• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    State observers of quasi-reversible discrete-time switched linear systems

    2023-11-16 10:12:36ZhendongSunQiangZhang
    Control Theory and Technology 2023年3期

    Zhendong Sun·Qiang Zhang

    Abstract This work addresses observer design for the general class of quasi-reversible discrete-time switched linear systems.Under the mild assumption that the switched system is observable,we present constructive approaches to design state observers to estimate the state.Two types of observers are designed:one is with full order and the other is with reduced order,both could reconstruct the system state in finite times.A numerical example is presented to illustrate the effectiveness of the proposed approaches.

    Keywords Switched linear systems·Observer·Observability

    1 Introduction

    A linear switched system consists of a set of linear subsystems and a switching signal that coordinates the switching among the subsystems.The state of the subsystems is continuous in nature, while the state of the switching signal is discrete/logic in nature.The interaction between continuous state and logic state is an appealing topic that attracts numerousattention[1,2].Asafundamentalclassofhybridsystems,switched linear systems are powerful in both representability and control ability.Interested readers are referred to the monographs[3–5]for progress of switched and hybrid systems.

    For a switched linear system, the major topics include stability analysis,stabilizing design,and performance optimization.As a dominant approach for addressing stability and stabilizing design, many Lyapunov-like methods have been developed for dealing with switched systems.For example, the well-known multiple Lyapunov function technique[6] and the composite Lyapunov function technique [7]were successfully applied to switched systems.However,it has been revealed that, even for a planar switched linear autonomous system,stabilizability does not imply the existence of a convex Lyapunov function[8].For discrete-time switchedlinearsystems,thedynamicprogrammingapproach provides constructive design for the stabilization problem[9].Other approaches including the automata-driven switching scheme [10] and the dissipativity approach [11] were proposed to investigate stability/stabilizability for specific classes of switched systems.

    In many practical scenarios,the system state is not totally available, and we have to design state observers/estimators to reconstruct/approximate the state.It has been revealed that, for switched linear systems, the observer design is dual with the state feedback stabilizing design [1, 12].As the state feedback stabilization problem is still unsolved for general switched linear systems,the observer design is also open.For continuous-time switched linear systems,a hybrid observer with impulse was designed for achieving finite-time reconstruction of the state[13].For reversible discrete-time switched autonomous systems, a switched observer was designed for achieving finite-time reconstruction of the state[14].It is interesting to note that, switched observers were also used for parameter identifying of adaptive control[15]and linear time-varying systems[16].

    In this work, we study the observer design problem for the general class of quasi-reversible discrete-time switched linear systems with measured outputs.To estimate the state,two types of observers are proposed: one is of full order and the other is of reduced order.In both observers the gain matrices are explicitly designed such that the state transition matrices of the error systems are deadbeat in finite times.In this way,the initial state is exactly reconstructed for any control input.Compared with the work[14],the current work extends the system framework from reversible autonomous systems to quasi-reversible controlled systems.Besides,this work also designs a reduced-order observer, which has not been addressed in the literature.

    2 Preliminaries

    Let R be the set of real numbers, and N+be the set of non-negative integers.For positive integerk, letk={0,1,...,k-1}.LetInbe then-dimensional identity matrix.

    2.1 System description

    In this work, we address the discrete-time switched linear system given by

    wherex(t) ∈Rnis the continuous state,σ(t) ∈M={1,2,...,m}is the switching signal,u(t)∈Rqis the control input,y(t)∈Rpis the system output.Ai,Bi,Ci,i∈Mare real constant matrices with compatible dimensions.For convenience,the system is denoted byΣ(Ci,Ai,Bi)M.Without loss of generality,we assume thatt0=0.

    Letφ(t;t0,x0,σ,u) be the state of system (1) at timetstarting fromx0att0with switching lawσand control inputu.It is clear that

    whereψis the open-loop state transfer matrix

    A switching path is a time-driven switching signal defined over a finite-time interval.Suppose thatθis switching path defined overs,then the length ofθis|θ|=s.

    2.2 Definitions

    Definition 1 Statex0is said to be unobservable if it is indistinguishable from the origin,that is,for any switching signalσand control inputu,we have

    The switched system is said to be completely (switched)observable if the unobservable set is{0}.

    Definition 2 A state observer for switched system (1) is a dynamical system

    wherefis a proper vector function.For a switching signalσ,the observer is said to beσ-asymptotic if limt→+∞(x(t)-z(t)) = 0 for anyx0,z0,andu.When there exists aT>t0such thatx(t)=z(t)for allt≥T,the observer is said to beσ-T-deadbeat.

    Definition 3 Theswitchedsystemissaidtobe(output)quasireversible,if

    2.3 Assumptions and supporting lemma

    Throughout the work,we made the following assumptions:

    Assumption 1 Switched system(1)is quasi-reversible.

    Assumption 2 Switched system (1) is completely observable.

    Remark 1When the switched system is quasi-reversible,the unobservable set is a subspace of the total state space.Furthermore, if the pair(C,A) is quasi-reversible, there is a matrixE∈Rn×psuch thatA+ECis nonsingular.By abuse of notation,we defineC A-1=C(A+EC)-1.Note thatC A-1relies explicitly onE,yet its image space is the same for all possibleE.

    Lemma 1Under Assumptions1and2,there is a positive integer,and a switching path θ defined over T,such that the observability matrix

    is of full rank.

    ProofIt has been established in[17–19]that,for any completely controllable reversible discrete-time switched linear system, the full controllability could be realized through a switching path with less thanswitches.By virtual of the duality between controllability and observability,the lemma follows.■

    3 Main results

    In this section, we propose two kinds of state observers to estimate the state.The former is in full order,while the latter is in reduced order.Both could exactly reconstruct the state in finite times.

    3.1 Full-order observer

    Note that the observability matrix in(5)is in nested structure.Without loss of generality, we assume that rankCθ(0)≥1.By searching linearly independent rows from the top to the bottom,we havelblock rows 0=ν1<ν2<···<νl≤Tsuch that

    Letik=θ(νk),k=1,...,l,we have indicesκ1,...,κnandj1,...,jlwithj1+···+jl=n,such that the matrix

    is square and nonsingular,whereCi,jdenotes thejth row of matrixCi.

    DenoteGk=Ψ(νk+1,0,θ),k= 1,...,l-1.Let ?Cikbe the matrix composed by theκth rows ofCik,k=1,...,l.We could re-write matrixQby

    Letζibe thej-th column of matrixQ-1.Furthermore,define

    To estimate the state,we propose the following observer:

    Theorem 1SupposethattheswitchedsystemsatisfiesAssumptions1and2.For any initial state x0and control input u,we have

    ProofLet ?x(t) =x(t) -z(t),t= 0,1,...,T.It can be verified that

    As a result,we have

    Simple calculation gives

    where

    Utilizing the fact thatH1is orthogonal to ˉCi2G1,we have

    Continue this process gives

    In the same manner,we could calculate that

    Therefore,we have

    which directly leads toΛ=0.■

    3.2 Reduced-order observer

    In this section, we propose a reduced-order observer that achieves deadbeat reconstruction of the state.The motivation of introducing reduced-order observers is twofold:(i)compared with a full-order observer, the transient performance of the lower-order observer usually could be improved as the system order is reduced;and(ii)in a reduced-order observer,the switching law design is much simpler with fewer switches in the observation period.

    We assume that the output is independent of the switching law,that is,y=CxwithC/=0.

    system could be re-written by

    where

    Lemma 2Under Assumptions1and2,switched systemisquasi-reversibleandcompletelyobservable.

    ProofFirst, it is clear thatis quasireversible.

    Second,note that the transformed switched system(12)is completely observable.This means that the matrix

    is of full rank.As the result,we have

    Construct the observer that is the(n-p)th-order switched linear system given by

    where

    Theorem 2SupposethattheswitchedsystemsatisfiesAssumptions1and2.For any initial state x0and control input u,we have

    ProofDefine the error variable

    It can be verified that

    Thus,the error dynamics is a switched autonomous system.Note the state transition matrix of the error system along switching path ˉθis exactly the left-hand matrix in (13).It follows straightforwardly that Eq.(16)holds true for anyx0andu.■

    Remark 3The reduced-order observer could reconstruct the state inυn-psteps.Note thatCompared with the full-order observer, the upper bound of the observation period is smaller.

    Remark 4While the design procedure could be extended to more general situation that the output relies on the switching law,there are still some specific cases that are quite involved.For instance,examine the planar switched linear system with

    The switched system is completely observable,yet we do not know whether it admits a reduced-order observer or not.

    3.3 Numerical example

    Let us examine the fifth-order switched linear system with two subsystems,whose system matrices are

    It can be easily verified that both Assumptions 1 and 2 are satisfied.

    Simple calculation shows that the switching pathθ=(1,2,1,2,1,2,1) is an observability switching path.By applying the design procedure,we have observer gain matrices

    Fig.1 Full-order dynamics

    The observer is

    which could achieve deadbeat reconstruction of the state in 7 steps.Figure 1 depicts the state,observer,and error trajectories with initial statex0= [-1 2 1 -2 1]Tand control inputu(t)=cos(t),t=0,1,2,....

    Next, assume that bothx1andx2could be consistently measured, that isC=C1.Let ˉθ=(2,1,2,1,2), and the gain matrices are

    The reduced-order observer is

    whereL(0)=L(2)=L1,L(4)=L3,andL(1)=L(3)=03×2.This could reconstruct the state in 5 steps.Figure 2 depicts the state, observer, and error trajectories with the same initial state and control input as in Fig.1.It can be seen that the error dynamics is much smaller than that with the full-order observer.

    Fig.2 Reduced-order dynamics

    4 Conclusion

    In this work, the problem of observer design has been addressed for quasi-reversible discrete-time switched linear systems with measured outputs.We proposed two kinds of state observers,and proved that the observers could achieve finite-time reconstruction of the state.

    It should be noted that,the observer could achieve exact state reconstruction in a finite time,thus any state feedback control/switching laws could be replaced by observer-driven control/switching laws.However,when the switched system undergoes uncertainty/perturbation, the state estimate will be inexact.In this case, it is an interesting issue to develop observer-driven control/switching laws for achieving stability of the overall system.

    Acknowledgements The authors are grateful to the anonymous reviewers for their constructive comments.

    日韩欧美免费精品| 狠狠狠狠99中文字幕| 亚洲成av人片免费观看| 国产成人啪精品午夜网站| 男男h啪啪无遮挡| 国产精品98久久久久久宅男小说| 久久狼人影院| 搡老妇女老女人老熟妇| 欧美色欧美亚洲另类二区| 可以在线观看毛片的网站| 欧美成人午夜精品| 热99re8久久精品国产| 色尼玛亚洲综合影院| 在线十欧美十亚洲十日本专区| 国产av在哪里看| 哪里可以看免费的av片| 免费在线观看黄色视频的| 精品国产乱子伦一区二区三区| 久久国产精品影院| 亚洲第一青青草原| 中国美女看黄片| 亚洲男人的天堂狠狠| 亚洲自偷自拍图片 自拍| 亚洲真实伦在线观看| 成人亚洲精品一区在线观看| 可以在线观看的亚洲视频| 怎么达到女性高潮| 伊人久久大香线蕉亚洲五| 亚洲av成人av| 欧美成人一区二区免费高清观看 | bbb黄色大片| 夜夜躁狠狠躁天天躁| 成人特级黄色片久久久久久久| 两个人免费观看高清视频| 色播亚洲综合网| 99久久综合精品五月天人人| 亚洲色图av天堂| 久久狼人影院| 一个人观看的视频www高清免费观看 | 超碰成人久久| 美女午夜性视频免费| 搡老妇女老女人老熟妇| 精品午夜福利视频在线观看一区| 两性午夜刺激爽爽歪歪视频在线观看 | 色在线成人网| а√天堂www在线а√下载| 亚洲成国产人片在线观看| 一本综合久久免费| 国产成人系列免费观看| 69av精品久久久久久| 午夜福利成人在线免费观看| 白带黄色成豆腐渣| 午夜a级毛片| cao死你这个sao货| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| 国产精品二区激情视频| 麻豆国产av国片精品| 夜夜躁狠狠躁天天躁| 亚洲一区二区三区色噜噜| 欧美黑人欧美精品刺激| bbb黄色大片| 国产激情欧美一区二区| 超碰成人久久| 熟女电影av网| 国产亚洲精品久久久久久毛片| 黄色 视频免费看| 亚洲一区二区三区色噜噜| 在线视频色国产色| 天堂动漫精品| cao死你这个sao货| 国产成人一区二区三区免费视频网站| 国产精品永久免费网站| 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av| 嫩草影视91久久| 久久99热这里只有精品18| 久久久久久久午夜电影| 又大又爽又粗| 首页视频小说图片口味搜索| 免费在线观看日本一区| 亚洲专区国产一区二区| 老汉色av国产亚洲站长工具| 欧美日韩福利视频一区二区| 久久久久免费精品人妻一区二区 | 国产色视频综合| 免费观看精品视频网站| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 99久久精品国产亚洲精品| 欧美乱码精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 一级片免费观看大全| 精品久久久久久久久久久久久 | 久久精品国产亚洲av高清一级| 国产亚洲欧美精品永久| 少妇 在线观看| 精品乱码久久久久久99久播| 国产成人一区二区三区免费视频网站| 欧美国产精品va在线观看不卡| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 欧美成人免费av一区二区三区| 成年版毛片免费区| 亚洲国产欧洲综合997久久, | 巨乳人妻的诱惑在线观看| 欧美zozozo另类| 日本在线视频免费播放| 日韩欧美 国产精品| 视频区欧美日本亚洲| 国产区一区二久久| 欧美精品亚洲一区二区| 久久精品影院6| 99热6这里只有精品| av电影中文网址| 久久人人精品亚洲av| 国产成人精品久久二区二区91| 一卡2卡三卡四卡精品乱码亚洲| av免费在线观看网站| 亚洲成人国产一区在线观看| 黄色片一级片一级黄色片| 国产亚洲精品一区二区www| 美女免费视频网站| 黄片大片在线免费观看| 日日摸夜夜添夜夜添小说| 最好的美女福利视频网| 久久久久国内视频| 色综合婷婷激情| 天天躁狠狠躁夜夜躁狠狠躁| 99riav亚洲国产免费| 人妻丰满熟妇av一区二区三区| 自线自在国产av| 欧美日韩亚洲综合一区二区三区_| 色综合欧美亚洲国产小说| 国产精品免费视频内射| 国产午夜精品久久久久久| 在线看三级毛片| 久久热在线av| 亚洲全国av大片| 丝袜美腿诱惑在线| 亚洲精品国产一区二区精华液| 777久久人妻少妇嫩草av网站| 国产91精品成人一区二区三区| 成年人黄色毛片网站| 久久国产亚洲av麻豆专区| 村上凉子中文字幕在线| 久久九九热精品免费| 亚洲av片天天在线观看| 黄色女人牲交| 人人妻人人澡人人看| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月| 两性夫妻黄色片| 99久久99久久久精品蜜桃| 国产又爽黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 婷婷亚洲欧美| 欧美性猛交黑人性爽| 精品午夜福利视频在线观看一区| 午夜视频精品福利| 亚洲国产精品成人综合色| 精品一区二区三区av网在线观看| 欧美日本亚洲视频在线播放| 禁无遮挡网站| 不卡av一区二区三区| 免费av毛片视频| 麻豆av在线久日| 亚洲国产精品久久男人天堂| 手机成人av网站| 日韩欧美 国产精品| 国产一级毛片七仙女欲春2 | 美女扒开内裤让男人捅视频| 在线观看66精品国产| 啦啦啦免费观看视频1| 国产亚洲精品久久久久5区| 亚洲成av人片免费观看| 中文字幕最新亚洲高清| 欧美亚洲日本最大视频资源| 国产私拍福利视频在线观看| 亚洲精品久久国产高清桃花| 欧美国产日韩亚洲一区| 亚洲专区国产一区二区| 久久婷婷人人爽人人干人人爱| 狠狠狠狠99中文字幕| 中出人妻视频一区二区| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 极品教师在线免费播放| 夜夜夜夜夜久久久久| 亚洲av成人一区二区三| 久久精品人妻少妇| av有码第一页| 日韩有码中文字幕| 欧美大码av| 国产免费男女视频| 亚洲成人精品中文字幕电影| 亚洲av第一区精品v没综合| 欧洲精品卡2卡3卡4卡5卡区| 日韩国内少妇激情av| 久久人人精品亚洲av| 国产三级黄色录像| 别揉我奶头~嗯~啊~动态视频| 啦啦啦观看免费观看视频高清| 妹子高潮喷水视频| 亚洲成av片中文字幕在线观看| 亚洲色图 男人天堂 中文字幕| 日韩欧美国产在线观看| 侵犯人妻中文字幕一二三四区| 美女午夜性视频免费| 99国产精品一区二区蜜桃av| 亚洲人成伊人成综合网2020| 中文在线观看免费www的网站 | 国产精品亚洲一级av第二区| 99久久久亚洲精品蜜臀av| 久久久水蜜桃国产精品网| 好男人在线观看高清免费视频 | 久久中文看片网| 禁无遮挡网站| 一级毛片女人18水好多| 成人av一区二区三区在线看| 久久久久久久午夜电影| 很黄的视频免费| 亚洲国产日韩欧美精品在线观看 | 欧美激情极品国产一区二区三区| 在线观看午夜福利视频| 中文字幕最新亚洲高清| 久久香蕉精品热| 十八禁网站免费在线| 亚洲欧美激情综合另类| 老司机深夜福利视频在线观看| 欧美在线黄色| 亚洲精品中文字幕一二三四区| 精品熟女少妇八av免费久了| √禁漫天堂资源中文www| 久热爱精品视频在线9| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产亚洲av麻豆专区| 人人妻人人澡欧美一区二区| 制服丝袜大香蕉在线| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 国产精品亚洲一级av第二区| 人人澡人人妻人| 熟妇人妻久久中文字幕3abv| 国产又色又爽无遮挡免费看| 亚洲一码二码三码区别大吗| 国产成人啪精品午夜网站| 女同久久另类99精品国产91| 精品国产一区二区三区四区第35| 听说在线观看完整版免费高清| 国产精华一区二区三区| 中文字幕精品亚洲无线码一区 | 中文字幕高清在线视频| 国产三级在线视频| 国产高清有码在线观看视频 | 又大又爽又粗| 人妻丰满熟妇av一区二区三区| 大型黄色视频在线免费观看| 嫩草影院精品99| 精品久久蜜臀av无| 国语自产精品视频在线第100页| 国产精品免费一区二区三区在线| 成人手机av| 国产成人欧美| 国产伦人伦偷精品视频| 一区二区三区国产精品乱码| 免费在线观看完整版高清| 成熟少妇高潮喷水视频| 午夜福利18| 一级作爱视频免费观看| 亚洲国产高清在线一区二区三 | 久久国产亚洲av麻豆专区| 午夜免费观看网址| 国产av一区在线观看免费| 午夜福利18| 操出白浆在线播放| 在线十欧美十亚洲十日本专区| 老汉色∧v一级毛片| 美国免费a级毛片| 少妇被粗大的猛进出69影院| 午夜精品在线福利| 一本综合久久免费| 巨乳人妻的诱惑在线观看| 啪啪无遮挡十八禁网站| 午夜久久久在线观看| 中文亚洲av片在线观看爽| 国产精品精品国产色婷婷| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 欧美性猛交╳xxx乱大交人| 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看 | www国产在线视频色| 亚洲中文字幕日韩| 国产伦人伦偷精品视频| 久久青草综合色| 国产主播在线观看一区二区| 日韩高清综合在线| 99国产精品99久久久久| 草草在线视频免费看| 午夜老司机福利片| 777久久人妻少妇嫩草av网站| 亚洲av电影在线进入| 亚洲第一欧美日韩一区二区三区| 欧美日韩黄片免| 国产黄色小视频在线观看| 精品第一国产精品| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片 | www日本黄色视频网| 一区二区三区精品91| 99国产精品一区二区三区| 哪里可以看免费的av片| 国产久久久一区二区三区| 久久久久久人人人人人| 国产黄色小视频在线观看| 夜夜躁狠狠躁天天躁| 国产精品香港三级国产av潘金莲| 啪啪无遮挡十八禁网站| 精品国内亚洲2022精品成人| 欧美又色又爽又黄视频| 两个人视频免费观看高清| 亚洲在线自拍视频| 此物有八面人人有两片| www.www免费av| 好看av亚洲va欧美ⅴa在| 国产91精品成人一区二区三区| 亚洲成人久久爱视频| 黄色成人免费大全| 午夜福利免费观看在线| 免费在线观看成人毛片| 久久香蕉精品热| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 极品教师在线免费播放| 人人澡人人妻人| 免费在线观看影片大全网站| 亚洲欧美一区二区三区黑人| 一区二区三区国产精品乱码| 国产精品久久久人人做人人爽| 欧美日韩一级在线毛片| 亚洲国产精品合色在线| 天堂√8在线中文| 国产成人一区二区三区免费视频网站| 老司机深夜福利视频在线观看| 久久婷婷成人综合色麻豆| 美女高潮喷水抽搐中文字幕| 99riav亚洲国产免费| 黄色丝袜av网址大全| 精品人妻1区二区| 成年人黄色毛片网站| 亚洲最大成人中文| 免费高清视频大片| 亚洲精品国产一区二区精华液| av天堂在线播放| 国产av又大| 成年版毛片免费区| 女性生殖器流出的白浆| 高清在线国产一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久性视频一级片| 女性被躁到高潮视频| 欧美日韩中文字幕国产精品一区二区三区| 熟女少妇亚洲综合色aaa.| 自线自在国产av| 久久九九热精品免费| 老司机在亚洲福利影院| 亚洲狠狠婷婷综合久久图片| 91大片在线观看| 国产又爽黄色视频| 国产国语露脸激情在线看| 成人国产综合亚洲| 免费在线观看完整版高清| aaaaa片日本免费| 一本大道久久a久久精品| 黄片小视频在线播放| 国产成人一区二区三区免费视频网站| www日本在线高清视频| 波多野结衣高清作品| 婷婷丁香在线五月| 精品电影一区二区在线| 18美女黄网站色大片免费观看| 国产亚洲精品av在线| 黄片小视频在线播放| 91麻豆av在线| 老熟妇仑乱视频hdxx| 久久精品成人免费网站| 好看av亚洲va欧美ⅴa在| 国产精品一区二区三区四区久久 | 少妇的丰满在线观看| 免费人成视频x8x8入口观看| 看黄色毛片网站| 亚洲成人国产一区在线观看| 精品欧美一区二区三区在线| 亚洲专区中文字幕在线| 免费看十八禁软件| 国产成人欧美| 老司机午夜十八禁免费视频| 一级a爱片免费观看的视频| 特大巨黑吊av在线直播 | 亚洲在线自拍视频| 成人免费观看视频高清| 美国免费a级毛片| 日本a在线网址| 亚洲国产精品合色在线| 日韩高清综合在线| 日韩欧美 国产精品| 无人区码免费观看不卡| 亚洲欧美日韩无卡精品| 国产精品 欧美亚洲| 国产91精品成人一区二区三区| 人人澡人人妻人| 国产一区二区在线av高清观看| 国产激情偷乱视频一区二区| 欧美激情高清一区二区三区| 欧美不卡视频在线免费观看 | 精品久久久久久久久久久久久 | 亚洲熟女毛片儿| 色精品久久人妻99蜜桃| 动漫黄色视频在线观看| 国产国语露脸激情在线看| 人人妻人人澡欧美一区二区| 国产亚洲欧美精品永久| 精品乱码久久久久久99久播| 亚洲av中文字字幕乱码综合 | 黑人巨大精品欧美一区二区mp4| 一级片免费观看大全| 日韩中文字幕欧美一区二区| 99精品久久久久人妻精品| 男人舔奶头视频| 久久久国产成人精品二区| avwww免费| 伦理电影免费视频| 亚洲精品粉嫩美女一区| 欧美日本视频| 母亲3免费完整高清在线观看| 女同久久另类99精品国产91| 在线观看免费午夜福利视频| 波多野结衣av一区二区av| 欧美中文综合在线视频| 精品乱码久久久久久99久播| 中文字幕高清在线视频| 亚洲av熟女| 久久香蕉精品热| 精品熟女少妇八av免费久了| 久久国产乱子伦精品免费另类| 色综合欧美亚洲国产小说| 丰满的人妻完整版| 日日摸夜夜添夜夜添小说| 久久人妻福利社区极品人妻图片| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区精品| 欧美日本亚洲视频在线播放| 久久香蕉国产精品| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 丁香六月欧美| 搡老妇女老女人老熟妇| 熟女电影av网| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 精品久久久久久久久久久久久 | 亚洲天堂国产精品一区在线| 久久久久久久午夜电影| 日韩精品中文字幕看吧| 制服诱惑二区| 亚洲自拍偷在线| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 欧美国产精品va在线观看不卡| www.www免费av| 久久久久久九九精品二区国产 | 天天一区二区日本电影三级| 国产精华一区二区三区| 国产男靠女视频免费网站| 国产成人啪精品午夜网站| www.999成人在线观看| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 国产成+人综合+亚洲专区| 男女视频在线观看网站免费 | av天堂在线播放| www国产在线视频色| 午夜福利欧美成人| 91大片在线观看| 国产av不卡久久| 色播在线永久视频| 最近最新中文字幕大全免费视频| 久久国产精品影院| 国产熟女午夜一区二区三区| 此物有八面人人有两片| 老司机午夜福利在线观看视频| 午夜a级毛片| 最近最新中文字幕大全电影3 | 非洲黑人性xxxx精品又粗又长| 亚洲成人精品中文字幕电影| 国产成人啪精品午夜网站| 国产精品,欧美在线| 一级毛片女人18水好多| 99国产综合亚洲精品| 国产精品国产高清国产av| 国产精品久久视频播放| 黄色 视频免费看| 非洲黑人性xxxx精品又粗又长| 国产野战对白在线观看| 日韩欧美在线二视频| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| 黑丝袜美女国产一区| 又黄又爽又免费观看的视频| 一区二区三区精品91| 亚洲专区中文字幕在线| 午夜福利成人在线免费观看| 久久中文看片网| 丁香六月欧美| 欧美zozozo另类| 一区二区三区激情视频| 国产精华一区二区三区| 黄网站色视频无遮挡免费观看| 制服诱惑二区| 亚洲五月色婷婷综合| 久久香蕉激情| 精品久久久久久,| 久久伊人香网站| 国产精品一区二区三区四区久久 | 日韩 欧美 亚洲 中文字幕| 精品国产乱子伦一区二区三区| 国产伦人伦偷精品视频| 国产一区二区三区视频了| 国产成人欧美在线观看| 亚洲成av片中文字幕在线观看| 国产免费男女视频| 男人操女人黄网站| 国产在线观看jvid| 我的亚洲天堂| 国产黄色小视频在线观看| 欧美日韩黄片免| 久久久久国产一级毛片高清牌| 一二三四社区在线视频社区8| 99国产精品一区二区三区| 真人一进一出gif抽搐免费| 亚洲欧美日韩无卡精品| 啦啦啦观看免费观看视频高清| 久久精品国产亚洲av高清一级| 欧美亚洲日本最大视频资源| 老司机福利观看| 女生性感内裤真人,穿戴方法视频| 手机成人av网站| 国产成人av教育| 色综合亚洲欧美另类图片| netflix在线观看网站| 嫁个100分男人电影在线观看| 人人妻人人澡欧美一区二区| 91老司机精品| 日本a在线网址| 一进一出抽搐gif免费好疼| 欧美中文综合在线视频| 国产一区二区三区在线臀色熟女| 国产亚洲精品久久久久久毛片| 首页视频小说图片口味搜索| 一二三四社区在线视频社区8| 色老头精品视频在线观看| 操出白浆在线播放| 丰满的人妻完整版| 一本综合久久免费| 后天国语完整版免费观看| 国产不卡一卡二| 亚洲av中文字字幕乱码综合 | 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 男女下面进入的视频免费午夜 | 亚洲av美国av| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美人与性动交α欧美精品济南到| 午夜福利欧美成人| 热re99久久国产66热| 高清毛片免费观看视频网站| 美女大奶头视频| 脱女人内裤的视频| 国产精品久久视频播放| 91成人精品电影| 中文字幕久久专区| 色精品久久人妻99蜜桃| 久久人人精品亚洲av| 看免费av毛片| 1024视频免费在线观看| 亚洲欧美日韩无卡精品| 丁香六月欧美| 十八禁人妻一区二区| 欧美在线黄色| 午夜日韩欧美国产| 在线观看免费日韩欧美大片| 国产又爽黄色视频| 中文字幕高清在线视频| 在线观看免费日韩欧美大片| 日韩 欧美 亚洲 中文字幕| 色播在线永久视频| 午夜精品在线福利| 男女做爰动态图高潮gif福利片| 久久久久免费精品人妻一区二区 | 女同久久另类99精品国产91| 成年女人毛片免费观看观看9| 国产黄a三级三级三级人| 亚洲欧美精品综合一区二区三区| 欧美黄色淫秽网站| 国产一区二区在线av高清观看| 国产视频一区二区在线看| 特大巨黑吊av在线直播 | 亚洲欧美精品综合一区二区三区| 在线av久久热| 国产精品九九99| 精品不卡国产一区二区三区| 国产v大片淫在线免费观看|