• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electro-hydraulic servo force loading control based on improved nonlinear active disturbance rejection control

    2024-01-08 09:11:32LIXiaoyuanGULichenGENGBaolongCHENGDonghongZHANGBenben

    LI Xiaoyuan,GU Lichen,GENG Baolong,CHENG Donghong,ZHANG Benben

    (School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)

    Abstract:The transient and dynamic loading accuracy of the valve controlled cylinder force loading system of the undercarriage actuator cylinder wear and life experiment platform is low,which cannot meet the accuracy requirements of the load spectrum,thus affecting the safety and reliability judgment of the actuator.An improved nonlinear active disturbance rejection control (INADRC) algorithm with higher accuracy and anti-interference ability is proposed based on control algorithm.First,the AMESim/Simulink co-simulation model of the electro-hydraulic servo force loading system is established.Secondly,in order to optimize its parameters,the INADRC controller is designed,and the genetic particle swarm algorithm is used.Finally,the performance of the controller is verified by simulating and experiment with three target signal tracking.The simulation and experimental results show that compared with PID control,nonlinear ADRC (NADRC) and other improved nonlinear ADRC (ONADRC),the average accuracy of the INADRC is improved by 4.15%,1.15% and 0.65%,which reflects the characteristics of high servo force transient,dynamic loading accuracy and strong anti-interference ability.

    Key words:undercarriage actuator cylinder; valve-controlled cylinder system; nonlinear active disturbance rejection control; genetic particle swarm optimization; electro-hydraulic servo force loading control

    0 Introduction

    Aircraft undercarriage system is one of the key systems of aircraft.Many accidents caused by landing gear system failure are fatal,such as failure of the landing gear actuator,the landing gear cannot be put down,and so on.Therefore,the reliability and safety of the aircraft landing gear actuator is essential.The key to judge the reliability and safety of the actuator is to carry out the electro-hydraulic servo force loading experiment.

    Electro-hydraulic servo system is a typical non-linear system.The parameters of the system are time-varying and uncertain.With the change of working conditions,the internal and external leakage and other external interference make the dynamic characteristics of the system more complex[1].The time-varying and nonlinear characteristics of the loading system must be considered to ensure the control accuracy and repeatability of the loading process.Although the traditional control algorithms such as PID and fuzzy control can basically meet the output requirements of the loading system,the accuracy,rapidity,and even stability of some nonlinear and time-varying control scenarios will be degraded to varying degrees.It is difficult to achieve the expected control effect.For example,in order to control the loading accuracy of the landing gear actuator life experiment platform to meet the requirements,it must be considered that the performance and operating parameters of the loading system components will change in varying degrees with the fatigue loading process of the system,and the unreasonable control parameters will lead to the decline of the control accuracy of the system.

    How to obtain better control quality has been extensively and deeply carried out.The controller of the loading system was designed based on the quantitative feedback theory (QFT),which solved the nonlinear problem caused by the rotation disturbance of the industrial CT hydraulic system,improved the dynamic characteristics of the system,and made it meet the requirements of dynamic loading of the rock samples[2].Several improved PID algorithms were tested[3].The results showed that the integral separation nonlinear PID controller could make the system response fast and there was no overshoot.Sliding mode control was introduced into the backstepping controller,which reduced the interference sensitivity of the system and improved the anti-interference tracking performance of the electro-hydraulic servo system[4].A control strategy combining feedforward inverse model with robust control was proposed,which improved the tracking performance of force control in flight simulator[5].A nonlinear robust double closed-loop control strategy was developed,which effectively suppressed the nonlinear and friction factors in the process of hydraulic cylinder movement,and improved the quality of system force control[6].A motion synchronization compound decoupling method was proposed to realize the multi-channel force control of the aircraft structural load testing machine[7].

    These methods have achieved good control effect,but they rely too much on the system model or need much model information.In 1998,Han Jingqing proposed the active disturbance rejection control (ADRC) without precise model.In 2003,Gao Zhiqiang simplified the nonlinear ADRC (NADRC) to the linear ADRC (LADRC),which promoted the engineering application and popularization of ADRC.At present,the deficiency of regulation ability has been exposed in some occasions for LADRC such as large time-delay system.LADRC can almost be regarded as a special case of NADRC.Therefore,NADRC has more freedom and possibility than LADRC,so it must also have better adaptability[8].

    In recent years,the application of NADRC has developed rapidly.Sun Bin applied NADRC system to permanent magnet motor speed regulation system,which effectively improved the anti-interference ability and tracking accuracy of the system and had good dynamic and static characteristics[9].Wang Gaolin applied NADRC controller to the direct drive permanent magnet traction system[10].The experiment showed that it could effectively reduce the reverse slip distance and speed in the starting process of elevator.Yao Fang designed the electric vehicle electronic parking NADRC controller,which was verified that the designed control scheme had strong robustness to internal and external disturbances in the parking process,and could realize fast and effective braking in the parking process[11].Shi Jia applied the designed NADRC control algorithm to the four rotor UAV and achieved good control results in the flight test with large eccentric load and strong interference with uncertain direction[12].

    According to the working load characteristics of the landing gear actuator,a new type offalfunction is used to construct an improved nonlinear extended state observer (INESO) for real-time state estimation and external disturbance rejection compensation of the actuator experiment platform loading system,which overcomes the time-varying and nonlinear characteristics of the electro-hydraulic loading system.The tracking control of high precision electro-hydraulic servo force loading system is realized.

    1 Design of INADRC controller

    The basic structure of INADRC is shown in Fig.1.INESO is used to estimate the state and disturbance information of the system in real time for INADRC.Nonlinear state error feedback (NLSEF) is used to realize the state feedback of nonlinear state and disturbance,so as to restore the controlled object full of disturbance,uncertainty and nonlinearity to the standard integral series type.The active disturbance suppression and reduction are realized.

    Fig.1 Basic structure of INADRC

    1.1 Improved nonlinear extended state observer

    INESO is the core part of INADRC,which is used to solve the core problem of disturbance observation in active disturbance rejection technology.The basic idea is to expand the total disturbance into a new state variable of the system,and then use the input and output of the system to reconstruct all the states including the original state variable and disturbance of the system.The INESO does not depend on the model that generates the disturbance,nor does it need direct measurement to observe the disturbance and get the estimated value.

    1.1.1 Newfalfunction

    The traditionalfalfunction is shown in Eq.(1).The second linear term is slower than the first nonlinear term near the origin.It also shows that the nonlinear term can better achieve “small error amplification” in this interval.In the interval far from the origin,the linear term converges faster than the nonlinear term.As a whole,it shows that there is room for improvement in the convergence performance of the traditionalfalfunction[13].

    (1)

    The new type offalfunction is shown in Eq.(2),and satisfies the properties 1) and 2).

    (2)

    1.1.2 Improved nonlinear extended state observer

    The discrete form of the INESO is shown in Eq.(3),and satisfies the properties 1)-3).

    2) If 0<β1<β2<β3<1,λ1>0,λ2>0,λ3>0 and other parameters are the same,the NESO ofC(ε1,β1) is faster than the NESO ofC(ε1,β2).

    3)C(ε,β) instead offal(s,β,δ) does not change the stability and convergence of NESO and speeds up the convergence of NESO.

    (3)

    whereλ1,λ2,λ3are determined by the sampling step of the system,and they can be the same;b1is approximately equal tob0.

    1.2 Tracking differentiator

    Tracking differentiator (TD) is used to solve the problem of reasonable extraction of the continuous signals and the differential signals from discontinuous or random noise measurement signals to improve control quality and simplify controller design.It is shown as

    (4)

    whereris the control gain determined by the transition process;h0is an integer multiple of the sampling periodh.

    1.3 Nonlinear state error feedback

    The specific form offhanis shown as Eq.(5).The three signals of error,error differential,and error integral generated by TD are combined to form NLSEF,in the form of Eq.(6).

    (5)

    (6)

    wherecis the damping factor;h1is the precision factor.

    1.4 Disturbance compensation

    Disturbance compensation forms the control quantity,shown as

    (7)

    whereb0is the compensation factor.

    2 INADRC controller parameter setting

    There are as many as 12 control parameters in the general form of INADRC,and as many as 8 even after being simplified.The current parameter setting mainly includes the empirical trial and error method and the artificial intelligence method.The ordinary empirical trial and error method is complex,time-consuming,laborious and subjective.It is difficult to guarantee its control accuracy and system stability.Therefore,the artificial intelligence method has a huge advantage in parameter tuning.The genetic algorithm particle swarm optimization (GAPSO) will be used to optimizea,b,β,h0,c,r,h1,b0in the controller.

    2.1 Genetic particle swarm algorithm

    Particles warm optimization (PSO) is widely used in fields such as multi-objective function optimization,system configuration,transportation and water conservancy systems because of its simple program and easy implementation.Each particle in the algorithm is a set of solutions.Through comparison among the particles,the fitness value is used to judge the pros and cons of the particles.First,a particle swarm is randomly generated in the feasible solution space,and each particle represents a feasible solution.The particle characteristics are represented by position,speed and fitness value.During the operation of the algorithm,the particles continuously move to the optimal position,that is the optimal position of the fitness value.During the iteration process,the particles update its speed and position through

    (8)

    (9)

    wherekis the current iteration number;ωis the inertia weight;c1andc2are acceleration factors;r1andr2are random numbers between[0,1];vidis the particle’sd-th dimensional velocity,which is in the interval[vmin,vmax];Xidis thed-th dimensional position of the particle,which is in the interval[Ld,Ud];Pidis the position of the individual extreme value; andPgdis the position of the group extreme value.

    The particle swarm algorithm updates the position of the particles by tracking the extreme value,but the particles tend to be similar in the process of continuous iteration,which is easy to fall into the local optimum.In order to improve the traditional particle swarm algorithm,the crossover and mutation operations of the genetic algorithm are introduced into the particle swarm algorithm to form the GAPSO.In GAPSO,the fitness value of all particles is first calculated,and all particles are sorted according to their fitness value.After the sorting is completed,the particles whose fitness value is worse than the average fitness value of the particles are discarded.Then the crossover operation is performed.The remaining particles with better fitness are randomly crossed with the individual extreme value or the group extreme value to obtain new particles,until the size of the particle swarm is restored to the original number.The position of the new particle can be obtained by[14]

    (10)

    (11)

    whereYtdis the position of the new particle generated by the crossover operation; andr3is a random number between[0,1].

    The mutation operation mutates the particle itself,and the better the fitness value of the particle,the smaller the probability of mutation.Assign a random number within[0,1]to the positions of all particles in each dimension.When the random number corresponding to thed-dimensional positionXidof the particle is less than the mutation probability value corresponding to the particle,the mutation operation ofXidis performed by

    (12)

    Integral of time multiplied by the absolute value of error (ITAE) is selected to calculate the fitness value of particles,and its definition is

    (13)

    wheree(t) is the error signal.

    The main parameters of GAPSO are shown in Table 1.

    Table 1 GAPSO parameters

    2.2 GAPSO realization process

    The implementation process of GAPSO is as follows,and the flowchart is shown in Fig.2.

    Fig.2 GAPSO algorithm flow

    1) Initialize the particle swarm.Determine the size of the particle swarm,the upper and lower limits of the particle position interval,the maximum number of iterations,and the minimum fitness value,etc.

    2) Calculate the fitness value of all particles.

    3) Compare the fitness value of each particle with the fitness value corresponding to the optimal position that the particle itself has experienced.If it is better,the current position of the particle is set to the new individual extreme value.If the optimal fitness value of the particle swarm is better than the fitness value corresponding to the population extremum,the particle position corresponding to the optimal fitness value is set as the new population extremum.

    4) Perform crossover and mutation operations on particle swarms

    5) If the current iteration number exceeds the set maximum iteration number,or the population optimal particle fitness value is less than the minimum fitness value,the algorithm ends,otherwise,it returns to step 2).

    3 Simulation

    In the design of the electro-hydraulic servo force loading system,in order to clarify the static and dynamic characteristics of the system,the computer simulation technology can be used to establish the model of the electro-hydraulic servo force loading system and design the control algorithm.AMESim provides a set of electro-hydraulic servo simulation modeling and analysis solutions,which can be connected with Simulink.Establishing a AMESim/Simulink co-simulation model can give full play to the modeling capabilities of AMESim and the algorithmic computing capabilities of Simulink[15].

    3.1 Establish co-simulation model

    In order to study the loading performance of the system,the method of simulating loading by the proportional relief valve has been widely applied to the hydraulic experiment platform[17].The schematic diagram of servo force loading is shown in Fig.3.It is composed of a three-phase motor,a gear pump,a proportional directional valve,a proportional relief valve,a single rod double-acting hydraulic cylinder,and a tension pressure sensor.

    1-Proportional relief valve; 2-PMSM; 3-Gear pump; 4-Tank; 5-Proportional directional valve; 6-Driving cylinder; 7-Mass; 8-Force sensor; 9-Loading cylinder; 10-Check valve; 11-Backpressure loading valve group; 12-Three-phase induction motor; 13-Control system

    The drive system is used to move the undercarriage actuator,the motor speed is 1 500 r/min,and the gear pump displacement is 6.3 mL/r.The loading system is used to simulate the wind load and external interference experienced when the landing gear actuator cylinder moves.The motor speed is 1 000 r/min,and the gear pump displacement is 4.3 mL/r.The AMESim simulation model of the hydraulic system is shown in Fig.4 which restores the working scene established by the valve-controlled cylinder system of the experiment platform.The simulation parameters are shown in Table 2,and the Simulink controller model is shown in Fig.5.

    Table 2 Experiment platform parameter

    Fig.4 AMESim model

    Fig.5 Simulink controller model

    3.2 Simulation results

    The main parameters of INADRC after GAPSO algorithm optimization are shown in Table 3.In order to verify the dynamic and static characteristics of INADRC controller optimized by GAPSO algorithm applied to electro-hydraulic servo force loading system,INADRC is compared with NADRC,PID and other improved NADRC (ONADRC),which forms such as Eq.(14)[13].The system constant signal,ramp signal,and sine signal are given.The simulation time is 10 s,and the step length is 0.01 s to run the AMESim/Simulink co-simulation model.The hydraulic cylinder force tracking curve and tracking error curve are obtained as shown in Fig.6.

    (14)

    Fig.6 Simulation results

    Table 3 INADRC controller parameter

    1) Constant loading.The transient performance of the system is tested by constant load[16].Given a target force signal of 20 kN,the interference force is 4 kN in 5 s,and the force tracking and error curves are shown in Fig.6(a) and 6(b).In terms of transient response,the transition times of INADRC,NADRC,PID,and ONADRC are 1.5 s,2 s,2 s,and 1.7 s,respectively,and only PID has 2 kN overshoot.In terms of anti-interference ability,the time taken for the four control modes to recover to the steady state is 1 s,1.2 s,1.2 s,and 1.1 s,respectively.It can be seen that the comprehensive performance of INADRC in transient response and anti-interference ability is better than other control methods.

    2) Ramp loading.Ramp loading is the most commonly used loading method for material testing machines and universal loading testing machines,which can verify the precise tracking ability of the controller.Set a ramp loading signal with a slope of 4 kN/s,and an interference force of 4 kN at 3 s.The resulting tracking and error curves are shown in Fig.6(c) and 6(d).Simulation results show that the performance of the four control algorithms is close,but it can be seen more clearly from the error curve that the tracking performance of INADRC is better.

    3) Sine wave loading.The sine wave loading can verify the dynamic performance of the controller.Given the target force signalF=10sin(0.2πt)+10,the interference force is 4 kN at 3 s,and the force tracking and error curves are shown in Fig.6(e) and 6(f).The simulation results show that the fastest response of INADRC is to track the sinusoidal loading curve in 0.2 s,and the error is always within 0.3 kN.In case of interference,the tracking target signal can be recovered faster.

    4 Experimental verification

    4.1 Experiment platform

    Fig.7 shows the electro-hydraulic servo force loading system experiment platform,which can be used to test and verify the proposed force loading control method.

    Fig.7 Experiment platform

    The driving part adopts GK6087-6AF61-2 PMSM with a speed of 1 500 r/min and a PG502A0043CH1 gear pump with a displacement of 6.3 mL/r.The reciprocating movement of the hydraulic cylinder is controlled by a proportional directional valve to simulate the expansion and contraction of the landing gear actuator cylinder.PMSM and proportional directional valve realize drive function.The loading part adopts YYF2-112M-4 three-phase asynchronous motor with the speed of 1 000 r/min and PG502A0043CH1 gear pump with the speed of 4.3 mL/r.

    Servo force loading function is achieved by controlling the rated pressure of the AGMZO-TERS-PS-10/315/Y proportional relief valve.Because the back pressure loading system oil is composed of 4 check valves and a proportional relief valve,there will be oil shortage after the loading cylinder moves,so the motor,gear pump and proportional reversing valve in the loading system realize the hydraulic cylinder replenishment function.

    Two UG21D63/36-300TYCR single-rod double-acting hydraulic cylinders of the same specification are installed on the same straight line in the experiment platform,and connect with mass block and PLD204A2 5T force sensor,which can collect the feedback force loading value in the loading system in real time.The parameters of the experiment platform are shown in Table 2.

    4.2 Measurement and control system

    Fig.8 shows that the control scheme of the electro-hydraulic servo force loading system experiment platform.The hardware of the control system mainly includes the WANDFLUH SD7 controller,the A/D board PCI1715U,the D/A board PCI1723 and the control host and so on.

    Fig.8 Schematic diagram of measurement and control

    Among them,the D/A board converts the digital control signal into an analog output signal,and then sends it to the proportional relief valve as a control signal to control the action of the hydraulic cylinder.The A/D conversion board converts the collected analog signals such as force,acceleration and displacement into digital signals and inputs them to the host,so as to perform mathematical operations through the control algorithm module in the lower computer[18-19].

    4.3 Experimental results

    Set the system pressure to 10 MPa and the ambient temperature to 27 ℃.The range of force sensor is 0 kN-50 kN,and the feedback electric signal is 0 V-10 V.Other working conditions are consistent with simulation working conditions,and the experimental parameters are shown in Table 2.

    It can be seen from Fig.9(a) and 9(b) that the transition times of the control algorithms of INADRC,NADRC,PID,and ONADRC are 1 s,1.3 s,2 s,and 1.2 s,respectively,and the PID control overshoot is 5 kN.Fig.9(c) and 9(d) shows that the average tracking errors of INADRC,NADR,PID,and ONADRC are 1.6%,1.8%,4.2%,and 2%.After adding 4 kN interference,the recovery time is 0.4 s,0.8 s,1 s and 0.8 s.INADRC has strong anti-interference ability in slope conditions.

    Fig.9 Experimental results

    Fig.9(e) and 9(f) shows that INADRC track the sinusoidal signal at 0.3 s,and the average error of INADRC is about 2.35%.In order to further quantitatively evaluate the performance of the four control methods,the mean square errorμand ITAE are introduced for further comparison and explanation.The results are obtained shown in Table 4.It can be seen that under the four tracking signals,the mean square error and ITAE indicators of INADRC are smaller than PID,NADRC,and ONADRC.

    Table 4 Performance index

    The error rates are shown in Table 5.The average error rates of INADRC,NADRC,PID,and ONADRC are 2.35%,3.5%,6.5%,and 3.1%.Experimental results show that INADRC is superior to NADRC,PID,and ONADRC in terms of control accuracy and anti-interference ability,which is consistent with the simulation results.

    Table 5 Error rate

    5 Conclusions

    1) Aiming at the problem that the accuracy of electro-hydraulic servo loading systems such as the actuator abrasion experiment platform is not high enough to meet specific needs,an improved nonlinear active disturbance rejection controller is designed,which effectively improves the force tracking control performance.

    2) A co-simulation model of AMESim and Simulink for the electro-hydraulic servo loading system is established to improve the efficiency of system design.

    3) Compared with PID control,NADRC,and ONADRC,the average accuracy of the INADRC is improved by 4.15%,1.15%,and 0.65% from the simulation and experimental conclusions of three given signals of constant value,sine,and ramp.It can be concluded that INADRC control has higher precision and anti-disturbance ability than other control measures.

    4) The GAPSO algorithm is used to obtain a large number of parameters of the nonlinear active disturbance rejection controller,which can meet the system performance index and provide a reference for engineering applications.

    日日摸夜夜添夜夜添av毛片 | 可以在线观看的亚洲视频| 欧美乱妇无乱码| xxxwww97欧美| 国产探花在线观看一区二区| 免费在线观看影片大全网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av.av天堂| 热99在线观看视频| 亚洲经典国产精华液单 | 免费看日本二区| 日本三级黄在线观看| 国产成人a区在线观看| 99久久99久久久精品蜜桃| 精品不卡国产一区二区三区| 日韩人妻高清精品专区| 亚洲人成网站在线播放欧美日韩| 一区二区三区激情视频| 欧美三级亚洲精品| 人人妻人人澡欧美一区二区| 最新中文字幕久久久久| 亚洲av.av天堂| 精品免费久久久久久久清纯| 在现免费观看毛片| 国产麻豆成人av免费视频| 国产精品亚洲av一区麻豆| 欧美xxxx性猛交bbbb| 亚洲aⅴ乱码一区二区在线播放| 日本 欧美在线| 欧美成狂野欧美在线观看| 久久天躁狠狠躁夜夜2o2o| 嫩草影院入口| 97热精品久久久久久| 欧美色视频一区免费| 狂野欧美白嫩少妇大欣赏| 亚洲第一欧美日韩一区二区三区| 99国产精品一区二区三区| 午夜福利在线在线| 听说在线观看完整版免费高清| 中亚洲国语对白在线视频| 久久草成人影院| 久久久久免费精品人妻一区二区| 搡老岳熟女国产| 俄罗斯特黄特色一大片| 在线免费观看不下载黄p国产 | av福利片在线观看| 国产精品久久久久久精品电影| 欧美在线一区亚洲| 欧美另类亚洲清纯唯美| 亚洲av二区三区四区| 五月伊人婷婷丁香| 亚洲国产精品成人综合色| 如何舔出高潮| 757午夜福利合集在线观看| 精品人妻视频免费看| 淫秽高清视频在线观看| 麻豆av噜噜一区二区三区| 人人妻人人看人人澡| 中文字幕av成人在线电影| 波多野结衣高清作品| 久久久久九九精品影院| 亚洲在线自拍视频| 亚洲电影在线观看av| 香蕉av资源在线| 亚洲精品久久国产高清桃花| 国产在线精品亚洲第一网站| 亚洲成人久久性| 99热只有精品国产| 成人av在线播放网站| 夜夜躁狠狠躁天天躁| 日本黄大片高清| 欧美黄色片欧美黄色片| 99在线视频只有这里精品首页| 又黄又爽又刺激的免费视频.| 在线观看免费视频日本深夜| 在线观看一区二区三区| 男插女下体视频免费在线播放| 一本精品99久久精品77| 精品一区二区三区人妻视频| 亚洲内射少妇av| 亚洲人成电影免费在线| 久久久久久久亚洲中文字幕 | 午夜激情欧美在线| 18+在线观看网站| 又粗又爽又猛毛片免费看| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| 亚洲男人的天堂狠狠| 国产大屁股一区二区在线视频| 亚洲经典国产精华液单 | 中文在线观看免费www的网站| 波野结衣二区三区在线| 亚洲av.av天堂| 亚洲欧美清纯卡通| 可以在线观看毛片的网站| 国产一区二区三区视频了| 国产私拍福利视频在线观看| 久久性视频一级片| 亚洲av中文字字幕乱码综合| 午夜福利18| 欧美性感艳星| 99久国产av精品| 国产伦一二天堂av在线观看| 2021天堂中文幕一二区在线观| 国产亚洲欧美在线一区二区| 精品欧美国产一区二区三| 精品一区二区三区av网在线观看| 色哟哟哟哟哟哟| 丰满人妻一区二区三区视频av| 欧美在线一区亚洲| 最近最新中文字幕大全电影3| 在线十欧美十亚洲十日本专区| 亚洲国产精品999在线| 制服丝袜大香蕉在线| 亚洲成a人片在线一区二区| 91九色精品人成在线观看| 2021天堂中文幕一二区在线观| av在线天堂中文字幕| www.www免费av| 亚洲人与动物交配视频| 无人区码免费观看不卡| 久久性视频一级片| 18禁裸乳无遮挡免费网站照片| 1024手机看黄色片| 久久精品国产99精品国产亚洲性色| 国产大屁股一区二区在线视频| 亚洲午夜理论影院| 精品国产亚洲在线| 日韩欧美三级三区| 性色avwww在线观看| 免费在线观看成人毛片| 又黄又爽又刺激的免费视频.| 内射极品少妇av片p| 亚洲专区中文字幕在线| 精品一区二区免费观看| or卡值多少钱| 国产成人影院久久av| 欧美黄色淫秽网站| 亚洲中文日韩欧美视频| 色噜噜av男人的天堂激情| 免费搜索国产男女视频| 久久久久久久亚洲中文字幕 | 婷婷丁香在线五月| 精品一区二区三区视频在线观看免费| 中文字幕熟女人妻在线| 99久久成人亚洲精品观看| 日韩中文字幕欧美一区二区| 久久精品综合一区二区三区| 亚洲av不卡在线观看| 麻豆成人av在线观看| 宅男免费午夜| 欧美色欧美亚洲另类二区| 久久精品国产亚洲av涩爱 | 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| 97超视频在线观看视频| 午夜激情福利司机影院| 少妇熟女aⅴ在线视频| 热99在线观看视频| 欧美乱妇无乱码| 午夜日韩欧美国产| 村上凉子中文字幕在线| 淫秽高清视频在线观看| 日韩欧美国产在线观看| 97碰自拍视频| 成人午夜高清在线视频| 国产综合懂色| 午夜两性在线视频| 精品人妻视频免费看| 啪啪无遮挡十八禁网站| 国产在视频线在精品| 亚洲中文字幕日韩| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 国产色婷婷99| 国产极品精品免费视频能看的| 国产精品久久久久久久电影| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久中文| 久久精品91蜜桃| 老司机午夜福利在线观看视频| 色综合婷婷激情| 日本成人三级电影网站| 在线观看一区二区三区| 亚洲av二区三区四区| 精品人妻视频免费看| 亚洲av美国av| 噜噜噜噜噜久久久久久91| 国模一区二区三区四区视频| 国产亚洲欧美98| 99热精品在线国产| 国产老妇女一区| 美女大奶头视频| 亚洲内射少妇av| 嫩草影院入口| 国产成人欧美在线观看| 9191精品国产免费久久| 日本黄色视频三级网站网址| 美女免费视频网站| 亚洲内射少妇av| 给我免费播放毛片高清在线观看| 日韩欧美国产在线观看| 国产亚洲精品久久久久久毛片| 亚洲综合色惰| 99riav亚洲国产免费| 欧美黄色淫秽网站| 日本成人三级电影网站| 我要搜黄色片| 免费在线观看日本一区| 精品久久久久久久久亚洲 | 给我免费播放毛片高清在线观看| 91九色精品人成在线观看| 国产精品av视频在线免费观看| 国产精华一区二区三区| 91在线观看av| 88av欧美| 亚洲av电影不卡..在线观看| 国产乱人视频| 91在线精品国自产拍蜜月| 老女人水多毛片| 久久欧美精品欧美久久欧美| 男人的好看免费观看在线视频| 精品久久久久久久人妻蜜臀av| 精华霜和精华液先用哪个| 免费观看的影片在线观看| 波多野结衣巨乳人妻| 美女大奶头视频| 俺也久久电影网| 免费av观看视频| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜福利片| 国产精品伦人一区二区| 国产一区二区三区在线臀色熟女| 一区二区三区四区激情视频 | 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 赤兔流量卡办理| 动漫黄色视频在线观看| 亚洲美女视频黄频| 精品欧美国产一区二区三| 天堂av国产一区二区熟女人妻| 日本成人三级电影网站| 久久婷婷人人爽人人干人人爱| 俄罗斯特黄特色一大片| 可以在线观看的亚洲视频| 国产成+人综合+亚洲专区| 人人妻人人澡欧美一区二区| 久久久精品欧美日韩精品| 欧美3d第一页| 757午夜福利合集在线观看| 久久婷婷人人爽人人干人人爱| 最后的刺客免费高清国语| 国产 一区 欧美 日韩| 国产精品一区二区性色av| 亚洲国产欧美人成| 高清毛片免费观看视频网站| 亚洲在线观看片| 好男人电影高清在线观看| 亚洲最大成人av| 中文字幕免费在线视频6| 国产精品1区2区在线观看.| 中文字幕人成人乱码亚洲影| 亚洲精品久久国产高清桃花| 亚洲午夜理论影院| 婷婷六月久久综合丁香| 亚洲人成电影免费在线| 欧美日韩国产亚洲二区| 搡老岳熟女国产| 久久久久国内视频| 99精品在免费线老司机午夜| 波多野结衣高清无吗| 欧美一区二区亚洲| 黄色丝袜av网址大全| 999久久久精品免费观看国产| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区| 少妇高潮的动态图| 日韩欧美一区二区三区在线观看| bbb黄色大片| 日日摸夜夜添夜夜添av毛片 | 十八禁国产超污无遮挡网站| 在线观看av片永久免费下载| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线播| 久久香蕉精品热| 亚洲最大成人av| 国产单亲对白刺激| 欧美不卡视频在线免费观看| 日韩欧美三级三区| 18禁裸乳无遮挡免费网站照片| 丁香六月欧美| 深夜a级毛片| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 国产乱人视频| 极品教师在线免费播放| 美女 人体艺术 gogo| 日本一本二区三区精品| 成人国产综合亚洲| 国产精品久久久久久精品电影| 最近在线观看免费完整版| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 色吧在线观看| 男女视频在线观看网站免费| 首页视频小说图片口味搜索| 真人做人爱边吃奶动态| 女同久久另类99精品国产91| 久久久成人免费电影| 日韩 亚洲 欧美在线| 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 欧美日韩乱码在线| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 黄色视频,在线免费观看| 久久精品国产亚洲av天美| 国产高清视频在线播放一区| 精品免费久久久久久久清纯| 丰满人妻熟妇乱又伦精品不卡| 精品福利观看| 天堂动漫精品| 国产真实乱freesex| 欧美最黄视频在线播放免费| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 午夜福利欧美成人| 亚洲性夜色夜夜综合| 久久伊人香网站| 亚洲电影在线观看av| 搡老妇女老女人老熟妇| 亚洲av成人精品一区久久| 天天一区二区日本电影三级| 男女下面进入的视频免费午夜| 99国产精品一区二区蜜桃av| 国产成人a区在线观看| av专区在线播放| 日韩精品青青久久久久久| 老鸭窝网址在线观看| 色av中文字幕| 三级国产精品欧美在线观看| 亚洲国产欧洲综合997久久,| 在线免费观看不下载黄p国产 | 国产欧美日韩精品一区二区| 日韩免费av在线播放| 嫩草影院入口| 午夜视频国产福利| 日本与韩国留学比较| 18禁在线播放成人免费| 校园春色视频在线观看| 1000部很黄的大片| 免费人成视频x8x8入口观看| 国产精品野战在线观看| 亚洲片人在线观看| 夜夜夜夜夜久久久久| 三级男女做爰猛烈吃奶摸视频| 欧美黑人欧美精品刺激| 久久久国产成人精品二区| 小说图片视频综合网站| 97超视频在线观看视频| 很黄的视频免费| 在线观看舔阴道视频| 精品国产三级普通话版| 亚洲五月天丁香| 观看免费一级毛片| 亚洲美女黄片视频| 桃红色精品国产亚洲av| 国产亚洲精品av在线| 国产精品免费一区二区三区在线| 欧美色欧美亚洲另类二区| 老熟妇仑乱视频hdxx| 亚洲成av人片免费观看| 悠悠久久av| 欧美色视频一区免费| 亚洲国产高清在线一区二区三| 日韩欧美精品免费久久 | 亚洲五月婷婷丁香| 欧美最新免费一区二区三区 | 久久久久久久久久成人| 制服丝袜大香蕉在线| 欧美+日韩+精品| 亚洲av电影在线进入| 国产激情偷乱视频一区二区| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲午夜理论影院| 久久久久久久久大av| 免费看日本二区| 久久国产乱子伦精品免费另类| 精品熟女少妇八av免费久了| 1000部很黄的大片| 亚洲成av人片免费观看| 大型黄色视频在线免费观看| 午夜激情欧美在线| 午夜影院日韩av| 99久久精品国产亚洲精品| 亚洲真实伦在线观看| x7x7x7水蜜桃| 国产真实伦视频高清在线观看 | 99久久99久久久精品蜜桃| 90打野战视频偷拍视频| 欧美日韩国产亚洲二区| 岛国在线免费视频观看| 亚洲av五月六月丁香网| 日韩av在线大香蕉| 麻豆成人av在线观看| 久久久久国内视频| 不卡一级毛片| bbb黄色大片| 神马国产精品三级电影在线观看| 久久久久性生活片| 久久精品国产自在天天线| 免费看日本二区| 美女大奶头视频| 老司机福利观看| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 国产免费av片在线观看野外av| 别揉我奶头 嗯啊视频| 精品一区二区免费观看| 脱女人内裤的视频| 亚洲国产欧美人成| 国产午夜精品论理片| 嫩草影院新地址| 日本熟妇午夜| 国产精品久久久久久人妻精品电影| 亚洲国产精品合色在线| 97热精品久久久久久| 成人特级黄色片久久久久久久| 69av精品久久久久久| 欧美+日韩+精品| 一区二区三区四区激情视频 | 麻豆国产av国片精品| 日本黄大片高清| 欧美乱妇无乱码| 悠悠久久av| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 热99re8久久精品国产| 日韩免费av在线播放| 热99re8久久精品国产| 久久久久亚洲av毛片大全| 国产中年淑女户外野战色| 日本与韩国留学比较| 国产精品亚洲av一区麻豆| 中文字幕人成人乱码亚洲影| 一本精品99久久精品77| 一二三四社区在线视频社区8| 亚洲三级黄色毛片| 国产三级黄色录像| 人人妻人人看人人澡| 最近视频中文字幕2019在线8| 免费av观看视频| 国产精品精品国产色婷婷| 高清在线国产一区| av天堂在线播放| 内地一区二区视频在线| 99久久精品热视频| 成人无遮挡网站| 少妇的逼水好多| 少妇人妻一区二区三区视频| 国产亚洲精品久久久com| 少妇熟女aⅴ在线视频| 国产精品,欧美在线| 51国产日韩欧美| 麻豆成人av在线观看| av在线天堂中文字幕| 久久国产精品人妻蜜桃| 久久国产乱子免费精品| 日韩 亚洲 欧美在线| 亚洲专区国产一区二区| 国产精品日韩av在线免费观看| av黄色大香蕉| 国产真实伦视频高清在线观看 | 国产精品女同一区二区软件 | 又爽又黄a免费视频| 午夜影院日韩av| 成人性生交大片免费视频hd| 免费av不卡在线播放| 午夜亚洲福利在线播放| 国产成人a区在线观看| 在线观看一区二区三区| 99久久精品国产亚洲精品| 日韩欧美精品v在线| 国产精品久久久久久久久免 | 免费在线观看成人毛片| 91av网一区二区| 久久伊人香网站| 十八禁网站免费在线| 99久久99久久久精品蜜桃| av视频在线观看入口| 日本成人三级电影网站| 日韩有码中文字幕| 一a级毛片在线观看| 欧美高清性xxxxhd video| 97超视频在线观看视频| 99久久99久久久精品蜜桃| 69av精品久久久久久| 亚洲电影在线观看av| 一级黄片播放器| 久久国产乱子免费精品| 久久人妻av系列| 亚洲无线在线观看| 日韩国内少妇激情av| 高清毛片免费观看视频网站| 在线观看av片永久免费下载| 国产v大片淫在线免费观看| 欧美午夜高清在线| 精品久久久久久久久久久久久| 色吧在线观看| 99久久99久久久精品蜜桃| 日韩av在线大香蕉| 日本黄大片高清| 两人在一起打扑克的视频| 他把我摸到了高潮在线观看| 中文在线观看免费www的网站| 哪里可以看免费的av片| 人人妻人人看人人澡| 性插视频无遮挡在线免费观看| 欧美一区二区精品小视频在线| 一级av片app| 欧美黑人欧美精品刺激| 一个人看视频在线观看www免费| 亚洲精品影视一区二区三区av| 日本免费一区二区三区高清不卡| 亚洲久久久久久中文字幕| 免费电影在线观看免费观看| 91在线观看av| 一本久久中文字幕| 国产三级在线视频| 天堂影院成人在线观看| 偷拍熟女少妇极品色| 成人特级黄色片久久久久久久| 两人在一起打扑克的视频| 久久中文看片网| netflix在线观看网站| 国产精品久久视频播放| 午夜免费成人在线视频| 国产aⅴ精品一区二区三区波| av在线天堂中文字幕| 国产精品久久久久久久电影| 99久久精品国产亚洲精品| 我的女老师完整版在线观看| 在线观看舔阴道视频| 嫁个100分男人电影在线观看| 午夜福利在线在线| 最近最新中文字幕大全电影3| 国产精品女同一区二区软件 | 男女床上黄色一级片免费看| 国产探花极品一区二区| 国产欧美日韩一区二区精品| 亚洲精品成人久久久久久| 高潮久久久久久久久久久不卡| 欧美成人性av电影在线观看| ponron亚洲| 国产精品久久电影中文字幕| 亚洲国产欧美人成| 三级男女做爰猛烈吃奶摸视频| aaaaa片日本免费| 色吧在线观看| 伊人久久精品亚洲午夜| 麻豆国产av国片精品| 午夜a级毛片| 99热精品在线国产| 亚洲精品影视一区二区三区av| 国产精品影院久久| 精品人妻一区二区三区麻豆 | 国产探花在线观看一区二区| 亚洲黑人精品在线| 人人妻,人人澡人人爽秒播| 丰满人妻熟妇乱又伦精品不卡| 黄色视频,在线免费观看| 精品一区二区三区视频在线观看免费| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 欧美区成人在线视频| 国产成人欧美在线观看| 九色成人免费人妻av| 99久久九九国产精品国产免费| 国产成人aa在线观看| 日本 av在线| netflix在线观看网站| 国产亚洲av嫩草精品影院| 神马国产精品三级电影在线观看| 国产色爽女视频免费观看| 国产高清有码在线观看视频| 一进一出抽搐gif免费好疼| 直男gayav资源| 我要看日韩黄色一级片| 黄色日韩在线| 99久久精品国产亚洲精品| 十八禁网站免费在线| 国产黄片美女视频| aaaaa片日本免费| www.999成人在线观看| 网址你懂的国产日韩在线| 99久久精品国产亚洲精品| 欧美精品国产亚洲| 欧美精品啪啪一区二区三区| 午夜激情欧美在线| 欧美黑人欧美精品刺激| 网址你懂的国产日韩在线| 麻豆av噜噜一区二区三区| 亚洲熟妇熟女久久| 91狼人影院| 色精品久久人妻99蜜桃| 少妇人妻一区二区三区视频| 丁香六月欧美| 美女cb高潮喷水在线观看| 精品久久久久久,| 高清在线国产一区| 国内毛片毛片毛片毛片毛片| 无人区码免费观看不卡| 欧美日韩福利视频一区二区| 国产男靠女视频免费网站|