、成纖維細胞、巨噬細胞等)間的細胞通訊和心臟功能關系密切且重要。Turner等[12]通過對左心室肥大和正常左心室人群樣本的人誘導多功能干細胞源性心肌細胞(hiPSC-CMs)及其各自分泌的外泌體RNA種類測序,發(fā)現(xiàn)兩者之間細胞和外泌體中RNA種類和數(shù)量呈現(xiàn)明顯不同的表達模式,接著將兩組外泌體分別和人誘導多功能干細胞源性內皮細胞共孵育后,發(fā)現(xiàn)左心室肥大組外泌體促進了內皮細胞增殖,但血管生成和遷移減少,血管生成功能失調,表明不同環(huán)境中外泌體的功能會受到調節(jié),且外泌體作為細胞間信息通信介質的重要作用。
1.5 心臟成纖維細胞源性外泌體 心肌梗死后長時間缺血過程中,心肌細胞陸續(xù)死亡,后期成纖維細胞增多,分泌膠原外纖維促進瘢痕組織的形成,大量的瘢痕組織會代替正常的心臟結構,導致心臟收縮舒張功能受損,影響全身供血。但在心肌梗死期間心臟成纖維細胞分泌的外泌體中的miRNA表達異常,產生心肌保護作用。Liu等[13]研究表明,在SD大鼠心肌梗死模型中,心肌成纖維細胞分泌的外泌體中miR-133a表達異常升高,其通過靶向結合心肌細胞內的ELAV樣RNA結合蛋白1(ELAVL1)基因,抑制心肌細胞焦亡。Luo等[14]通過建立細胞缺氧復氧和動物缺血再灌注模型,用富含miR-423-3p的心臟成纖維細胞源性外泌體干預,發(fā)現(xiàn)其靶向下游基因RAP2C,減輕了細胞凋亡,縮小了梗死面積,提示RAP2C作為一種新型靶向治療的可能性。
1.6 巨噬細胞源性外泌體 炎癥調控在心肌梗死后心室重構的過程發(fā)揮重要作用,并與心肌梗死繼發(fā)的各種病理生理過程密切相關。巨噬細胞是機體固有免疫細胞,根據炎癥微環(huán)境的改變表現(xiàn)出促炎M1表型或抗炎M2表型。研究表明,在心肌梗死后M1型巨噬細胞浸潤梗死心肌,隨后表型動態(tài)改變?yōu)镸2表型,有助于從炎癥向修復的轉變[15],這一作用可能是通過巨噬細胞來源的外泌體來調控的。Wang等[16]發(fā)現(xiàn),心肌梗死后M1型巨噬細胞分泌高表達miR-155的M1型-外泌體(M1-exos),并可從巨噬細胞轉移到心肌成纖維細胞,基因敲除miR-155的小鼠心肌梗死后心臟破裂的發(fā)生率降低,心功能改善,而給予M1-exos或miR-155模擬物后,心臟破裂發(fā)生率增加、炎癥反應也會加劇。Liu等[17]發(fā)現(xiàn),心肌梗死后多個促炎miRNAs在M1-exos中高表達,包括上述的miR-155,其被轉移到內皮細胞,通過下調沉默信息調節(jié)因子1/腺苷酸活化蛋白激酶α2(Sirt1/AMPKα2)-內皮型NO合酶,抑制內皮細胞血管生成。Dai等[18]發(fā)現(xiàn),M2型巨噬細胞來源外泌體(M2-exos)通過呈遞miR-148a至心肌細胞,下調靶基因硫氧還蛋白相互作用蛋白(TXNIP),通過調控Toll4樣受體/核因子κB/NOD樣受體熱蛋白結構域相關蛋白3(TLR4/NF-κB/NLRP3)炎癥信號通路來減輕心肌缺血再灌注損傷。另一項研究發(fā)現(xiàn),靜脈注射M2-exos至心肌梗死后小鼠可將miR-1271-5p傳遞給心肌細胞,下調轉錄子編碼基因SOX6表達,減少心肌細胞凋亡,保護心臟功能[19]。
此外,心肌細胞源性外泌體[20]、骨髓間充質干細胞源性外泌體[21]、脂肪源性間充質干細胞外泌體[22]及人臍帶間充質干細胞源性外泌體[15]等均可通過調控巨噬細胞極化及其遷移來減輕炎癥和心肌損傷,促進巨噬細胞極化可能是不同細胞來源外泌體發(fā)揮炎癥調控作用、改善心肌梗死后重構的關鍵環(huán)節(jié)。
2 工程化外泌體和外泌體-細胞膜融合
外泌體是天然生物膜包被的直徑在30~150 nm的納米級囊泡,因囊泡膜具有與親代細胞相似的蛋白和脂質組成,能被親代細胞優(yōu)先特異性攝?。?3]。在動物實驗中,外泌體主要通過心肌注射、冠狀動脈注射和外周靜脈注射途徑給藥。雖然心肌注射效果更佳,但臨床實踐中操作困難、風險大、難以推廣,外周靜脈給藥后進入循環(huán)中的外泌體會隨著血流進入其他非特異性器官,如血流豐富的肝、肺、脾、腎等,心肌組織攝取量較少[24],且容易被免疫系統(tǒng)清除及補體系統(tǒng)破壞[25],導致體內存留半衰期短。因此需要尋求新的方法來提高外泌體的免疫相容性和對心肌組織靶向特性。目前具有前景的研究是構建工程化外泌體和外泌體-細胞膜融合策略。
2.1 工程化外泌體 當來自于同源異體的外泌體進入實驗動物的全身血管循環(huán)系統(tǒng)內時,滯留時間越長,越有利于外泌體在體內的組織分布及提高治療效果[26]。Wei等[27]將分離純化的高表達CD47外泌體經尾靜脈注射入大鼠體內120 min后仍能在血漿中被檢測到,遠遠超過低于30 min檢測上限的對照組外泌體。該現(xiàn)象可能是由于外泌體中高表達的CD47減緩了自身在循環(huán)血液單核吞噬細胞系統(tǒng)中清除速率。Yao等[28]利用微型雙管注射器將外泌體-纖維蛋白原混合液和凝血酶通過微創(chuàng)胸壁切口噴灑到Yorkshire 豬心臟表面,形成包含外泌體的凝膠涂層;隨后發(fā)現(xiàn),與直接將外泌體心肌注射相比,此種方法可延長外泌體在心臟的滯留時間,且對于心肌梗死的保護作用更優(yōu)。
2.2 外泌體-細胞膜融合 Li等[29]將細胞外囊泡(extracellular vesicles,EVs)與血小板膜囊泡(platelet membrane vesicles,PMVs)通過0.4 μm和0.2 μm聚碳酸酯膜反復擠壓融合,形成血小板細胞外囊泡雜化膜(P-EVs),隨后經熒光標記后和EVs共同由尾靜脈注入心肌梗死大鼠模型中,24 h后將大鼠心臟、肝、肺、脾、腎、腦組織取出進行體外熒光成像觀察,發(fā)現(xiàn)P-EVs較EVs更多地滯留到缺血受損的心肌組織,考慮可能是因為血小板主要通過血小板表面糖蛋白GPIbα與活化內皮分泌的血管性血友病因子結合而粘附在受損血管壁上[30-31]。同時P-EVs與低氧誘導的人臍靜脈內皮細胞共孵育后發(fā)現(xiàn),P-EVs增強了內皮細胞增殖、遷移以及血管生成能力。在Zhang等[32]的研究中,間充質干細胞來源的細胞外囊泡與單核細胞孵育后采用聚碳酸酯膜擠壓融合的方法制備單核細胞模擬仿生的間充質干細胞源性外泌體(monocyte mimic-bioinspired MSC-Evs,Mon-Exos);Mon-Exos借助梗死后心肌組織對單核細胞的募集作用而靶向聚集在缺血受損心肌處,隨后旁分泌囊泡內容物,促進內皮細胞成熟并調節(jié)巨噬細胞向M2型極化,減輕了大鼠缺血心肌處的炎癥反應。
3 小結與展望
外泌體作為細胞間通信的重要信使,參與調節(jié)急性心肌梗死的病理生理過程,不同細胞來源的外泌體由于其包含生物活性分子的差異,使其能通過不同的信號通路發(fā)揮各種心肌保護效應。雖已有大量的研究去探索外泌體生物功能,但是目前對外泌體的生物發(fā)生、分泌、靶向受體細胞的作用機制還沒有完全詮釋。且外泌體體積小,如何分離純化高效制備外泌體仍需深入研究。將外泌體與其他細胞融合形成雜化膜,可繼承雙方特性,提高外泌體對缺血心肌的靶向能力和治療效率,為外泌體在心肌梗死方面的治療開辟了新方向。后續(xù)開發(fā)新的融合技術,將外泌體與其他細胞膜融合或融合后的雜化膜作為藥物遞送載體可能是未來的研究方向。
參考文獻
[1] CHENG L,HILL A F. Therapeutically harnessing extracellular vesicles[J]. Nat Rev Drug Discov,2022,21(5):379-399. doi:10.1038/s41573-022-00410-w.
[2] COLOMBO M,RAPOSO G,TH?RY C. Biogenesis,secretion,and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol,2014,30:255-289. doi:10.1146/annurev-cellbio-101512-122326.
[3] TANG J,JIN L,LIU Y,et al. Exosomes derived from mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through inhibiting pyroptosis[J]. Drug Des Devel Ther,2020,14:3765-3775. doi:10.2147/DDDT.S239546.
[4] SUN X H,WANG X,ZHANG Y,et al. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J]. Thromb Res,2019,177:23-32. doi:10.1016/j.thromres.2019.02.002.
[5] SUN J,SHEN H,SHAO L,et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis[J]. Stem Cell Res Ther,2020,11(1):373. doi:10.1186/s13287-020-01881-7.
[6] BU L,JIANG X,MARTIN-PUIG S,et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages[J]. Nature,2009,460(7251):113-117. doi:10.1038/nature08191.
[7] YOUN S W,LI Y,KIM Y M,et al. Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis[J]. Antioxidants(Basel),2019,8(1):18. doi:10.3390/antiox8010018.
[8] XIAO J,PAN Y,LI X H,et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J]. Cell Death Dis,2016,7(6):e2277. doi:10.1038/cddis.2016.181.
[9] VICENCIO J M,YELLON D M,SIVARAMAN V,et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury[J]. J Am Coll Cardiol,2015,65(15):1525-1536. doi:10.1016/j.jacc.2015.02.026.
[10] LUO Z,HU X,WU C,et al. Plasma exosomes generated by ischaemic preconditioning are cardioprotective in a rat heart failure model[J]. Br J Anaesth,2023,130(1):29-38. doi:10.1016/j.bja.2022.08.040.
[11] WANG B,CAO C,HAN D,et al. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair[J]. Biomed Pharmacother,2021,142:112056. doi:10.1016/j.biopha.2021.112056.
[12] TURNER A,AGGARWAL P,MATTER A,et al. Donor-specific phenotypic variation in hiPSC cardiomyocyte-derived exosomes impacts endothelial cell function[J]. Am J Physiol Heart Circ Physiol,2021,320(3):H954-H968. doi:10.1152/ajpheart.00463.2020.
[13] LIU N,XIE L,XIAO P,et al. Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury[J]. Mol Cell Biochem,2022,477(4):1249-1260. doi:10.1007/s11010-021-04343-7.
[14] LUO H,LI X,LI T,et al. microRNA-423-3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning[J]. Cardiovasc Res,2019,115(7):1189-1204. doi:10.1093/cvr/cvy231.
[15] ZHU F,CHEN Y,LI J,et al. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate myocardial infarction injury via miR-24-3p-Promoted M2 macrophage polarization[J]. Adv Biol(Weinh),2022,6(11):e2200074. doi:10.1002/adbi.202200074.
[16] WANG C,ZHANG C,LIU L,et al. Macrophage-derived miR-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury[J]. Mol Ther,2017,25(1):192-204. doi:10.1016/j.ymthe.2016.09.001.
[17] LIU S,CHEN J,SHI J,et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol,2020,115(2):22. doi:10.1007/s00395-020-0781-7.
[18] DAI Y,WANG S,CHANG S,et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway[J]. J Mol Cell Cardiol,2020,142:65-79. doi:10.1016/j.yjmcc.2020.02.007.
[19] LONG R,GAO L,LI Y,et al. M2 macrophage-derived exosomes carry miR-1271-5p to alleviate cardiac injury in acute myocardial infarction through down-regulating SOX6[J]. Mol Immunol,2021,136:26-35. doi:10.1016/j.molimm.2021.05.006.
[20] CHEN C,CAI S,WU M,et al. Role of cardiomyocyte-derived exosomal microRNA-146a-5p in macrophage polarization and activation[J]. Dis Markers,2022,2022:2948578. doi:10.1155/2022/2948578.
[21] XU R,ZHANG F,CHAI R,et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization[J]. J Cell Mol Med,2019,23(11):7617-7631. doi:10.1111/jcmm.14635.
[22] DENG S,ZHOU X,GE Z,et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J]. Int J Biochem Cell Biol,2019,114:105564. doi:10.1016/j.biocel.2019.105564.
[23] HAZAN-HALEVY I,ROSENBLUM D,WEINSTEIN S,et al. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes[J]. Cancer Lett,2015,364(1):59-69. doi:10.1016/j.canlet.2015.04.026.
[24] GALLET R,DAWKINS J,VALLE J,et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J,2017,38(3):201-211. doi:10.1093/eurheartj/ehw240.
[25] HU C M,F(xiàn)ANG R H,WANG K C,et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature,2015,526(7571):118-121. doi:10.1038/nature15373.
[26] VAN DER MEEL R,F(xiàn)ENS M H,VADER P,et al. Extracellular vesicles as drug delivery systems:Lessons from the liposome field[J]. J Control Release,2014,195:72-85. doi:10.1016/j.jconrel.2014.07.049.
[27] WEI Z,CHEN Z,ZHAO Y,et al. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment[J]. Biomaterials,2021,275:121000. doi:10.1016/j.biomaterials.2021.121000.
[28] YAO J,HUANG K,ZHU D,et al. A minimally invasive exosome spray repairs heart after myocardial infarction[J]. ACS Nano,2021,15(7):11099-11111. doi:10.1021/acsnano.1c00628.
[29] LI Q,SONG Y,WANG Q,et al. Engineering extracellular vesicles with platelet membranes fusion enhanced targeted therapeutic angiogenesis in a mouse model of myocardial ischemia reperfusion[J]. Theranostics,2021,11(8):3916-3931. doi:10.7150/thno.52496.
[30] SPRINGER T A. von Willebrand factor,Jedi knight of the bloodstream[J]. Blood,2014,124(9):1412-1425. doi:10.1182/blood-2014-05-378638.
[31] VALENTIJN K M,EIKENBOOM J. Weibel-palade bodies:a window to von Willebrand disease[J]. J Thromb Haemost,2013,11(4):581-592. doi:10.1111/jth.12160.
[32] ZHANG N,SONG Y,HUANG Z,et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model[J]. Biomaterials,2020,255:120168. doi:10.1016/j.biomaterials.2020.120168.
(2023-03-27收稿 2023-04-19修回)
(本文編輯 李志蕓)