朱佩佩,秦浩翔,張劍俠
無(wú)核葡萄胚珠發(fā)育過(guò)程中內(nèi)源激素及多胺含量的變化
朱佩佩,秦浩翔,張劍俠
西北農(nóng)林科技大學(xué)園藝學(xué)院/旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室/農(nóng)業(yè)農(nóng)村部西北地區(qū)園藝作物生物與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100
【目的】探究無(wú)核葡萄胚珠發(fā)育過(guò)程中內(nèi)源激素和多胺含量變化對(duì)胚發(fā)育的影響,為花前噴灑外源激素及胚珠離體培養(yǎng)條件下培養(yǎng)基中添加外源激素以促進(jìn)胚的發(fā)育提供理論依據(jù)。【方法】以歐亞種葡萄(L.)有核品種‘京秀’及其F1代種子敗育型無(wú)核品種‘秦秀’為材料,采用高效液相色譜質(zhì)譜(high performance liquid chromatography mass spectrometry,HPLCMS)和超高效液相色譜(ultra performance liquid chromatography,UPLC)分析方法,比較二者在果實(shí)不同發(fā)育時(shí)期胚珠中內(nèi)源激素和多胺含量的變化規(guī)律。【結(jié)果】對(duì)于生長(zhǎng)素(IAA)、玉米素(ZT)、玉米素核苷(ZR)和N6-異戊烯腺嘌呤(iPAS)含量,‘京秀’在花后39 d達(dá)到最高值,‘秦秀’在花后42 d達(dá)到最高值,但前者最高值均高于后者(1.5倍以上);對(duì)于茉莉酸(JA)和水楊酸(SA)含量,‘京秀’在花后36 d(2 000 ng?g-1和6 500 ng?g-1)開(kāi)始急劇上升,至花后39 d 時(shí)均達(dá)到最高值(6 500 ng?g-1和10 000 ng?g-1),之后下降并在花后42—45 d維持在較高水平,而‘秦秀’自花后36 d(3 500 ng?g-1和3 000 ng?g-1)開(kāi)始一直下降并處于較低的水平;對(duì)于氨基環(huán)丙烷羧酸(ACC)含量,‘京秀’在花后39 d時(shí)幾乎為0,然后迅速上升,在花后45 d時(shí)達(dá)到最高值(1 200 ng?g-1),而‘秦秀’在花后39 d時(shí)達(dá)到最高值(900 ng?g-1),之后下降至花后42 d時(shí)幾乎為0,并一直維持在極低的水平;對(duì)于脫落酸(ABA)含量,‘京秀’在花后36—45 d一直處于幾乎為0的水平,而‘秦秀’自花后39 d從0開(kāi)始急速上升到42 d的最高值(900 ng?g-1);對(duì)于腐胺(Put)、精胺(Spm)和亞精胺(Spd)含量,2個(gè)品種變化趨勢(shì)相似,但‘京秀’一直高于‘秦秀’,除精胺最高值均出現(xiàn)在花后42 d外,腐胺和亞精胺最高值在‘京秀’中為花后42 d,‘秦秀’為39 d?!窘Y(jié)論】與有核品種‘京秀’相比,無(wú)核品種‘秦秀’胚珠中生長(zhǎng)促進(jìn)物質(zhì)(IAA、CTK、GA3、ACC、JA、SA、Put、Spd和Spm)含量較低,而生長(zhǎng)抑制物質(zhì)(ABA)含量較高,(IAA+GA3)/ABA、(IAA+ZT+GA3)/ABA、Spm/多胺(PAs)、(Spd+Spm)/PAs和(Spd+Spm)/Put的比值較低,可能是導(dǎo)致其胚敗育的主要原因之一。因此,在無(wú)核葡萄胚挽救過(guò)程中,可通過(guò)花前噴灑或者培養(yǎng)基中添加一定濃度的生長(zhǎng)促進(jìn)物質(zhì)來(lái)抑制胚的敗育。
種子敗育型無(wú)核葡萄;胚珠;胚;內(nèi)源激素;多胺
【研究意義】在果實(shí)的生長(zhǎng)發(fā)育過(guò)程中,歐亞種葡萄(L.)有核品種和無(wú)核品種的種子(胚珠)發(fā)育程度存在很大差異[1]。無(wú)核葡萄胚敗育主要由基因型決定[2],還與胚珠中內(nèi)源激素[3-6]以及樹(shù)體營(yíng)養(yǎng)狀況[7]有關(guān)。通過(guò)研究無(wú)核葡萄內(nèi)源激素及多胺含量的變化,可為花前噴灑外源激素及胚珠離體培養(yǎng)下培養(yǎng)基中添加外源激素以促進(jìn)胚的發(fā)育提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】葡萄胚的發(fā)育和敗育過(guò)程由多種植物激素共同調(diào)控,其中能夠誘導(dǎo)單性結(jié)實(shí)的激素主要有生長(zhǎng)素(indolyl-3-acetic acid,IAA)和赤霉素(gibberellic acid,GA3)[1,8]。內(nèi)源IAA和GA3在無(wú)核葡萄中的含量高于有核葡萄,推測(cè)內(nèi)源激素含量變化可能是導(dǎo)致胚敗育的原因之一[3]。有研究表明,由于某種內(nèi)源激素的含量或者不同內(nèi)源激素之間的比值如(赤霉素+生長(zhǎng)素)/脫落酸和玉米素核苷/脫落酸發(fā)生了變化導(dǎo)致無(wú)核葡萄胚敗育[5]。不同發(fā)育階段的種子對(duì)外源激素種類(lèi)及水平要求也不同,外源激素的種類(lèi)或濃度使用不當(dāng),會(huì)影響果實(shí)及種子中的激素含量,致使激素失衡,影響胚正常發(fā)育,最終導(dǎo)致敗育,胚珠鮮重減少[4,9]。在已知的植物內(nèi)源激素中,生長(zhǎng)素主要在幼嫩的芽、葉和發(fā)育的種子中合成,除對(duì)植物的早期發(fā)育和形態(tài)建成具有重要作用外,還影響胚珠和胚的發(fā)育[10-13]。細(xì)胞分裂素(cytokinin,CTK)主要在根尖部位合成,在調(diào)控植物生長(zhǎng)發(fā)育的過(guò)程中起關(guān)鍵作用,其中包括促進(jìn)胚的發(fā)育[10,14]。植物體內(nèi)的細(xì)胞分裂素主要有玉米素(trans-zeatin,ZT)、二氫玉米素(dihydrozeatin,DHZ)、N6-異戊烯腺嘌呤(iPAS)和玉米素核苷(trans-zeatin- riboside,ZR)等[15]。有研究表明,在花前噴灑外源細(xì)胞分裂素CPPU[16]、6-BA[17]、TDZ[18]均可促進(jìn)無(wú)核葡萄胚發(fā)育。赤霉素在未成熟的種子、根尖和頂芽等部位合成,可有效打破種子休眠,促進(jìn)胚發(fā)育和種子萌發(fā)以及細(xì)胞伸長(zhǎng)[19]。研究表明,外源GA3一方面可使植物中蘋(píng)果酸脫氫酶活性下降,導(dǎo)致植物呼吸作用減弱,能量供應(yīng)不足,影響胚囊發(fā)育;另一方面促進(jìn)珠心和子房壁的生長(zhǎng)發(fā)育,使胚囊發(fā)育尚未成熟時(shí)就開(kāi)花,從而影響授粉受精,形成無(wú)核果實(shí)[20-22]。葡萄果實(shí)經(jīng)外源GA3處理后,差異表達(dá)基因主要集中在激素平衡調(diào)節(jié)、細(xì)胞凋亡、種皮發(fā)育、胚乳發(fā)育及胚珠發(fā)育等方面[20]。乙烯(ethylene,ETH)可在植物的各個(gè)部位合成,可促進(jìn)胚和果實(shí)成熟及葉片衰老,打破植物種子和芽的休眠等[23-24]。氨基環(huán)丙烷羧酸(1-aminocyclopropane-1- carboxylic acid,ACC)是ETH合成的直接前體,通常誘導(dǎo)ETH響應(yīng),但在擬南芥()的生殖過(guò)程中,胚珠中的ACC作為非依賴(lài)ETH的信號(hào),參與了花粉管的轉(zhuǎn)動(dòng)并有效地傳遞花粉,在ACC的存在下,種子數(shù)量幾乎翻了一番[25]。茉莉酸(jasmonic acid,JA)與茉莉酸甲酯(methyl jasmonate,Me-JA)在調(diào)節(jié)植物生長(zhǎng)發(fā)育、抗逆反應(yīng)等方面起著重要的作用,可抑制非休眠種子的萌發(fā)但刺激休眠種子的萌發(fā)[26]。水楊酸(salicylicacid,SA)作為植物體內(nèi)一種高效的抗氧化激素,參與調(diào)節(jié)氣孔開(kāi)放,促進(jìn)開(kāi)花結(jié)果并激活植物超敏反應(yīng)[27]。SA生物合成相關(guān)基因和在歐亞種無(wú)核葡萄‘無(wú)核白’中的表達(dá)水平顯著高于有核葡萄‘黑比諾’[28],暗示著無(wú)核葡萄胚敗育可能與SA含量高有關(guān)。脫落酸(abscisic acid,ABA)主要在根冠和萎蔫的葉片中合成,可促使胚正常發(fā)育成熟并抑制過(guò)早萌發(fā),但外源ABA施用濃度過(guò)高不利于胚的進(jìn)一步發(fā)育[10,29]。多胺(PAs)是一類(lèi)廣泛存在于植物體內(nèi)的脂肪族含氮堿,參與植物細(xì)胞增殖與分化,與胚胎發(fā)育、程序性死亡、休眠以及衰老等生命活動(dòng)密切相關(guān)[30-33]。前人研究表明果皮及胚珠中內(nèi)源多胺含量急劇下降可能是導(dǎo)致葡萄胚敗育的原因之一[6,34]。近年來(lái),對(duì)杏[35]和玉米[36]種子發(fā)育過(guò)程中內(nèi)源多胺的動(dòng)態(tài)變化研究也獲得了相同的結(jié)果。無(wú)核葡萄是葡萄育種的重要目標(biāo)之一。常規(guī)的無(wú)核葡萄雜交育種周期長(zhǎng),效率低。胚挽救技術(shù)以無(wú)核葡萄作母本,能極大提高無(wú)核葡萄的育種效率,因而被廣泛用于無(wú)核葡萄育種[37-39]。由于目前對(duì)無(wú)核葡萄胚敗育的機(jī)理尚不十分清楚,致使無(wú)核葡萄胚挽救的效率仍然較低。無(wú)核葡萄胚敗育除了受基因控制外,還受營(yíng)養(yǎng)狀況及內(nèi)源激素的影響[38]。前人研究表明,內(nèi)源激素和多胺含量是影響克里曼丁橘[40]、杧果[33]、棗[41]、山茱萸[42]和甜櫻桃[43]胚敗育的重要因素之一?;ㄇ皣娛┗蚺囵B(yǎng)基中添加一定濃度的IBA、CPPU、6-BA、TDZ、腐胺或PP333均能促進(jìn)種子敗育型無(wú)核葡萄胚珠和胚的發(fā)育[16-18,30,39,44],從而提高胚挽救效率。但是,目前對(duì)種子敗育型無(wú)核葡萄胚珠發(fā)育過(guò)程中內(nèi)源激素的變化規(guī)律尚不完全清楚,探究這一變化規(guī)律對(duì)于花前噴施或培養(yǎng)基中添加何種外源激素、不同激素濃度及其比例以提高胚挽救效率十分重要?!颈狙芯壳腥朦c(diǎn)】前人對(duì)無(wú)核葡萄漿果或胚珠中的IAA、GA3、ABA和ZR含量變化已有報(bào)道[1,3,5],但所測(cè)定的內(nèi)源激素種類(lèi)有限,且不同基因型的無(wú)核葡萄內(nèi)源激素變化進(jìn)程存在差異?!緮M解決的關(guān)鍵問(wèn)題】本研究以種子敗育型無(wú)核葡萄新品種‘秦秀’(‘京秀’ב鄭果大無(wú)核’)為研究對(duì)象,以其有核母本‘京秀’為對(duì)照,測(cè)定二者在胚發(fā)育過(guò)程中胚珠內(nèi)源激素及多胺含量的變化,探討內(nèi)源激素和多胺對(duì)種子敗育型無(wú)核葡萄胚發(fā)育的影響。
試驗(yàn)于2022年在西北農(nóng)林科技大學(xué)進(jìn)行。
供試材料為有核葡萄品種‘京秀’[‘潘諾尼亞’×60-33(‘玫瑰香’ב紅無(wú)籽露’)]及其F1代無(wú)核品種‘秦秀’(‘京秀’ב鄭果大無(wú)核’),兩個(gè)品種均為歐亞種二倍體早熟鮮食品種,開(kāi)花期和果實(shí)成熟期基本一致,種植保存于西北農(nóng)林科技大學(xué)葡萄種質(zhì)資源圃,均為10年生以上大樹(shù),株行距1.0 m×2.5 m,采用單臂籬架和“T”字形整形,栽培管理同生產(chǎn)園。2022年6—8月采集2個(gè)品種不同時(shí)間點(diǎn)的幼果,在旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室測(cè)定胚珠中內(nèi)源激素及多胺的含量。
1.2.1 分期取樣 根據(jù)前期的研究結(jié)果,‘秦秀’的胚挽救最佳取樣時(shí)期為花后(days after flowering,DAF)42 d[45],即胚發(fā)育程度最高但將要敗育的拐點(diǎn),以此為參考依據(jù),對(duì)‘秦秀’及其母本‘京秀’分別在花后36、39、42、45和48 d共5個(gè)時(shí)間點(diǎn)分別采集幼果,均在清晨7:30—8:00進(jìn)行。不同取樣時(shí)期采集的果實(shí)貯于冰壺中,迅速帶回實(shí)驗(yàn)室檢測(cè)各項(xiàng)指標(biāo)。
1.2.2 果粒大小及重量測(cè)定 取樣后,隨機(jī)選取同一品種同一時(shí)期150個(gè)果粒稱(chēng)取重量,之后進(jìn)行果粒大小的測(cè)定。按照前人[46]的方法,將果粒的縱徑和橫徑用數(shù)顯游標(biāo)卡尺測(cè)出,記錄果粒大?。v徑×橫徑)并進(jìn)行計(jì)算,包括3次生物學(xué)重復(fù)。
1.2.3 胚珠大小及重量的測(cè)定 隨機(jī)選取同一品種同一時(shí)期50個(gè)果粒,對(duì)果粒小心橫切,觀察胚珠在子房中的分布及數(shù)量,之后迅速剝離胚珠進(jìn)行稱(chēng)重,計(jì)算單個(gè)胚珠重量(鮮重),再使用數(shù)顯游標(biāo)卡尺測(cè)量胚珠的縱橫徑,計(jì)算胚珠大?。v徑×橫徑)并記錄,進(jìn)行3次生物學(xué)重復(fù)。之后隨機(jī)選取10個(gè)胚珠進(jìn)行稱(chēng)重并記錄,裝入預(yù)冷的2 mL棕色無(wú)酶離心管中,加入等質(zhì)量的無(wú)菌鋼珠,立即放入液氮中速凍,置于-80 ℃超低溫冰箱中保存?zhèn)溆谩?/p>
1.2.4 胚珠內(nèi)源激素含量的測(cè)定 植物激素的測(cè)定采用安捷倫三重四級(jí)桿高效液相色質(zhì)聯(lián)用儀(Agilent 1290 InfinityⅡ-6470,美國(guó)),IAA和CTK的提取方法參照XUE等[47],GA3的提取方法參照范建新等[48],ACC的提取方法參照MENCARELLI等[49],JA的提取方法參照WANG等[50],SA的提取方法參照YALPANI等[51],其中取胚珠材料重量0.7—1.0 g用于測(cè)定。
1.2.5 胚珠內(nèi)源多胺含量的測(cè)定 植物多胺的測(cè)定使用安捷倫超高效液相色譜儀(Agilent 1290 Infinity-HDR-DAD,美國(guó)),參照FLORES和GALSTON[52]的方法,稍作修改,胚珠重量為0.7—1.0 g,4 ℃冰箱浸提1 h后取上清1 mL,添加1 mL 2 mol?L-1NaOH溶液與10 μL苯甲酰氯,加入2 mL飽和NaCl和2 mL乙醚,于室溫下6 000 r/min離心5 min;取1 mL上清液于10 mL離心管中,放入氮吹儀進(jìn)行濃縮,然后加入1 mL乙醚并重復(fù)一次;隨后溶于500 μL 60%甲醇,進(jìn)行0.22 μm有機(jī)濾膜過(guò)濾,于棕色容量瓶中定容,以進(jìn)一步測(cè)試。
組織樣品中各激素及多胺的定量分析采用標(biāo)準(zhǔn)曲線(xiàn)法,定性分析采用外標(biāo)法。植物激素和多胺的標(biāo)樣購(gòu)于上海源葉生物科技有限公司。
1.2.6 數(shù)據(jù)統(tǒng)計(jì)與分析 利用IBM SPSS Statistics 22.0軟件中的單因素方差A(yù)NOVA(one-way ANOVA)和檢驗(yàn)進(jìn)行試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)與分析,數(shù)據(jù)表示為平均值(Mean)±標(biāo)準(zhǔn)誤(SE)。激素及多胺含量測(cè)定數(shù)據(jù)的顯著性分析采用Duncan’s法(<0.05)。‘京秀’與‘秦秀’成熟果實(shí)單粒重、單粒果實(shí)所含胚珠數(shù)及單粒胚珠重的差異性分析均采用檢驗(yàn)(***<0.001)。
‘京秀’平均單粒重為3.57 g,胚珠眾數(shù)為3個(gè),‘秦秀’平均單粒重2.79 g,平均胚珠眾數(shù)為2個(gè),‘京秀’的平均單粒重和胚珠眾數(shù)均顯著高于‘秦秀’。‘京秀’平均胚珠重為60.31 mg,多為褐色且存在木質(zhì)化,‘秦秀’平均胚珠重為24.80 mg,按照MAHANIL等[53]對(duì)無(wú)核葡萄的分類(lèi)方法,‘京秀’屬于有核品種,‘秦秀’屬于無(wú)核品種(圖1)。
兩個(gè)品種的果粒大小和重量在生長(zhǎng)發(fā)育過(guò)程中持續(xù)增加,花后48 d達(dá)到最大值,且‘京秀’的果粒大小與單粒重顯著高于‘秦秀’(圖2-A、B)。‘京秀’胚珠大小和重量在花后36—48 d持續(xù)增加,‘秦秀’胚珠大小和重量在花后42—45 d極緩慢增加,45 d時(shí)達(dá)到高峰,45 d后快速下降(圖2-C、D),表明‘秦秀’胚此時(shí)開(kāi)始敗育。
***: P<0.001
‘京秀’在花后36—39 d 的IAA含量急劇升高,于39 d達(dá)到頂點(diǎn),42 d時(shí)下降到最低點(diǎn),然后緩慢增加;‘秦秀’在花后39 d降到最低點(diǎn),然后在花后42 d時(shí)迅速升高至最高點(diǎn),之后急速下降后趨于平穩(wěn)(圖3-A)。
‘京秀’中ZT、ZR和iPAS含量在花后36—39 d急劇升高至頂點(diǎn),39—42 d均顯著降低。其中,ZT和ZR含量在花后42 d后趨于平穩(wěn),而iPAS含量在花后48 d時(shí)顯著高于花后42 d(圖3-B—D);‘秦秀’中ZR和iPAS含量則是在花后36 d之后下降,花后42 d時(shí)顯著升高,之后顯著下降后趨于平穩(wěn)(圖3-C、D)。說(shuō)明花后39 d時(shí)較高含量的iPAS有利于胚珠進(jìn)一步發(fā)育。而對(duì)于ZT含量變化,‘秦秀’在花后36 d下降至花后39 d,但差異不顯著,花后42 d時(shí)顯著升高,之后顯著下降后趨于平穩(wěn)(圖3-B)。表明有核品種‘京秀’在花后39 d時(shí)細(xì)胞分裂素含量最高,無(wú)核品種‘秦秀’在花后42 d時(shí)細(xì)胞分裂素含量最高。
不同小寫(xiě)字母表示差異顯著(P<0.05)。下同Different lowercase letters indicate significant difference (P<0.05 level). The same as below
與IAA相似,GA3在生長(zhǎng)旺盛的組織中含量較高?!┬恪诨ê?6—39 d的含量顯著升高,之后顯著下降后略有升高;‘秦秀’在花后36 d時(shí)GA3含量最高,之后顯著降低,花后39—45 d表現(xiàn)為先升高再降低,之后趨于平穩(wěn)(圖3-E)。
ACC為乙烯生物合成的前體,‘京秀’在花后36—39 d時(shí)ACC含量無(wú)顯著變化,花后39—45 d時(shí)顯著升高到最高點(diǎn),之后顯著降低;‘秦秀’在花后36—39 d時(shí),ACC含量顯著升高到最高點(diǎn),花后39—42 d時(shí)顯著降低,之后趨于平穩(wěn)。表明花后39 d之后較高的ACC含量對(duì)胚珠的生長(zhǎng)發(fā)育有利(圖3-F)。
‘京秀’在花后36—39 d時(shí)JA含量顯著升高,花后39—45 d先降低再升高,之后顯著降低;‘秦秀’在花后36—45 d一直降低,45—48 d時(shí)顯著升高。說(shuō)明花后39—45 d期間較高含量的JA有利于胚珠的進(jìn)一步發(fā)育(圖3-G)。
‘京秀’在花后36—39 d時(shí)SA含量顯著升高,再顯著降低至花后42 d,之后顯著升高并趨于平穩(wěn);‘秦秀’在花后36—39 d降低,45—48 d時(shí)升高,且差異顯著。此外,在相同的取樣時(shí)期,‘京秀’的SA含量均顯著高于‘秦秀’,說(shuō)明較高含量的SA對(duì)胚珠的進(jìn)一步發(fā)育具有促進(jìn)作用(圖3-H)。
‘京秀’在花后36—45 d的ABA含量保持相對(duì)穩(wěn)定,而‘秦秀’在花后36–39 d顯著降低,39—42 d時(shí)迅速上升并于42 d達(dá)到最高點(diǎn),顯著高于‘京秀’,花后42—45 d又迅速下降。在花后45 d之后,兩個(gè)品種ABA含量均有所升高(圖3-I)。
‘京秀’在花后36—39 d時(shí)(IAA+GA3)/ABA顯著升高,之后逐漸降低,且差異顯著;‘秦秀’在整個(gè)發(fā)育過(guò)程中無(wú)顯著變化。說(shuō)明在花后36—42 d時(shí)較高的(IAA+GA3)/ABA比例有利于胚珠的進(jìn)一步發(fā)育(圖4-A)?!┬恪诨ê?6—39 d時(shí)(IAA+ZT+GA3)/ABA顯著升高,之后逐漸降低,且差異顯著;‘秦秀’在整個(gè)發(fā)育過(guò)程中無(wú)顯著變化。說(shuō)明在花后36—42 d時(shí)較高的(IAA+ZT+GA3)/ABA比例有利于胚珠發(fā)育(圖4-B)。
圖3‘京秀’與‘秦秀’不同發(fā)育時(shí)期胚珠激素含量變化
圖4 ‘京秀’與‘秦秀’不同發(fā)育時(shí)期胚珠激素比值變化
2.4.1 內(nèi)源多胺含量 對(duì)于腐胺(Put),‘京秀’與‘秦秀’均呈現(xiàn)先升高后降低的變化趨勢(shì),但二者之間差異顯著。兩個(gè)品種分別在花后42 d和39 d 到達(dá)頂峰,隨后大幅度降低(圖5-A)。兩個(gè)品種精胺(Spm)均呈現(xiàn)先升高后降低的變化趨勢(shì),且差異顯著,均在花后 42 d時(shí)到達(dá)頂峰(圖5-B)。亞精胺(Spd)在‘京秀’與‘秦秀’均呈現(xiàn)先升高后降低的變化趨勢(shì),且差異顯著,分別在花后 42 d和 39 d時(shí)達(dá)到頂峰(圖5-C)。‘京秀’與‘秦秀’的多胺(PAs)含量均呈現(xiàn)先升高后降低的變化趨勢(shì),分別在花后 42 d和 39 d達(dá)到頂峰,且差異顯著(圖5-D)。說(shuō)明較高水平的胚珠內(nèi)源腐胺、精胺、亞精胺及多胺含量有利于胚珠的進(jìn)一步生長(zhǎng)發(fā)育。
圖5 ‘京秀’與‘秦秀’不同發(fā)育時(shí)期胚珠多胺含量變化
2.4.2 內(nèi)源多胺比例 對(duì)于Spm/PAs,‘京秀’處于一直上升的趨勢(shì),而‘秦秀’在花后36—39 d先迅速下降,再在花后42 d時(shí)達(dá)到峰值且顯著高于‘京秀’,之后又開(kāi)始下降(圖6-A)。對(duì)于(Spd+Spm)/PAs和(Spd+Spm)/Put,‘京秀’均處于一直上升的趨勢(shì),而‘秦秀’在花后36—39 d先迅速下降,然后上升至花后42 d時(shí)達(dá)到峰值,之后又開(kāi)始下降,且在花后45 d以后,‘京秀’的多胺比例均顯著高于‘秦秀’(圖6-B、C)?;ê?5 d以后較高的Spm/PAs、(Spd+Spm)/PAs和(Spd+Spm)/Put比例有利于胚的進(jìn)一步生長(zhǎng)發(fā)育,而比例的迅速降低會(huì)導(dǎo)致胚的敗育。
種子敗育型無(wú)核葡萄的胚珠由珠被、珠心、珠孔、珠柄組成,珠心主要包括胚乳和胚[2,54]。葡萄開(kāi)花后完成授粉受精形成受精卵,種子敗育型無(wú)核葡萄胚的早期發(fā)育與有核葡萄胚的發(fā)育基本相似,在受精后15—20 d 開(kāi)始分裂[54]。對(duì)于完成授粉受精的果實(shí),一部分無(wú)核葡萄品種在花后15 d 左右,胚珠中胚乳核不分裂而逐漸退化,引起胚乳退化最終導(dǎo)致胚敗育;一部分是在花后30 d左右,珠心組織不發(fā)達(dá),珠被細(xì)胞逐漸解體退化最終導(dǎo)致胚敗育[54]。不同的無(wú)核葡萄品種,其胚珠和胚敗育的時(shí)間、速度和敗育程度不同,且同一葡萄品種中胚珠和胚的發(fā)育與敗育并非同步[17]。本研究中,有核葡萄‘京秀’胚珠大小及重量不斷升高后趨于穩(wěn)定,而無(wú)核葡萄‘秦秀’在花后45 d開(kāi)始下降,即胚珠開(kāi)始敗育。
圖6 ‘京秀’與‘秦秀’不同發(fā)育時(shí)期胚珠多胺比值變化
胚珠內(nèi)源激素含量的變化與胚珠及胚的生長(zhǎng)發(fā)育密切相關(guān),且不同發(fā)育時(shí)期胚珠內(nèi)源激素含量及各激素間的比例不同[5,10-13]。CHEN等[10]認(rèn)為,在正常胚珠中,IAA、GA和ABA濃度在荔枝品種‘蘭珠’開(kāi)花后第7天達(dá)到峰值,隨后下降,而IAA和GA濃度在球形胚到魚(yú)雷形胚期間再次升高,CTK在球形期之前達(dá)到峰值。在敗育胚珠中,ABA始終保持較高濃度,IAA和GA下降至最低水平,CTK在敗育胚珠中低于正常胚珠。本研究中,有核葡萄品種‘京秀’和無(wú)核葡萄品種‘秦秀’胚珠大部分激素在36—42 d時(shí)變化劇烈,特別是36—39 d,有核品種‘京秀’中IAA、ZT、ZR和iPAS急劇升高,GA3緩慢升高,且除了GA3外,其他激素在花后36—39 d時(shí)一直高于‘秦秀’;而無(wú)核品種‘秦秀’胚珠中IAA、ZT、ZR、iPAS和GA3在花后36—39 d下降,ABA含量在39—42 d急劇升高,之后又急劇下降,而ACC具有相似變化趨勢(shì),說(shuō)明36—39 d是胚發(fā)育對(duì)生長(zhǎng)素和細(xì)胞分裂素需求的關(guān)鍵時(shí)期,二者高含量促進(jìn)胚發(fā)育,ABA和ACC維持在較低水平有利于胚發(fā)育。此外,花后39—42 d,‘秦秀’胚珠中ABA和GA3含量急速升高而JA和ACC含量降低,可能也是促進(jìn)胚敗育的重要因素。ROYO等[55]認(rèn)為SA對(duì)促進(jìn)‘克瑞森無(wú)核’F1代種子敗育具有潛在作用,但本研究中,‘京秀’的SA含量始終高于‘秦秀’,而‘秦秀’的SA含量無(wú)顯著變化,這與ROYO等[55]的結(jié)果不一致。
此外,前人研究發(fā)現(xiàn)植物激素間的比例和平衡關(guān)系對(duì)胚敗育的發(fā)生比單一激素更為重要[5]。LI等[5]對(duì)‘無(wú)核白’葡萄內(nèi)源激素含量的兩個(gè)比值(IAA+GA3)/ABA和ZR/ABA進(jìn)行測(cè)定,發(fā)現(xiàn)在36 DAF后顯著降低。經(jīng)過(guò)石蠟切片進(jìn)行細(xì)胞學(xué)觀察后發(fā)現(xiàn),37—42 DAF胚珠中很少或沒(méi)有胚胎,推測(cè)這兩種激素比例的降低對(duì)胚敗育具有一定影響。本研究結(jié)果表明,無(wú)核葡萄‘秦秀’的(IAA+GA3)/ABA和(IAA+ZT+GA3)/ABA比值在相同取樣時(shí)期均低于有核葡萄‘京秀’,說(shuō)明生長(zhǎng)類(lèi)激素含量相對(duì)于抑制類(lèi)激素的比率下降,破壞了激素平衡,從而導(dǎo)致胚敗育,這與前人研究結(jié)果一致[5,56-57]。此外,筆者課題組前期分別在‘秦秀’花后36、38、40、42、44和46 d取樣進(jìn)行胚挽救,調(diào)查胚的發(fā)育率、萌發(fā)率和成苗率,發(fā)現(xiàn)‘秦秀’的最佳胚挽救取樣時(shí)間為42 DAF[45]。本研究中,‘秦秀’的(IAA+GA3)/ABA和(IAA+ZT+GA3)/ABA比值在42 DAF均顯著降低,預(yù)示著胚敗育的開(kāi)始,這與前期對(duì)‘秦秀’胚挽救確定的最佳取樣時(shí)間相吻合。
多胺含量隨子房發(fā)育而變化,不同品種的變化趨勢(shì)不同[35]。潘學(xué)軍等[6]研究認(rèn)為,歐亞種葡萄品種的胚珠重量與內(nèi)源PAs、Spd和Spm極顯著正相關(guān),歐美雜種的胚珠重量與Spm顯著正相關(guān)?!t寶石無(wú)核’的(Spd+Spm)/PAs和Spm/PAs比值表現(xiàn)為下降趨勢(shì),‘火星無(wú)核’表現(xiàn)為先升后降,而有核對(duì)照均呈上升趨勢(shì)。胚珠內(nèi)較低的多胺含量及其胚胎發(fā)育過(guò)程中多胺含量的大幅度下降是導(dǎo)致種子敗育型葡萄胚敗育的主要因素[6]。本研究中,有核品種‘京秀’胚珠中的Spm/PAs、(Spd+Spm)/PAs和(Spd+Spm)/Put比值均顯著升高,而無(wú)核品種‘秦秀’胚珠中的兩種比值在花后42 d時(shí)顯著降低,預(yù)示著胚敗育的開(kāi)始。
在無(wú)核葡萄胚挽救過(guò)程中,PONCE等[30]認(rèn)為花前噴施腐胺可提高‘Emperatriz’和‘Fantasy’的胚挽救成苗率。TANG等[58]發(fā)現(xiàn)花前14 d噴施20 mg·L-1腐胺可促進(jìn)無(wú)核葡萄胚發(fā)育。EBADI等[59]采用花前施用0.34 mmol?L-1腐胺,在NN培養(yǎng)基中添加1.0 mmol?L-1精胺、0.5 mmol?L-1亞精胺或1.0 mmol?L-1腐胺均能提高無(wú)核葡萄胚發(fā)育率和萌發(fā)率。JIAO等[60]認(rèn)為,添加3 mmol?L-1腐胺、0.5 mmol?L-1亞精胺或0.3 mmol?L-1精胺可顯著提高‘紅寶石無(wú)核’ב紫香無(wú)核’和‘紅寶石無(wú)核?’ב火焰無(wú)核’的胚胎發(fā)育率和萌發(fā)率。這些研究結(jié)果均說(shuō)明外源多胺在胚的發(fā)育過(guò)程中起重要作用。
無(wú)核葡萄‘秦秀’胚珠中低含量的生長(zhǎng)促進(jìn)物質(zhì)(IAA、GA3、CTK、ACC、SA、JA、Put、Spd和Spm)、高含量的生長(zhǎng)抑制物質(zhì)(ABA)及較低的(IAA+GA3)/ABA、(IAA+ZT+GA3)/ABA、Spm/PAs、(Spd+Spm)/PAs和(Spd+Spm)/Put比值是導(dǎo)致其胚敗育的主要原因之一。因此,在無(wú)核葡萄胚挽救過(guò)程中,可通過(guò)花前噴灑或者在培養(yǎng)基中添加一定濃度的生長(zhǎng)促進(jìn)物質(zhì)來(lái)抑制胚的敗育。
[1] COOMBE B G. Relationship of growth and development to changes in sugars, auxins, and gibberellins in fruit of seeded and seedless varieties of. Plant Physiology, 1960, 35(2): 241-250.
[2] 劉巧, 張立華, 王躍進(jìn), 張劍俠. 兩個(gè)無(wú)核葡萄品種胚及胚乳敗育的細(xì)胞學(xué)研究. 北方園藝, 2016(3): 31-35.
LIU Q, ZHANG L H, WANG Y J, ZHANG J X. Cytological study of embryo and endosperm abortion in two seedless grape varieties. Northern Horticulture, 2016(3): 31-35. (in Chinese)
[3] BAYDAR N G, HARMANKAYA N. Changes in endogenous hormone levels during the ripening of grape cultivars having different berry set mechanisms. Turkish Journal of Agriculture and Forestry, 2005, 29(3): 205-210.
[4] 陶建敏, 莊智敏, 章鎮(zhèn), 邵宏干, 蔡斌華. 幾種生長(zhǎng)調(diào)節(jié)劑對(duì)火星無(wú)核葡萄種子形成的影響. 果樹(shù)學(xué)報(bào), 2006, 23(4): 534-537.
TAO J M, ZHUANG Z M, ZHANG Z, SHAO H G, CAI B H. Effects of auxins and cytokinins on seed trace development of stenospermic grape cultivar Mars. Journal of Fruit Science, 2006, 23(4): 534-537. (in Chinese)
[5] LI S S, LIU K K, YU S S, JIA S S, CHEN S, FU Y H, SUN F, LUO Q W, WANG Y J. The process of embryo abortion of stenospermocarpic grape and it develops into plantletusing embryo rescue. Plant Cell, Tissue and Organ Culture, 2020, 143(2): 389-409.
[6] 潘學(xué)軍, 李順雨, 張文娥, 劉崇懷. 種子敗育型葡萄胚珠中內(nèi)源多胺含量與胚珠發(fā)育及敗育的關(guān)系. 果樹(shù)學(xué)報(bào), 2011, 28(5): 770-775.
PAN X J, LI S Y, ZHANG W E, LIU C H. Endogenous polyamines in stenospermocarpic grape ovules and their relationship with ovule development and abortion. Journal of Fruit Science, 2011, 28(5): 770-775. (in Chinese)
[7] 賀普超. 葡萄學(xué). 北京: 中國(guó)農(nóng)業(yè)出版社, 1999: 244-247, 255.
HE P C. Viticulture. Beijing: China Agriculture Press, 1999: 244-247, 255. (in Chinese)
[8] GUSTAFSON F G. The cause of natural parthenocarpy. American Journal of Botany, 1939, 26(3): 135-138.
[9] DO AMARAL A L, DE OLIVEIRA P R D, CZERAINSKI A B C, CAMARGO U A. Embryo growth stages on plant obtention from crosses between seedless grape parents. Revista Brasileira de Fruticultura, 2001, 23: 647-651.
[10] CHEN W, LU L X. Endogenous hormones in relation to embryo development in litchi. Acta Horticulturae, 2001, 558: 247-250.
[11] QUITTENDEN L J, DAVIES N W, SMITH J A, MOLESWORTH P P, TIVENDALE N D, ROSS J J. Auxin biosynthesis in pea: Characterization of the tryptamine pathway. Plant Physiology, 2009, 151(3): 1130-1138.
[12] CHEN D, DENG Y T, ZHAO J. Distribution and change patterns of free IAA, ABP 1 and PM H+-ATPase during ovary and ovule development ofL. Journal of Plant Physiology, 2012, 169(2): 127-136.
[13] HOSSAIN A B M S, ALENAZI M M, TAHA R M. Seedless okra production by indole 3-acetic acid micro syringe injection on flower bud, ovary and shoot xylem and its vitamin and mineral content development: An innovation. Scientia Horticulturae, 2021, 283: 110010.
[14] BEVERIDGE C A, KYOZUKA J. New genes in the strigolactone- related shoot branching pathway. Current Opinion in Plant Biology, 2010, 13(1): 34-39.
[15] FRéBORT I, KOWALSKA M, HLUSKA T, FRéBORTOVá J, GALUSZKA P. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 2011, 62(8): 2431-2452.
[16] NOOKARAJU A, BARRETO A S, KARIBASAPPA G S, AGRAWAL D C. Synergistic effect of CPPU and benzyladenine on embryo rescue in six stenospermocarpic cultivars of grapevine. Vitis Journal of Grapevine Research, 2007, 46(4): 188-191.
[17] KHOSHANDAM L, DOULATI B H, JALILI M R, DARWISHZADEH R. Effect of BA and ovule developmental stages on embryo rescue in Perlette grape (L.) cultivar. European Online Journal of Natural and Social Sciences, 2017, 6: 1-9.
[18] ZHU P P, ZHANG J X. Effects of pre-bloom spraying thidiazuron and different embryo development media on seedless grape embryo rescue. New Zealand Journal of Crop and Horticultural Science, 2022: 1-28.
[19] SWAIN S M, REID J B, KAMIYA Y. Gibberellins are required for embryo growth and seed development in pea. The Plant Journal, 1997, 12(6): 1329-1338.
[20] CHENG C X, XU X Z, SINGER S D, LI J, ZHANG H J, GAO M, WANG L, SONG J Y, WANG X P. Effect of GA3treatment on seed development and seed-related gene expression in grape. PLoS One, 2013, 8(11): e80044.
[21] KHAVARI-NEJAD R A, NAJAFI F, RANJBARI M. The interactive effects of cadmium and GA3on tomato (Mill. cv. CH) plants photosynthesis, anthocyanin, proline and total phenolic contents. Romanian Journal of Biology, 2016, 2: 43-52.
[22] 崔夢(mèng)杰, 王晨, 張文穎, 湯崴, 朱旭東, 李曉鵬, 房經(jīng)貴. 無(wú)核葡萄研究進(jìn)展. 植物生理學(xué)報(bào), 2017, 53(3): 317-330.
CUI M J, WANG C, ZHANG W Y, TANG W, ZHU X D, LI X P, FANG J G. Research progress of seedless grape. Plant Physiology Journal, 2017, 53(3): 317-330. (in Chinese)
[23] MATILLA A J, MATILLA-VáZQUEZ M A. Involvement of ethylene in seed physiology. Plant Science, 2008, 175(1/2): 87-97.
[24] TSAI W C, HSIAO Y Y, PAN Z J, KUOH C S, CHEN W H, CHEN H H. The role of ethylene in orchid ovule development. Plant Science, 2008, 175(1/2): 98-105.
[25] MOU W S, KAO Y T, MICHARD E, SIMON A A, LI D D, WUDICK M M, LIZZIO M A, FEIJó J A, CHANG C R. Ethylene-independent signaling by the ethylene precursor ACC inovular pollen tube attraction. Nature Communications, 2020, 11(1): 4082.
[26] WASTERNACK C, FORNER S, STRNAD M, HAUSE B. Jasmonates in flower and seed development. Biochimie, 2013, 95(1): 79-85.
[27] FILGUEIRAS C C, MARTINS A D, PEREIRA R V, WILLETT D S. The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. International Journal of Molecular Sciences, 2019, 20(23): 5851.
[28] LI Z Q, JIAO Y T, ZHANG C, DOU M R, WENG K, WANG Y J, XU Y.positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless. Plant Biotechnology Journal, 2021, 19(9): 1824-1838.
[29] FINKELSTEIN R R, TENBARGE K M, SHUMWAY J E, CROUCH M L. Role of ABA in maturation of rapeseed embryos. Plant Physiology, 1985, 78(3): 630-636.
[30] PONCE M, GUI?AZú M, TIZIO R. Effect of putrescine on embryo development in the stenospermocarpic grape cvs Emperatriz and Fantasy. Vitis, 2002, 41: 53-54.
[31] MALIK A U, SINGH Z. Endogenous free polyamines of mangos in relation to development and ripening. Journal of the American Society for Horticultural Science, 2004, 129(3): 280-286.
[32] 郭印山, 郭修武, 張海娥. 葡萄胚胎發(fā)育與敗育過(guò)程中胚珠的多胺含量變化. 植物生理學(xué)通訊, 2007, 43(1): 53-56.
GUO Y S, GUO X W, ZHANG H E. Changes in polyamine contents of ovules during grape (L.) embryo development and abortion. Plant Physiology Communications, 2007, 43(1): 53-56. (in Chinese)
[33] 賀軍虎, 陳業(yè)淵, 趙小青, 陳華蕊. ‘金煌’杧胚正常與胚敗育果實(shí)內(nèi)源多胺的變化. 熱帶作物學(xué)報(bào), 2013, 34(10): 1972-1976.
HE J H, CHEN Y Y, ZHAO X Q, CHEN H R. The change of endogenous polyamines in ‘Jinhuang’ mango fruit with normal and aborted embryo. Chinese Journal of Tropical Crops, 2013, 34(10): 1972-1976. (in Chinese)
[34] SHIOZAKI S, OGATA T, HORIUCHI S. Endogenous polyamines in the pericarp and seed of the grape berry during development and ripening. Scientia Horticulturae, 2000, 83: 33-41.
[35] ALBURQUERQUE N, EGEA J, BURGOS L, MARTíNEZ- ROMERO D, VALERO D, SERRANO M. The influence of polyamines on apricot ovary development and fruit set. Annals of Applied Biology, 2006, 149: 27-33.
[36] CAO D D, HU J, ZHU S J, HU W M, KNAPP A. Relationship between changes in endogenous polyamines and seed quality during development ofshsweet corn (L.) seed. Scientia Horticulturae, 2010, 123(3): 301-307.
[37] RAMMING D W. The use of embryo culture in fruit breeding. HortScience, 1990, 25(4): 393-398.
[38] 朱佩佩, 羅燚佳, 向雯, 張明磊, 張劍俠. 抗寒無(wú)核葡萄雜種胚挽救及分子標(biāo)記輔助選擇. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(6): 1218-1228.doi: 10.3864/j.issn.0578-1752.2021.06.012.
ZHU P P, LUO Y J, XIANG W, ZHANG M L, ZHANG J X. Rescue and molecular marker assisted-selection of the cold- resistant seedless grape hybrid embryo. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228. doi: 10.3864/j.issn.0578-1752. 2021.06.012. (in Chinese)
[39] XU T F, GUO Y R, WANG W Y, YUAN X J, CHU Y N, WANG X W, HAN Y L, WANG Y J, SONG R, FANG Y L, WANG L J, XU Y. Effects of exogenous paclobutrazol and sampling time on the efficiency ofembryo rescue in the breeding of new seedless grape varieties. Journal of Integrative Agriculture, 2022, 21(6): 1633-1644.
[40] GARCIA-PAPI M A, GARCIA-MARTINEZ J L. Endogenous plant growth substances content in young fruits of seeded and seedless Clementine mandarin as related to fruit set and development. Scientia Horticulturae, 1984, 22(3): 265-274.
[41] 祁業(yè)鳳, 劉孟軍. 兩個(gè)胚敗育率不同的棗品種果實(shí)生育期內(nèi)源激素的變化. 園藝學(xué)報(bào), 2004, 31(6): 800-802.
QI Y F, LIU M J. Change of endogenous hormone in cultivars of Chinese jujube with different type of embryo abortion. Acta Horticulturae Sinica, 2004, 31(6): 800-802. (in Chinese)
[42] LULSDORF M M, YUAN H Y, SLATER S M H, VANDENBERG A, HAN X M, ZAHARIA L I, ABRAMS S R. Endogenous hormone profiles during early seed development ofand. Plant Growth Regulation, 2013, 71(2): 191-198.
[43] QIU Z L, WEN Z, YANG K, TIAN T, QIAO G, HONG Y, WEN X P. Comparative proteomics profiling illuminates the fruitlet abscission mechanism of sweet cherry as induced by embryo abortion. International Journal of Molecular Sciences, 2020, 21(4): 1200.
[44] ZHU P P, TIAN Y C, LIU Q Y, GE Q Y, ZHANG J X. Optimisation of embryo rescue for cold-resistant seedless grapevine. New Zealand Journal of Crop and Horticultural Science, 2022: 1-14.
[45] ZHU P P, GU B, LI P Y, SHU X, ZHANG X, ZHANG J X. New cold-resistant, seedless grapes developed using embryo rescue and marker-assisted selection. Plant Cell, Tissue and Organ Culture, 2020, 140(3): 551-562.
[46] EBADI A, MOGHADAM J E, FATAHI R. Evaluation of 22 populations achieved from controlled crossing between some seeded × seedless grapevine cultivars. Scientia Horticulturae, 2009, 119(4): 371-376.
[47] XUE W Y, LIU N, ZHANG T T, LI J, CHEN P P, YANG Y T, CHEN S X. Substance metabolism, IAA and CTK signaling pathways regulating the origin of embryogenic callus during dedifferentiation and redifferentiation of cucumber cotyledon nodes. Scientia Horticulturae, 2022, 293: 110680.
[48] 范建新, 鄧仁菊, 王永清, 羅立娜, 韓樹(shù)全, 劉榮. 火龍果莖段及花藥愈傷組織內(nèi)源激素含量的測(cè)定. 分子植物育種, 2017, 15(12): 5093-5102.
FAN J X, DENG R J, WANG Y Q, LUO L N, HAN S Q, LIU R. Determination of endogenous hormones in callus originated from stem and anther culture of pitaya. Molecular Plant Breeding, 2017, 15(12): 5093-5102. (in Chinese)
[49] MENCARELLI F, AGOSTINI R, BOTONDI R, MASSANTINI R. Ethylene production, ACC content, PAL and POD activities in excised sections of straight and bent gerbera scapes. Journal of Horticultural Science, 1995, 70(3): 409-416.
[50] WANG Y, MOPPER S, HASENSTEIN K H. Effects of salinity on endogenous ABA, IAA, JA, and SA in iris hexagona. Journal of Chemical Ecology, 2001, 27(2): 327-342.
[51] YALPANI N, SILVERMAN P, WILSON T M, KLEIER D A, RASKIN I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. The Plant Cell, 1991, 3(8): 809-818.
[52] FLORES H E, GALSTON A W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiology, 1982, 69(3): 701-706.
[53] MAHANIL S, GARRIS A J, OWENS C M, RAMMING D W, CADLE-DAVIDSON L. Development of molecular markers for powdery mildew resistance in grapevines. Acta Horticulturae, 2014, 1046: 91-99.
[54] 王飛, 王躍進(jìn), 周會(huì)玲, 萬(wàn)怡震, 楊進(jìn)孝. 無(wú)核葡萄與中國(guó)野生葡萄雜種胚發(fā)育和敗育的細(xì)胞學(xué)研究. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2005, 33(3): 61-65.
WANG F, WANG Y J, ZHOU H L, WAN Y Z, YANG J X. Cytological study of embryo development and abortion in hybrid progeny of seedless grape and Chinese wild grapes. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(3): 61-65. (in Chinese)
[55] ROYO C, TORRES-PéREZ R, MAURI N, DIESTRO N, CABEZAS J A, MARCHAL C, LACOMBE T, IBá?EZ J, TORNEL M, CARRE?O J, MARTíNEZ-ZAPATER J M, CARBONELL- BEJERANO P. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiology, 2018, 177(3): 1234-1253.
[56] SHAO F X, WANG S, ZHANG S Y, CHEN J, FENG C. Observation of embryo abortion characteristics ofmill. ‘Zhongqiusucui’. HortScience, 2021, 56(5): 595-602.
[57] 陳庭巧, 袁濤, 喬紅雍, 徐珂. 大花黃牡丹二次枝對(duì)結(jié)實(shí)率的影響及胚珠敗育生理機(jī)制研究. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 50(9): 39-52.
CHEN T Q, YUAN T, QIAO H Y, XU K. Effect of secondary branches on seed setting rate and physiological mechanism of ovule abortion in. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(9): 39-52. (in Chinese)
[58] TANG D M, WANG Y J, CAI J S, ZHAO R H. Effects of exogenous application of plant growth regulators on the development of ovule and subsequent embryo rescue of stenospermic grape (L.). Scientia Horticulturae, 2009, 120(1): 51-57.
[59] EBADI A, AALIFAR M, FARAJPOUR M, FATAHI MOGHADDAM M R. Investigating the most effective factors in the embryo rescue technique for use with ‘Flame Seedless’ grapevine (). The Journal of Horticultural Science and Biotechnology, 2016, 91(5): 441-447.
[60] JIAO Y T, LI Z Q, XU K Y, GUO Y R, ZHANG C, LI T M, JIANG Y X, LIU G T, XU Y. Study on improving plantlet development and embryo germination ratesembryo rescue of seedless grapevine. New Zealand Journal of Crop and Horticultural Science, 2018, 46(1): 39-53.
Changes of Endogenous Hormones and Polyamines During Ovule Development of Stenospermocarpic Seedless Grape
ZHU PeiPei, QIN HaoXiang, ZHANG JianXia
College of Horticulture, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas/Key Laboratory of Horticultural Plant Germplasm Resource Utilization in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
【Objective】By exploring the effects of endogenous hormones and polyamines on embryo development during the ovule development of seedless grape, this study provided a theoretical basis for promoting embryo development by spraying exogenous hormones before anthesis and adding exogenous hormones into the medium in vitro culture of ovule.【Method】In this study, the European grape (L.) variety Jingxiu and its F1generation stenospermocarpic seedless variety Qinxiu were used as test materials. The content of endogenous hormones and polyamines in ovule of fruit at different developmental stages were compared by high performance liquid chromatography mass spectrometry (HPLCMS) and ultra performance liquid chromatography (UPLC).【Result】The content of IAA, ZT, ZR, and iPAS reached their highest values at 39 DAF (days after flowering) for Jingxiu and 42 DAF for Qinxiu, and the highest values of the former were higher than those of the latter (more than 1.5 times). For the content of JA and SA, Jingxiu started to rise sharply at 36 DAF (2 000 ng?g-1and 6 500 ng?g-1, respectively), and reached the highest values at 39 DAF (6 500 ng?g-1and 10 000 ng?g-1, respectively), and then, which were declining and remaining at a high level at 42-45 DAF, while Qinxiu was declining and remaining at a low level from 36 DAF (3 500 ng?g-1and 3 000 ng?g-1, respectively). The ACC content of Jingxiu was almost 0 ng?g-1at 39 DAF, then increased rapidly and reached its highest value (1 200 ng?g-1) at 45 DAF, while Qinxiu reached its highest value (900 ng?g-1) at 39 DAF, then declined to 0 ng?g-1at 42 DAF, and remained at a very low level. The ABA content of Jingxiu was almost 0 ng?g-1from 36 to 45 DAF, while that of Qinxiu rose sharply from 0 ng?g-1at 39 DAF to the highest value (900 ng?g-1) at 42 DAF. The trends of Put (putrescine), Spm (spermine), and Spd (spermidine) were similar for the two varieties, but Jingxiu was consistently higher than Qinxiu. The highest values of Put and Spd were 42 DAF for Jingxiu and 39 DAF for Qinxiu, except for the highest values of Spm, which were all found at 42 DAF. 【Conclusion】 The lower content of growth promoting substances (IAA, CTK, GA3, ACC, JA, SA, Put, Spd, and Spm) and the higher content of growth inhibiting substances (ABA), and lower ratios of (IAA+GA3)/ABA, (IAA+ZT+GA3)/ABA, Spm/PAs, (Spd+Spm)/Pas, and (Spd+Spm)/Put in the ovules of the seedless variety Qinxiu compared with the seeded variety Jingxiu might be one of the main reasons for seedless grape embryo abortion. Therefore, in the process of seedless grape embryo rescue, the embryo abortion could be inhibited by spraying before flowering or adding to media a certain concentration of growth promoting substances.
stenospermocarpic seedless grapes; ovules; embryo; endogenous hormones; polyamines
10.3864/j.issn.0578-1752.2023.23.018
2023-04-18;
2023-08-15
陜西省重點(diǎn)研發(fā)計(jì)劃-鄉(xiāng)村振興科技專(zhuān)項(xiàng)(2022FP-31)
朱佩佩,E-mail:825965951@qq.com。通信作者張劍俠,E-mail:zhangjx666@126.com
(責(zé)任編輯 趙伶俐)