• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability

    2023-12-02 09:23:06JinPingZhang張金平WeiChen陳偉ZiXunChen陳子珣andBoZhang張波
    Chinese Physics B 2023年11期
    關(guān)鍵詞:張波陳偉金平

    Jin-Ping Zhang(張金平), Wei Chen(陳偉), Zi-Xun Chen(陳子珣), and Bo Zhang(張波)

    1State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    2Chongqing Institute of Microelectronics Industry Technology,University of Electronic Science and Technology of China,Chongqing 401331,China

    Keywords: SiC trench MOSFET,switching power loss,figure of merit,safe operating area

    1.Introduction

    Silicon carbide metal–oxide–semiconductor field-effect transistor (SiC MOSFET) is suitable for high frequency and high voltage applications owing to its material properties.[1,2]It opens the ways to diverse industries, including new energy vehicles,rail transit,and smart grids.In these applications,it is necessary to deal with short circuit, high temperature, and other extreme cases, which requires SiC MOSFET to be improved not only in performance, but also in reliability.SiC planar gate MOSFET demonstrates good reliability and has been commercialized for a long time.Compared with the planar counterparts,SiC trench gate MOSFETs(TMOSs)are preferred to further improve the device performance, owing to higher channel density and absence of junction field-effect transistor (JFET) region.[3]However, in the case of conventional TMOS,the high electric field present in the trench oxide during the blocking state leads to premature breakdown prior to the drain bias reaching an avalanche breakdown voltage(BVav).

    With the development of the material and device manufacturing technology, many methods to optimize the SiC MOSFET structure have been proposed.Rohmet al.proposed an SiC double trench MOSFET(DTMOS)with a heavily doped p-type shielding region (P+SLD) at the sidewall and bottom of the source trench.[4,5]The DTMOS achieves an ultra-low specific on-resistance(Ron,sp).However,its large gate capacitance causes high switching power loss (Psw).In comparison with the DTMOS, the asymmetric TMOS (ATMOS) proposed in Refs.[6,7] shows better robustness, owing to the shielding effect provided by the half-surrounded P+SLD.[8]However, the inherently large MOS channel density of the trench structures results in a large saturation drain current(Id,sat),which reduces the short-circuit(SC)withstand time(tsc)and limits the improvement of the short circuit safe operating area (SCSOA).To further improve the switching characteristics and reduce thePsw,split/shield gate(SG)is introduced in Refs.[9–11].Introducing SG is an effective way to reduce gate–drain capacitance (Cgd).Moreover, unlike the Si counterpart, a thicker shield gate oxide thickness(Tsgox)is conducive to alleviating the maximum electric field in the gate oxide (Eox,peak) for the SiC SG-TMOS, which improves the gate oxide reliability.However,the coupling between the gate and source electrode still brings about large gate–source capacitance (Cgs) and the switching speed improvement is limited.

    In this paper, a novel SiC trench MOSFET with a dual shield gate(DSG)and optimized JFET layer(ODSG-TMOS)is proposed.Compared with the conventional ATMOS(Con-ATMOS),the proposed structure shows good trade-off among theRon,sp,breakdown voltage(BV),and gate oxide reliability.The DSG structure reduces not onlyCgdbut alsoCgssignificantly.Therefore,the gate–drain charge(Qgd)and gate charge(Qg)are both reduced.As a result,the switching speed is improved and thePswis reduced, which significantly improves the dynamic performance.In addition,thetscis increased withId,satdecreasing and the large-current turn-off capability is also enhanced substantially.

    2.Device structure and mechanism

    Figures 1(a) and 1(b) show schematic cross-sectional view of the proposed ODSG-TMOS and Con-ATMOS, respectively.Both devices have an asymmetric trench gate structure on the surface.Compared with the Con-ATMOS,the proposed device features a fin-shaped gate which is surrounded by dual source-connected SGs and an L-shaped JFET layer.The shielding effect provided by the lower SG conduces to reducing theCgdand the reduced overlapping area between the narrower fin-shaped gate and lower SG creates reducedCgs.Apart from that,the interaction between the gate and the side wall of the source-connected P+SLD for the Con-ATMOS is transformed into the interaction between the fin-shaped gate and fin-shaped source-connected SG.Since the oxide layer between the two fin-shaped electrodes is much thicker than that at the side wall of the gate trench,the interaction between them is greatly decoupled,which can further reduce theCgsof the proposed structure.Therefore,the reverse transfer capacitance(Crss),input capacitance(Ciss),gate charge(Qg)as well as gate–drain charge(Qgd)are reduced,which improve the dynamic performance of the device.Furthermore, the thicker oxide layer of the DSG reduces the peak electric field at the trench corner, and combined with an optimized JFET layer,Ron,spis reduced without sacrificing theBV.In addition,since the lower SG is connected to the source,its potential remains 0 V instead of the gate drive voltage of 15 V or 18 V when the ODSG-TMOS is under saturation.Therefore,electrons do not gather near the side wall nor in corner of the lower SG.The depletion region is expanded widely in that region,which reduces the width of electron conduction path and enhances the JFET effect.As a result, theId,satis reduced and thetscis increased.By using the Silvaco TCAD with the modified models used in our previous work, such as band gap narrowing (BGN), CONSRH, CONWELL, SULFMOB, incomplete ionization,Auger and analytic models,the performance of the device is simulated.[11–13]The device parameters used in the simulation are shown in Table 1.The parameters not listed are the same for the two structures.The device areas used in this work for the two devices are both 1 cm2,unless otherwise mentioned.

    Parameters Con-ATMOS ODSG-TMOS Gate oxide thickness,Tox (nm) 50 50 Trench width,Wtrench (μm) 1 1 Trench depth,Ttrench (μm) 1.15 1.15 P+ region width under trench,Wps (μm) 0.7 0.7 P+ region thickness under trench,Tps (μm) 0.4 0.4 N- drift region thickness,Td (μm) 11 11 Gate depth,Tg (μm) 1.1 –Shield gate thickness,Tsg (μm) – 0.4 Shield gate oxide thickness,Tsgox (μm) – 0.1 Control gate width,Wf (μm) – 0.2 Control gate thickness,Tf (μm) – 0.6 JFET region width,WJF (μm) – 0.3 Cell width,Wcell (μm) 2.5 2.5 N- drift region concentration,Nd (cm-3) 1×1016 1×1016 N+ region concentration,NN+ (cm-3) 3×1019 3×1019 P+ channel region concentration,NPC (cm-3) 3×1017 3×1017 P+ shielding region concentration,NPS (cm-3) 5×1018 5×1018 JFET region concentration,NJF (cm-3) – 4×1016

    3.Results and discussion

    Figure 2(a) shows conductionI–Vcurves and blockingI–Vcurves for the proposed ODSG-TMOS and Con-ATMOS,respectively.Even with the source-connected SGs, theRon,spis 1.99 m?·cm2for the Con-ATMOS and 1.69 m?·cm2for the ODSG-TMOS.It is improved by 15.1%owing to the introduction of the additional JFET layer.Owing to the fact that the JFET layer has high doping concentration(NJF),at low drain–source voltage(Vds)the lateral expansion of the depletion region formed in the drift region is limited.Therefore,the conducting path for electrons moving from the channel to the drift region is widened and has a low-resistance.Contributed by the thickerTsgox,theBVavof the ODSG-TMOS is 1215 V,which is only 3% lower than that of the Con-ATMOS.The electric field contours at avalanche breakdown are shown in Fig.2(b).The maximum electric field in the gate oxide(Eox,peak)for the Con-ATMOS is 3.29 MV/cm,which is higher than that for the ODSG-TMOS.It exceeds 3 MV/cm,a recognized value commonly used to define the gate oxide breakdown (BVox) from the perspective of long-term reliability.Further investigation results show that theBVoxof the Con-ATMOS is only 960 V,at which theEox,peakreaches 3 MV/cm.The limiting factor to determine the device breakdown is changed and it shifts from the avalanche breakdown for the proposed ODSG-TMOS to the gate oxide breakdown for the Con-ATMOS.Compared with the Con-ATMOS, the proposed structure demonstrates good trade-off among theRon,sp,BV,and gate oxide reliability.

    The transfer characteristics of the two structures are shown in Fig.3.TheVdsremains 0.1 V when the gate voltage (Vgs) increases.It can be seen that the values of drainsource current (Ids) of both structures increase quickly when theVgsis larger than 5 V.The threshold voltage(Vth)extracted atIds=10 mA/cm2is 5.6 V for the ODSG-TMOS and 5.7 V for the Con-ATMOS.The slight difference inVthis due to the decreasedRon,spand alleviative JFET effect caused by the highly doped JFET region at lowVds.

    Figure 4 shows the dependence of the extractedCiss,Crss,and output capacitance (Coss) onVdsfor the two structures.It can be seen that asVdsincreases,Cissremains almost unchanged, whileCossandCrssshow obvious nonlinear characteristics.The two parameters for the proposed device at theVdsof about 5 V change suddenly,which is caused by the depletion of the heavily doped JFET layer.In theVdsrange from 0 V to 1000 V,theCissandCrssof the proposed ODSG-TMOS structure are both smaller than those of the Con-ATMOS structure.The values extracted at theVdsof 600 V are shown in Fig.4.At theVdsof 600 V, theCossof the two structures are almost the same, while theCissandCrssof the ODSGTMOS decrease by 69.3%and by an order of magnitude when compared to those of the Con-ATMOS,respectively.It can be concluded that the reduced gate depth as well as decoupled interaction between the gate and drain/source introduced by the DSG structure results in the improvement of theCissandCrss.TheCissandCrssfor a power switching device are of particular importance since it has a great influence on thePsw.Moreover,the smaller ratio ofCrsstoCissfor the proposed structure is of benefit to suppressing the false turn-on of the device.Considering that the capacitance characteristics at a certain terminal voltage cannot fully reflect the influence of the parasitic capacitance on the switching characteristic of a device,the gate charging characteristic is studied.Figure 5 shows the comparison of gate charging characteristic between the two structures.The test circuit is also shown in the inset.SmallerCissandCrssenable faster charging speed and also improve theQgdandQg.WithVgsin a range from 0 V to 15 V, theQgdandQgare 144 nC/cm2and 1330 nC/cm2for the Con-ATMOS,and 28 nC/cm2and 370 nC/cm2for the ODSG-TMOS, respectively.TheQgdandQgfor the ODSG-TMOS are reduced by 80.6% and 72.2% compared with those for Con-ATMOS,respectively.The high frequency figure of merit (HFFOM,Ron·Qgd) of the Con-ATMOS is 286.56 m?·nC while that of the ODSG-TMOS is only 47.32 m?·nC.In addition, another widely used HFFOM,theRon·Qg,is 2646.70 m?·nC for the Con-ATMOS and 625.30 m?·nC for the ODSG-TMOS.They are improved by 83.5%and 76.4%,respectively.To better demonstrate the advantage of the ODSG-TMOS, the HHFOMs of the reported devices are also compared.TheRon·QgdandRon·Qgfor the device in Ref.[14] are 438 m?·nC and 1722.8 m?·nC while those for the device proposed in Ref.[15]are 449 m?·nC and 2094 m?·nC, respectively.It is obvious that the performance of the ODSG-TMOS is improved significantly.

    The switching waveforms with inductive load for the two devices are plotted in Fig.6(a).TheVgsis turned on att=0μs and turned off att=20 μs.It is obvious in Fig.6(a) that the Miller platform of the proposed ODSG-TMOS is significantly shortened,which is consistent with the result mentioned above.Owing to the reducedCissandCrss, the switching delay time of the ODSG-TMOS decreases significantly and the switching speed increases.The turn-on delay time and the turn-off delay time of the Con-ATMOS are 1.92μs and 3.24μs while those of the ODSG-TMOS are only 540 ns and 920 ns,they decreasing by 71.9% and 71.6%, respectively.In addition,power loss of the proposed ODSG-TMOS also decreases.The total power loss, including the conduction power loss(Pcon)andPswof the two structures at different frequencies are depicted in Fig.6(b).ThePconandPswof the ODSG-TMOS are 15.6%and 77.0%lower than those of the Con-ATMOS,respectively.As frequency increases,thePconremains constant,with the same duty cycle of 50%, but the difference inPswbecomes greater.Benefiting from the higher switching speed and lowerPsw, the ODSG-TMOS is more promising to high frequency applications than the Con-ATMOS.

    Figure 7(a)showsI–Vcharacteristic curves varying with drain voltage till saturation for the two structures under different values ofVgs.It can be seen that when theVgs=8 V and 10 V, the values ofId,satfor the Con-ATMO and the ODSGTMOS are almost the same.However, when theVgs=15 V and 18 V, the values ofId,satof the ODSG-TMOS are much smaller than those of the Con-ATMOS, owing to the lateral depletion effect provided by the lower SG under gate as shown in Fig.7(b).The black lines in the figures are depletion edges of the two structures at theVdsof 600 V withVgs=15 V.It is obvious that the depletion region of the ODSG-TMOS expands widely, thus reducing the width of electron conduction path.SmallerId,satconduces to reducing the power density when the device is under the short-circuit condition.Therefore,a longertscis obtained for the ODSG-TMOS as shown in Fig.8.For the SC simulation,aVgsof 15 V,a gate resistor of 1 ? and a bus voltage of 600 V with electrothermal coupling models are used.The dotted current curves represent the critical time at which the devices can be turned off normally.On the contrary, the solid current curves refer to the case where the devices fail in a longer short-circuit operation time.It can be seen that thetscis 1.6 μs for the Con-ATMOS and 3.0 μs for the ODSG-TMOS.It is improved by 87.5%,with theId,satreduced.Once the two MOSFETs are turned on,their SC currents rapidly increase and reach the corresponding values ofId,sat.After that, the saturation currents of the two structures start to decrease owing to the self-heating effect as well as reduced carrier mobility in the inversion MOS channel and drift region with the increase of junction temperature.Owing to the large power loss under the SC condition,once the junction temperature reaches the intrinsic temperature limit, the current increases rapidly and then thermal runaway occurs.

    To evaluate the reverse-biased SOA(RBSOA)of the proposed device, the large-current turn-off capability with an inductive load is discussed in Fig.9.In the simulation,an initial junction temperature of 448 K, a bus voltage of 1200 V and a large current of 1800 A (6 times the nominal current) are used, with the electro-thermal coupling model adopted.The values ofVgsof the two devices both turn from 15 V to 0 V att=2μs.After a delay of a few microseconds,the ODSGTMOS is normally turned off while the Con-ATMOS cannot.It can be found that for the Con-ATMOS,after theVdsreaches the bus voltage of 1200 V,theIdsstarts to drop normally.However, after a short drop, theIdsrecovers to 1800 A again and theVdsof the Con-ATMOS starts to drop.The Con-ATMOS fails in the large-current turn-off process and losses blocking capability.The junction temperatures of the two devices in the turn-off process are also shown in the figure.It is found that the junction temperature of the Con-ATMOS increases to about 2000 K while the proposed ODSG-TMOS shows much less temperature rise.Like the results shown in Fig.6, the slower turn-off speed and higherPswfor the Con-ATMOS contribute to the rapid rise of the junction temperature.

    The influence of the fin-shaped control gate width (Wf)on the performance of the ODSG-TMOS at 50 kHz is shown in Fig.10.In the simulation,the fin-shaped source-connected SG keeps the width identical with that of the fin-shaped gate.It can be seen in Fig.10(a)that theCgdkeeps almost unchanged owing to good shielding effect provided by the lower SG while theCgssignificantly increases as theWfincreases from 0.1μm to 0.4 μm.Accordingly, theQgdshown in Fig.10(b) keeps almost unchanged while theQgandPswincrease withWfincreasing.The smaller theWf, the better performance can be obtained.Further research results show that the smallerWfnot only reduces the overlapping area between the gate and lower SG, but also increases the thickness of the oxide layer between the fin-shaped gate and the fin-shaped source-connected SG,which both decouple the interaction between the gate and source,and therefore,significantly reducing theCgsof the device.It shows that theCgsaffects not only the switching speed but also the switching power loss, especially when theCgdis small enough.

    Figures 11(a) and 11(b) show the relationship betweenId,satandRon,sp,and the relationship between BFOM andNJFfor different values of JFET layer width(WJF),respectively.It can be seen from Fig.11(a)that with the sameWJF,theRon,spdecreases andId,satincreases with the increase of theNJF.Similarly,theRon,spdecreases andId,satincreases with the increase of theWJFwhen theNJFis kept unchanged.The reason is that increasingNJFand/orWJFof the JFET layer provides a low resistance path for electrons in the conduction state at lowerVdsregime.However,the JFET effect provided by the lower SG at largeVdsis also attenuated since the JFET layer is more difficult to deplete.Figure 11(b)shows the influence of theWJFandNJFon the Baliga’s figure of merit(BFOM,BV2/Ron,sp)for the proposed device.As mentioned above,the blocking capability of the device is determined by the lower one of theBVavandBVox.When theNJFis low, theBVavis a lower one and the BFOM increases as theNJFincreases,owing toRon,spdecreasing.However,theBVoxdecreases rapidly with the increase ofNJF,owing toEox,peakincreasing in the trench corner.TheBVoxbecomes lower thanBVavwhen theNJFis greater than a certain value.And after that, the BFOM decreases rapidly with the increase ofNJF,owing to theBVoxdecreasing.Therefore,considering the influence of theWJFandNJF, there appears a balance after the conduction performance,BFOM and SCSOA for the proposed ODSG-TMOS have been optimized.

    Figure 12 shows the influence of concentration of the Ndrift region (Nd) on theBVandRon,sp, respectively.As expected,the two parameters both decrease with the increase ofNd.WhenNdincreases from 7×1015cm-3to 1.3×1016cm-3,BVdecreases from 1559 V to 938 V andRon,spdeclines from 2.21 m?·cm2to 1.44 m?·cm2.It can be found that to ensure that theBVis larger than 1200 V,theNdmust be kept less than or equal to 1×1016cm-3.Therefore, the optimizedRon,spis obtained when theNdis equal to 1×1016cm-3.In this case,theBVof the ODSG-TMOS is almost the same as that of the Con-ATMOS while theRon,spis 15.1%lower.

    In order to show the feasibility of the proposed ODSGTMOS structure, a possible manufacturing process flowchart is shown in Fig.13.Firstly,an epitaxial lightly doped N-drift layer is grown on an N+substrate.After forming the epitaxial layer, the P+SLD, N+source region and P-base form via multiple ion implantation as shown in Fig.13(b).After the gate trench is etched, an L-shaped JFET area forms through tilted multiple ion implantation as shown in Figs.13(c)–13(d).Using thermal oxidation to form an oxide layer on the surface and the bottom and sidewalls of the trench, the gate trench is filled with polysilicon and then etched to form the lower split gate as shown in Figs.13(e)–13(g).Similarly, the fin-shaped gate and source also form by filling and etching process as shown in Figs.13(h)–13(j).[14,15]The process of forming finshaped gate is a self-aligned process andWfis determined by the deposited thickness of the polysilicon film and subsequent etching process.After that, dielectric is deposited and metal process is utilized to form the source and drain electrode.The final structure fabricated is shown in Fig.13(l).

    4.Conclusions

    A novel SiC ODSG-TMOS structure is proposed and investigated in this work.Comparing with the Con-ATMOS,BVavkeeps almost unchanged while theEox,peakbecomes 3.29 MV/cm for the Con-ATMOS, and 2.94 MV/cm for the proposed ODSG-TMOS, which improves theBVoxand gate oxide reliability.And theRon,spis also improved by 15.1%due to the introduction of the highly doped JFET layer.More importantly,compared with the Con-ATMOS,the ODSG-TMOS shows high dynamic performance and improved SOA capability.TheCissandCrssof the ODSG-TMOS decrease by 69.3%and by an order of magnitude when compared to those of the Con-ATMOS, respectively.The value ofQgdandQgare reduced by 80.6%and 72.2%, respectively.Therefore, the HFFOM ofRon,sp·QgdandRon,sp·Qgfor the proposed ODSGTMOS are improved by 83.5%and 76.4%, respectively.ThePswof the proposed ODSG-TMOS is 77.0% lower than that of the Con-ATMOS.In addition,the SCSOA and RBSOA are also improved.With a significantly reducedId,sat, thetscis 87.5%longer than that of the Con-ATMOS at theVgof 15 V.The ODSG-TMOS can be normally turned off under a bus voltage of 1200 V and a large current of 1800 A while the Con-ATMOS fails in the turn-off process.The key parameters that have a strong influence on performance of the ODSG-TMOS are discussed,which presents a further improvement direction for the proposed structure.Considering the improved switching performance and enhanced SOA, the ODSG-TMOS is a promising candidate for high-frequency and high-power applications.

    Acknowledgement

    Project supported by the China Postdoctoral Science Foundation(Grant No.2020M682607).

    猜你喜歡
    張波陳偉金平
    入木三分
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    《健聽女孩》:無(wú)聲世界里的有情人生
    意林彩版(2022年1期)2022-05-03 10:25:07
    Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
    Best fight
    陳偉教授簡(jiǎn)介
    南城秋意
    赤水源(2018年6期)2018-12-06 08:38:10
    陳偉博士簡(jiǎn)介
    Recent Progress in Heavy Fuel Aviation Piston Engine
    張波:行走在神經(jīng)外科前沿
    精品久久久久久久久av| 九色成人免费人妻av| 免费搜索国产男女视频| 欧美3d第一页| 国产伦精品一区二区三区四那| 一级黄色大片毛片| 91aial.com中文字幕在线观看| 国产亚洲午夜精品一区二区久久 | 村上凉子中文字幕在线| av在线天堂中文字幕| 国产美女午夜福利| 免费观看精品视频网站| 我的老师免费观看完整版| 少妇丰满av| 超碰av人人做人人爽久久| 最近的中文字幕免费完整| 午夜精品一区二区三区免费看| 国产精品1区2区在线观看.| 亚洲成人中文字幕在线播放| 日本免费a在线| 免费黄色在线免费观看| 看黄色毛片网站| 在线天堂最新版资源| 搡女人真爽免费视频火全软件| 校园人妻丝袜中文字幕| 韩国高清视频一区二区三区| 日日摸夜夜添夜夜添av毛片| 日本五十路高清| 久久久精品94久久精品| 欧美性感艳星| 一区二区三区四区激情视频| 天美传媒精品一区二区| 久久午夜福利片| 美女内射精品一级片tv| 国产精品一区www在线观看| 韩国av在线不卡| 丝袜喷水一区| 赤兔流量卡办理| 国产成人一区二区在线| 看十八女毛片水多多多| 寂寞人妻少妇视频99o| 2022亚洲国产成人精品| 少妇丰满av| 久久久久久久午夜电影| 一区二区三区四区激情视频| 男人的好看免费观看在线视频| 久久精品夜色国产| 欧美极品一区二区三区四区| 老女人水多毛片| kizo精华| 99视频精品全部免费 在线| 国产精品av视频在线免费观看| 日日干狠狠操夜夜爽| 免费看日本二区| 少妇熟女aⅴ在线视频| 精品人妻视频免费看| 欧美性感艳星| 啦啦啦啦在线视频资源| 色综合色国产| 国产一区二区在线观看日韩| 一个人观看的视频www高清免费观看| 国产91av在线免费观看| 欧美区成人在线视频| 国产精品久久久久久精品电影| 欧美成人a在线观看| 日本三级黄在线观看| 国产成人freesex在线| 久久国产乱子免费精品| 成人午夜高清在线视频| 亚洲天堂国产精品一区在线| 一区二区三区高清视频在线| 我要看日韩黄色一级片| 久久久国产成人精品二区| 中文资源天堂在线| 色噜噜av男人的天堂激情| 欧美zozozo另类| 欧美另类亚洲清纯唯美| 欧美日韩一区二区视频在线观看视频在线 | 欧美高清性xxxxhd video| 岛国毛片在线播放| 亚洲精品乱久久久久久| 一本一本综合久久| 99久久精品一区二区三区| 日本免费一区二区三区高清不卡| 国产精品女同一区二区软件| 欧美高清性xxxxhd video| av天堂中文字幕网| 久久精品影院6| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费| 亚洲国产精品sss在线观看| 69人妻影院| 亚洲av不卡在线观看| 天天一区二区日本电影三级| 免费不卡的大黄色大毛片视频在线观看 | 国内精品宾馆在线| kizo精华| 少妇丰满av| videossex国产| 亚洲天堂国产精品一区在线| 日韩欧美 国产精品| 有码 亚洲区| 精品无人区乱码1区二区| 日韩成人伦理影院| 热99在线观看视频| 一本一本综合久久| 欧美人与善性xxx| 日本色播在线视频| 91久久精品国产一区二区成人| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| 一边亲一边摸免费视频| 非洲黑人性xxxx精品又粗又长| 在线播放无遮挡| 国产一区二区三区av在线| 成人午夜高清在线视频| 免费观看精品视频网站| 免费观看a级毛片全部| 久久精品久久精品一区二区三区| 国产成人精品一,二区| 日韩欧美 国产精品| 国产高清国产精品国产三级 | 国产精品av视频在线免费观看| 精品一区二区三区人妻视频| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 亚洲成人av在线免费| 亚洲精品乱久久久久久| 亚洲一区高清亚洲精品| 看十八女毛片水多多多| 久久精品综合一区二区三区| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 亚洲最大成人av| 久久精品国产99精品国产亚洲性色| 国产精品国产高清国产av| 久久久久久伊人网av| 男人和女人高潮做爰伦理| 国产精品野战在线观看| 日韩中字成人| 毛片女人毛片| 中文字幕久久专区| 国产 一区精品| 毛片一级片免费看久久久久| 成人欧美大片| 免费观看a级毛片全部| av国产久精品久网站免费入址| 国产成人精品一,二区| 亚洲精品乱码久久久久久按摩| 校园人妻丝袜中文字幕| 黄色欧美视频在线观看| eeuss影院久久| 日韩高清综合在线| 国产乱来视频区| 日韩欧美国产在线观看| 久久久欧美国产精品| 欧美人与善性xxx| 午夜福利网站1000一区二区三区| 亚洲成人中文字幕在线播放| 国产亚洲午夜精品一区二区久久 | 亚洲真实伦在线观看| 少妇的逼好多水| 日本欧美国产在线视频| 精品久久久久久久久久久久久| 大香蕉久久网| 中文欧美无线码| 欧美性感艳星| 久久人人爽人人片av| 99久久精品一区二区三区| 国产精品一区二区性色av| 亚洲综合色惰| 禁无遮挡网站| 成人午夜精彩视频在线观看| 人妻夜夜爽99麻豆av| 熟女人妻精品中文字幕| 亚洲真实伦在线观看| 欧美成人精品欧美一级黄| 最近手机中文字幕大全| 久久99热这里只频精品6学生 | 欧美潮喷喷水| 亚洲无线观看免费| 亚洲经典国产精华液单| 寂寞人妻少妇视频99o| 亚洲国产精品sss在线观看| 国产私拍福利视频在线观看| 91久久精品国产一区二区三区| 欧美zozozo另类| 国产精品久久久久久精品电影小说 | 一级av片app| av天堂中文字幕网| 亚洲最大成人av| 国产精品蜜桃在线观看| 欧美三级亚洲精品| 精品免费久久久久久久清纯| av在线老鸭窝| 午夜日本视频在线| 国模一区二区三区四区视频| 国产亚洲精品av在线| 国产不卡一卡二| 亚洲精品国产av成人精品| av专区在线播放| 欧美日韩在线观看h| 性插视频无遮挡在线免费观看| 久久久久久久亚洲中文字幕| av播播在线观看一区| 国产精品久久视频播放| 小蜜桃在线观看免费完整版高清| 久久99热这里只有精品18| 男人的好看免费观看在线视频| 精品久久久久久久人妻蜜臀av| 哪个播放器可以免费观看大片| 一边摸一边抽搐一进一小说| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄 | 一级黄色大片毛片| 欧美性猛交╳xxx乱大交人| 成年av动漫网址| 国产成人精品久久久久久| 乱人视频在线观看| 一级爰片在线观看| 欧美bdsm另类| 国产成人aa在线观看| 免费无遮挡裸体视频| 中文精品一卡2卡3卡4更新| 成年免费大片在线观看| 三级国产精品欧美在线观看| 色播亚洲综合网| 日韩视频在线欧美| 热99在线观看视频| 99热这里只有是精品在线观看| 波野结衣二区三区在线| 美女xxoo啪啪120秒动态图| 国产av一区在线观看免费| 久久久亚洲精品成人影院| 岛国在线免费视频观看| 中文字幕av在线有码专区| 草草在线视频免费看| 成人av在线播放网站| 亚洲欧美日韩东京热| 五月玫瑰六月丁香| 内地一区二区视频在线| 欧美日本亚洲视频在线播放| 精品一区二区三区视频在线| 老司机影院毛片| 我要看日韩黄色一级片| 久久久精品大字幕| 久久这里只有精品中国| 国产精品一二三区在线看| 插逼视频在线观看| 两个人视频免费观看高清| 国产色婷婷99| 日本wwww免费看| 51国产日韩欧美| 亚洲av二区三区四区| 久久久精品欧美日韩精品| 精品久久久久久久久久久久久| 欧美又色又爽又黄视频| 一本一本综合久久| 99视频精品全部免费 在线| 欧美性猛交╳xxx乱大交人| 国产精品麻豆人妻色哟哟久久 | 亚洲国产精品成人综合色| 啦啦啦韩国在线观看视频| 少妇丰满av| 国产美女午夜福利| 欧美三级亚洲精品| av国产久精品久网站免费入址| 午夜视频国产福利| 亚洲精品色激情综合| 久久草成人影院| 成人毛片60女人毛片免费| 欧美成人a在线观看| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 国产乱来视频区| 日本免费在线观看一区| 天天躁日日操中文字幕| 特级一级黄色大片| 九九热线精品视视频播放| 国产在视频线在精品| 2021天堂中文幕一二区在线观| 国产精华一区二区三区| 在线a可以看的网站| 欧美性感艳星| 国产伦精品一区二区三区四那| 久久婷婷人人爽人人干人人爱| 久久久久性生活片| 免费观看在线日韩| 嫩草影院入口| 国产成人freesex在线| 精品久久国产蜜桃| 成人美女网站在线观看视频| 免费av毛片视频| 又爽又黄无遮挡网站| videos熟女内射| 国产精品无大码| 国产淫片久久久久久久久| 人妻制服诱惑在线中文字幕| 亚洲av电影在线观看一区二区三区 | 久久午夜福利片| 国产伦精品一区二区三区四那| 色吧在线观看| 国产乱人偷精品视频| 亚洲自拍偷在线| 成人性生交大片免费视频hd| 国产午夜福利久久久久久| 岛国在线免费视频观看| 日本熟妇午夜| 免费大片18禁| 久久久欧美国产精品| 国产一区亚洲一区在线观看| 久久久久久久久久久丰满| 久久99精品国语久久久| 在线免费观看不下载黄p国产| 亚洲第一区二区三区不卡| 91精品伊人久久大香线蕉| 国产伦一二天堂av在线观看| 美女xxoo啪啪120秒动态图| 99久久精品一区二区三区| 七月丁香在线播放| 中文在线观看免费www的网站| 日韩中字成人| 少妇猛男粗大的猛烈进出视频 | 国产av在哪里看| 国产精品国产三级国产av玫瑰| 国产精品美女特级片免费视频播放器| 一级爰片在线观看| 女人久久www免费人成看片 | 久久久久久久久久久丰满| 午夜福利网站1000一区二区三区| 久久精品综合一区二区三区| 亚洲一区高清亚洲精品| av福利片在线观看| 久久久久久国产a免费观看| 欧美成人精品欧美一级黄| 欧美三级亚洲精品| 欧美性感艳星| av黄色大香蕉| 日本免费一区二区三区高清不卡| 国产精品女同一区二区软件| 九九爱精品视频在线观看| av在线蜜桃| 午夜亚洲福利在线播放| 高清毛片免费看| 亚洲真实伦在线观看| 欧美xxxx性猛交bbbb| 国产极品精品免费视频能看的| 午夜福利在线观看吧| 黄色配什么色好看| 两个人视频免费观看高清| 特级一级黄色大片| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 免费搜索国产男女视频| 网址你懂的国产日韩在线| 日本爱情动作片www.在线观看| 国产亚洲精品av在线| 国产高清国产精品国产三级 | 校园人妻丝袜中文字幕| 欧美激情久久久久久爽电影| 日日摸夜夜添夜夜爱| 一个人看视频在线观看www免费| 嫩草影院精品99| 精品久久久久久久人妻蜜臀av| 国国产精品蜜臀av免费| av专区在线播放| 国产精品三级大全| 看片在线看免费视频| 高清av免费在线| 亚洲在线观看片| 亚洲精品乱久久久久久| 联通29元200g的流量卡| 床上黄色一级片| 日韩视频在线欧美| 97在线视频观看| 少妇的逼水好多| 久久精品综合一区二区三区| 中文资源天堂在线| 免费观看人在逋| 国产免费男女视频| av视频在线观看入口| 大香蕉久久网| 亚洲精品影视一区二区三区av| 白带黄色成豆腐渣| 亚洲va在线va天堂va国产| 最近中文字幕2019免费版| 久久午夜福利片| 国产av码专区亚洲av| 日韩高清综合在线| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| 身体一侧抽搐| 精品一区二区三区视频在线| 亚洲精品日韩在线中文字幕| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 九九爱精品视频在线观看| 久久99热这里只有精品18| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久精品电影| 国产又黄又爽又无遮挡在线| 高清av免费在线| a级一级毛片免费在线观看| 久久久久久大精品| 日韩国内少妇激情av| 免费观看性生交大片5| 少妇高潮的动态图| 午夜免费激情av| 三级国产精品欧美在线观看| 久久人人爽人人片av| 国产极品天堂在线| 久久草成人影院| 成人国产麻豆网| 级片在线观看| 国产精品国产三级国产av玫瑰| 亚洲在线观看片| 有码 亚洲区| 国产在线男女| 青青草视频在线视频观看| 久久鲁丝午夜福利片| 日韩av在线大香蕉| 美女脱内裤让男人舔精品视频| av卡一久久| 国产精品99久久久久久久久| 草草在线视频免费看| 不卡视频在线观看欧美| 九九热线精品视视频播放| 精品久久久噜噜| 日本wwww免费看| 国产成人aa在线观看| 免费av不卡在线播放| 日本爱情动作片www.在线观看| 尾随美女入室| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久 | 波多野结衣高清无吗| 国产亚洲av嫩草精品影院| 99热精品在线国产| 美女黄网站色视频| 中文字幕免费在线视频6| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 日韩人妻高清精品专区| 美女高潮的动态| 国内揄拍国产精品人妻在线| 久久久a久久爽久久v久久| 亚洲熟妇中文字幕五十中出| 午夜免费男女啪啪视频观看| 精品免费久久久久久久清纯| 人体艺术视频欧美日本| 国产真实乱freesex| 午夜日本视频在线| 亚洲av电影不卡..在线观看| 色吧在线观看| 人人妻人人看人人澡| 嫩草影院新地址| 亚洲av二区三区四区| 一本一本综合久久| 欧美日本亚洲视频在线播放| 别揉我奶头 嗯啊视频| 国产男人的电影天堂91| 国产亚洲最大av| 精品国内亚洲2022精品成人| 亚洲精品国产成人久久av| 久久鲁丝午夜福利片| 插阴视频在线观看视频| 22中文网久久字幕| 婷婷色av中文字幕| 日韩大片免费观看网站 | 七月丁香在线播放| 波多野结衣巨乳人妻| 91在线精品国自产拍蜜月| 夫妻性生交免费视频一级片| 99在线视频只有这里精品首页| 边亲边吃奶的免费视频| 久久久久性生活片| 久久婷婷人人爽人人干人人爱| 欧美97在线视频| 一级二级三级毛片免费看| 精品酒店卫生间| 2021少妇久久久久久久久久久| 日本免费一区二区三区高清不卡| 18禁动态无遮挡网站| 在线免费观看的www视频| 99热精品在线国产| 天堂√8在线中文| 午夜精品一区二区三区免费看| 日韩欧美 国产精品| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久久性| 永久免费av网站大全| 一区二区三区乱码不卡18| 精品国产露脸久久av麻豆 | 老司机影院成人| 神马国产精品三级电影在线观看| 午夜福利成人在线免费观看| 黑人高潮一二区| 18+在线观看网站| 69人妻影院| 午夜福利在线观看免费完整高清在| 热99re8久久精品国产| 日韩精品有码人妻一区| 久久精品熟女亚洲av麻豆精品 | 日本欧美国产在线视频| 欧美日韩在线观看h| 久久人妻av系列| 九九热线精品视视频播放| 伦理电影大哥的女人| 精品一区二区三区视频在线| www日本黄色视频网| 丝袜喷水一区| 综合色丁香网| 全区人妻精品视频| 免费在线观看成人毛片| 久久婷婷人人爽人人干人人爱| 国产激情偷乱视频一区二区| 亚洲av熟女| 亚洲中文字幕一区二区三区有码在线看| 欧美丝袜亚洲另类| 男人舔女人下体高潮全视频| 亚洲丝袜综合中文字幕| 久久精品久久精品一区二区三区| 国产免费福利视频在线观看| 如何舔出高潮| 亚洲av福利一区| 国产伦在线观看视频一区| videossex国产| 中文字幕av成人在线电影| 18禁动态无遮挡网站| 国产av不卡久久| 久久精品国产亚洲av涩爱| 亚洲精品国产av成人精品| 欧美日本亚洲视频在线播放| av在线老鸭窝| 一夜夜www| 我的老师免费观看完整版| 超碰97精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 内射极品少妇av片p| 最近手机中文字幕大全| 国产精品无大码| 国产日韩欧美在线精品| av在线播放精品| 一区二区三区高清视频在线| 九九爱精品视频在线观看| 久久久精品94久久精品| 一个人看的www免费观看视频| 狂野欧美白嫩少妇大欣赏| 午夜a级毛片| 波多野结衣巨乳人妻| av国产久精品久网站免费入址| 2022亚洲国产成人精品| av在线老鸭窝| 国产黄片视频在线免费观看| 麻豆久久精品国产亚洲av| 亚洲精品456在线播放app| 亚洲av免费在线观看| 免费看光身美女| 国产精品嫩草影院av在线观看| 精品久久久久久久久亚洲| 日韩一区二区视频免费看| 亚洲五月天丁香| 男人舔奶头视频| 亚洲国产精品国产精品| 中文字幕熟女人妻在线| 精品熟女少妇av免费看| 欧美成人免费av一区二区三区| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 国产69精品久久久久777片| 精品午夜福利在线看| 免费看光身美女| 熟女人妻精品中文字幕| 99热网站在线观看| 日韩成人伦理影院| 禁无遮挡网站| av免费观看日本| 成人午夜精彩视频在线观看| 日韩高清综合在线| 日本色播在线视频| 啦啦啦韩国在线观看视频| 精品久久久久久久末码| 亚洲精品久久久久久婷婷小说 | 男女下面进入的视频免费午夜| 看黄色毛片网站| 一级毛片我不卡| 国产精品福利在线免费观看| 国产精品麻豆人妻色哟哟久久 | 国产精品永久免费网站| 狂野欧美激情性xxxx在线观看| 精品不卡国产一区二区三区| 午夜激情福利司机影院| 亚洲精品色激情综合| 色综合色国产| 少妇人妻精品综合一区二区| 99热网站在线观看| 免费看光身美女| 久久精品夜色国产| 日韩三级伦理在线观看| 看免费成人av毛片| 国产美女午夜福利| 美女黄网站色视频| 精品酒店卫生间| 建设人人有责人人尽责人人享有的 | 亚洲五月天丁香| 日韩欧美精品v在线| 青春草视频在线免费观看| 国产精品久久视频播放| 亚洲国产精品sss在线观看| 成人午夜精彩视频在线观看| 亚洲欧美清纯卡通| 精华霜和精华液先用哪个| 国产成人午夜福利电影在线观看|