• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sahlqvist Correspondence Theory for Modal Logic with Quantification over Relations*

    2024-01-10 02:23:26FeiLiangZhiguangZhao
    邏輯學研究 2023年6期

    Fei Liang Zhiguang Zhao

    Abstract. Lehtinen (2008) introduced a new concept of validity of modal formulas,where quantification over binary relations is allowed for the so called “helper modalities”,and the “boss modalities” are similar to ordinary modalities in modal logic in the sense that they are interpreted as a fixed binary relation in a Kripke frame.In the present paper,we study the correspondence theory for this validity notion.We define the class of Sahlqvist formulas for this validity notion,each formula of which has a first-order frame correspondent,and define the algorithm ALBARQ to compute the first-order correspondents of this class.

    1 Introduction

    Lehtinen ([6]) introduced a new concept of validity of modal formulas,which allows,from the perspective of second-order logic,quantification over binary relations.In this definition of validity,if the modal similarity type isτ={◇1,...,◇n},then we say that the modal formulaφisτ-valid in a setW(notationW?τ φ) iff it is valid in each frame F=(W,R1,...,Rn).With the help of the standard translation,assume that onlyp1,...,pkoccur inφ,then theτ-validity in a setWcan be equivalently written as:

    As is shown in[6,Example 5.1.2,5.1.3],this notion of validity can be used to define the size of the domain.Indeed,takeτ={◇},

    In this definition,set validity allows us to talk about the size of a domain,but we lose the possibility to talk about relations.Therefore,Lehtinen proposes a more general perspective by allowing some relations to behelpersand others to bebosses,such that we only quantify over the helpers and keep the bosses similar to the standard Kripke frame validity.

    In the new definition,the similarity typeτis defined to be the disjoint union ofτHandτB,where modalities inare calledhelpers,and modalities inare calledbosses.

    We say that a formula isτH-validin a frame(W,R1,...,Rn),if

    for all helper relationsH1,...,Hm.With the help of the standard translation,theτH-validityin F=(W,R1,...,Rn)can be reformulated as

    With the notion ofτH-validity,we can use modal formulas to define first-order properties of Kripke frames that cannot be defined using standard validity notion.

    Example 1(Example 5.1.7 in[6]).LetτB={◇},τH={◇H},and F=(W,R).Then we have

    In the present paper,we study the Sahlqvist correspondence theory of this validity notion,namely,we define a class of Sahlqvist formulas in the modal language of helpers and bosses,and define an Ackermann Lemma Based Algorithm ALBARQ1Here RQ stands for “relation quantifier”.to compute the first-order correspondents of Sahlqvist formulas.

    The structure of the paper is organized as follows: Section 2 presents preliminaries on modal logic of helpers and bosses.Section 3 defines Sahlqvist formulas and inequalities.Section 4 defines the expanded modal language,the first-order correspondence language and the standard translation,which will be used in the algorithm.Section 5 defines the Ackermann Lemma Based Algorithm ALBARQ.Section 6 proves the soundness of the algorithm.Section 7 shows that ALBARQsucceeds on Sahlqvist formulas.Section 8 gives some examples.Section 9 gives conclusions.

    2 Preliminaries

    In the present section,we collect the preliminaries on modal logic with helpers and bosses.For more details,see[6,Section 5].

    2.1 Language and Syntax

    Definition 1.Given a set Prop of propositional variables,a finite setτH={,...,},a finite setsuch thatτH ∩τB=?,the modal language with helpers and bosses is defined recursively as follows:

    wherep ∈Prop,◇∈τH ∪τB. □and?are defined in the standard way.We call a formulapureif it contains no propositional variables.We useτ:=(τH,τB) to denote thesimilarity typeof the language.Throughout the article,we will also make substantial use of the following expressions:

    (1) Aninequalityis of the formφ ≤ψ,whereφandψare formulas.

    (2) Aquasi-inequalityis of the formφ1≤ψ1& ...&φn ≤ψn ?φ ≤ψ.

    We will find it easy to work with inequalitiesφ ≤ψin place of implicative formulasφψin Section 3.

    2.2 Semantics

    Definition 2.Given a similarity typeτ=(τH,τB),aτ-Kripke frameis a tuple F=(W,R1,...,Rn,H1,...,Hm)whereW≠ ?is thedomainof F,R1,...,Rn,H1,...,Hmareaccessibility relationswhich are binary relations onW,and eachRicorresponds to,eachHicorresponds to.The underlyingτB-Kripke frameof aτ-Kripke frame is a tuple F=(W,R1,...,Rn)where eachRicorresponds torespectively and no relations forare there.τB-Kripke frames are used to define validity.Aτ-Kripke modelis a pair M=(F,V)where F is aτ-Kripke frame andV: Prop(W) is avaluationon F.Now the satisfaction relation is defined as follows2The basic case and the Boolean cases are defined as usual,and here we only give the clauses for the modalities.: given anyτ-Kripke model M=(W,R1,...,Rn,H1,...,Hm,V),anyw ∈W,

    For any formulaφ,we let?φ?M={w ∈W|M,w?φ}denote thetruth setofφin M.The formulaφisglobally trueon M(notation:M ?φ)if?φ?M=W.The crucial difference between modal logic with helpers and bosses and ordinary modal logic is the definition of validity.Validity in the former is only defined onτB-Kripke frames:Aτ-formulaφisvalidon aτB-Kripke frame F=(W,R1,...,Rn)(notation:F ?φ)ifφis globally true on(F,H1,...,Hm,V)for all helper relationsH1,...,Hmand all valuationsV.The semantics of inequalities and quasi-inequalities are given as follows:

    The definitions of validity are similar to formulas.It is easy to see thatt M ?φ ≤ψiff M ?φψ.

    3 Sahlqvist Formulas and Inequalities

    In this section,we define Sahlqvist formulas and inequalities in the similarity typeτ,in the style of unified correspondence[2].We collect preliminaries here.

    Definition 3(Order-type).(cf.[4,p.346])For ann-tuple(p1,...,pn)of propositional variables,an order-typeεis an element in{1,?}n.We say thatpihas ordertype 1(resp.?)with respect toεifεi=1(resp.εi=?),and denoteε(pi)=1(resp.ε(pi)=?).We useε?to denote the order-type whereε?(pi)=1(resp.ε?(pi)=?)iffε(pi)=?(resp.ε(pi)=1).

    Definition 4(Signed generation tree).(cf.[5,Definition 4])Thepositive(resp.negative)generation treeof anyτ-formulaφis defined by first labelling the root of the generation tree ofφwith+(resp.-)and then labelling the children nodes as follows:

    · Assign the same sign to the children nodes of any node labelled with ∨,∧,,

    · Assign the opposite sign to the child node of any node labelled with ?;

    · Assign the opposite sign to the first child node and the same sign to the second child node of any node labelled with;

    Nodes in signed generation trees are calledpositive(resp.negative)if they are signed+(resp.-).

    We give an example of signed generation tree in Figure 1.

    Figure 1: Positive generation tree for (p ∨?□q)◇q

    For anyτ-formulaφ(p1,...pn),any order-typeεovern,and anyi=1,...,n,anε-critical nodein a signed generation tree ofφis a leaf node +piwhenεi=1 or -piwhenεi=?.Anε-critical branchin a signed generation tree is a branch from anε-critical node.Theε-critical occurrences are intended to be those which the algorithm ALBARQwill solve for.

    We use+p?+φ(resp.-p?+φ)to indicate that an occurrence of a propositional variablepinherits the positive(resp.negative)sign from the positive generation tree+φ,and say thatpispositive(resp.negative)inφif+p?+φ(resp.-p?+φ)for all occurrences ofpinφ.

    Definition 5.(cf.[5,Definition 5])Nodes in signed generation trees are calledouternodesandinner nodes,according to Table 1.Here □stands for,◇stands for

    Table 1: Outer and Inner nodes.

    A branch in a signed generation tree isexcellentif it is the concatenation of two pathsP1andP2,one of which might be of length 0,such thatP1is a path from the leaf consisting(apart from variable nodes)of inner nodes only,andP2consists(apart from variable nodes)of outer nodes only.

    Definition 6(Sahlqvist inequalities).(cf.[5,Definition 6]) For any order-typeε,the signed generation tree?φ(where?∈{+,-}) of a formulaφ(p1,...pn) isε-Sahlqvistif

    · for all 1≤i ≤n,everyε-critical branch with leafpiis excellent;

    · for every branch(notice that here it might not beε-critical)with occurrences of+◇Hor-□H,every node from the root to this occurrence of+◇Hor-□Hin the signed generation tree is an outer node.

    An inequalityφ ≤ψisε-Sahlqvistif the signed generation trees+φand-ψareε-Sahlqvist.An inequalityφ ≤ψisSahlqvistif it isε-Sahlqvist for someε.A formulaφψis Sahlqvist if the inequalityφ ≤ψis a Sahlqvist inequality.

    Example 2.An example of Sahlqvist formula in our language is ◇H□Bp □B◇Hp,which is similar to the Geach formula in ordinary modal logic.Notice that here we have position restrictions on the first occurrence of ◇H.

    The classification of outer nodes and inner nodes is based on how different connectives behave in the algorithm.When the input inequality is a Sahlqvist inequality,the algorithm first decompose the outer part of the formula,and then decompose the inner part of the formula,which will be shown in the success proof of the algorithm in Section 7.

    The difference between the present setting and ordinary modal logic is that we have additional requirement of the positions of helper modalities,which will be clear from the execution of the algorithm.

    4 The Expanded Modal Language,First-Order Correspondence Language and Standard Translation

    4.1 The Expanded Modal Language

    In the present subsection,we define the expanded modal language,which will be used in the execution of the algorithm:

    where i∈Nom arenominalsas in hybrid logic which are interpreted as singleton sets,∈τH,∈τB,S={(i1,j1),...,(ik,jk)}for some pairs(i1,j1),...,(ik,jk).

    The reason for introducing the nominals and S-modalities is to compute the minimal valuations for propositional variables and for the H-modalities(which are essentially quantified by second-order quantifiers in the validity definition),therefore we can eliminate them to get a quasi-inequality which is essentially quantified by firstorder quantifiers.

    □Sand ◇Sare interpreted on the relationS:={(V(i1),V(j1)),...,(V(ik),V(jk))}.For ■and ◆,they are interpreted as the box and diamond modality on the inverse relation,S-1,according to the superscipt and subscript,respectively.TheS-modalities are interpreted as the computation result of the minimal relations for the helper modalities,which is similar to the minimal valuations of propositional variables in the algorithm ALBARQ.

    For the semantics of the expanded modal language,the valuation is defined asV: Prop ∪NomP(W)whereV(i)is defined as a singleton as in hybrid logic,and the additional semantic clauses can be given as follows:

    4.2 The first-order correspondence language and the standard translation

    In the first-order correspondence language,we have a binary predicate symbolHicorresponding to the binary relationHi,a binary predicate symbolRjcorresponding to the binary relationRj,a set of constant symbolsicorresponding to each nominal i,a set of unary predicate symbolsPcorresponding to each propositional variablep.Notice that we do not have binary predicate symbols for theSrelations.

    Definition 7.For the standard translation of the expanded modal language,the basic propositional cases and the Boolean cases as well as the modal cases for boss modalities are defined as usual and hence omitted,the other cases are defined as follows:

    It is easy to see that this translation is correct:

    Proposition 1(Folklore.).For any Kripke modelM,any w ∈W and any expanded modal formula φ,

    For inequalities,quasi-inequalities,the standard translation is given in a global way:

    Definition 8.·ST(φ ≤ψ):=?x(STx(φ)STx(ψ));

    ·ST(φ1≤ψ1&...&φn ≤ψn ?φ ≤ψ):=ST(φ1≤ψ1)∧...∧ST(φn ≤ψn)ST(φ ≤ψ).

    Proposition 2(Folklore.).For any Kripke modelM,any inequalityIneq,any quasiinequalityQuasi,

    5 The Algorithm ALBARQ

    In this section,we define the algorithm ALBARQwhich computes the firstorder correspondents of input Sahlqvist formulas,in the style of[3,4].The algorithm receives an input formulaφψand transforms it into an inequalityφ ≤ψ.Then the algorithm goes in three steps.

    1.Preprocessing and first approximation:

    In the generation tree of+φand-ψ3The discussion below relies on the definition of signed generation tree in Section 3.In what follows,we identify a formula with its signed generation tree.,

    (a) Apply the distribution rules:

    (b) Apply the splitting rules: rewriteα ≤β ∧γasα ≤βandα ≤γ;rewriteα ∨β ≤γasα ≤γandβ ≤γ;

    (c) Apply the monotone and antitone variable-elimination rules:

    forβ(p)positive inpandα(p)negative inp.

    We denote by Preprocess(φψ)the finite set{φi ≤ψi}i∈Iof inequalities obtained after the exhaustive application of the previous rules.Then we apply the following first approximation rule to every inequality in Preprocess(φψ):

    Here,i0and i1are special fresh nominals.Now we get a set of inequalities{i0≤φi,ψi ≤?i1}i∈I.

    2.The reduction stage:

    In this stage,for each{i0≤φi,ψi ≤?i1},we apply the following rules to prepare for eliminating all the propositional variables and helper modalities:

    (a) Splitting rules(similar to the splitting rules in Stage 1);

    (b) Approximation rules:

    The nominals introduced by the approximation rules must not occur in the system before applying the rule,and ◇stands for,or ◇S,□stands for,or □S.

    (c) Residuation rules:

    (d) Ackermann rules:

    By the Ackermann rules,we compute the minimal/maximal valuation for propositional variables and minimal valuation for helper modalities and use the Ackermann rules to eliminate all the propositional variables and helper modalities.These three rules are the core of ALBARQ,since their application eliminates propositional variables and helper modalities.In fact,all the preceding steps are aimed at reaching a shape in which the Ackermann rules can be applied.Notice that an important feature of these rules is that they are executed on the whole set of inequalities,and not on a single inequality.

    The right-handed Ackermann rule for propositional variables:

    where:

    i.Eachβiis positive inp,and eachγinegative inp,for 1≤i ≤m;

    ii.Eachαiis pure.

    The left-handed Ackermann rule for propositional variables:

    where:

    i.Eachβiis negative inp,and eachγipositive inp,for 1≤i ≤m;

    ii.Eachαiis pure.

    The right-handed Ackermann rule for helper modalities:

    where:

    3.Output:If in the previous stage,for some{i0≤φi,ψi ≤?i1},the algorithm gets stuck,i.e.some propositional variables or helper modalities cannot be eliminated by the application of the reduction rules,then the algorithm halts and output “failure”.Otherwise,each initial tuple{i0≤φi,ψi ≤?i1}of inequalities after the first approximation has been reduced to a set of pure inequalities Reduce(φi ≤ψi)without helper modalities,and then the output is a set of quasi-inequalities{&Reduce(φi ≤ψi)?i0≤?i1:φi ≤ψi ∈Preprocess(φψ)}without helper modalities,where &is the big metaconjunction in quasi-inequalities.Then the algorithm use the standard translation to transform the quasi-inequalities into first-order formulas.

    6 Soundness of ALBARQ

    In the present section,we will prove the soundness of the algorithm ALBARQwith respect to Kripke frames.The basic proof structure is similar to[7].

    Theorem 3(Soundness).IfALBARQruns successfully on φψ and outputsFO(φψ),then for any τB-Kripke frameF=(W,R1,...,Rn),

    Proof.The proof goes similarly to [4,Theorem 8.1].Letφi ≤ψi,1≤i ≤ndenote the inequalities produced by preprocessingφψafter Stage 1,and{i0≤φi,ψi ≤?i1}denote the inequalities after the first-approximation rule,Reduce(φi ≤ψi) denote the set of pure inequalities after Stage 2,and FO(φ ■ψ) denote the standard translation of the quasi-inequalities into first-order formulas,then we have the following chain of equivalences:

    · The equivalence between(1)and(2)follows from Proposition 4;

    · the equivalence between(2)and(3)follows from Proposition 5;

    · the equivalence between(3)and(4)follows from Propositions 6,7 and 8;

    · the equivalence between(4)and(5)follows from Proposition 2.□

    In the remainder of this section,we prove the soundness of the rules in Stage 1,2 and 3.

    Proposition 4(Soundness of the rules in Stage 1).For the distribution rules,the splitting rules and the monotone and antitone variable-elimination rules,they are sound in both directions inF,i.e.the inequality before the rule is valid inFiff the inequality(-ies)after the rule is(are)valid inF.

    Proof.The proof is the same as[7,Proposition 6.2].□

    Proposition 5.(2)and(3)are equivalent,i.e.the first-approximation rule is sound inF.

    Proof.The proof is the same as[7,Proposition 6.3].□

    The next step is to show the soundness of each rule of Stage 2.For each rule,before the application of this rule we have a set of inequalitiesS(which we call thesystem),after applying the rule we get a set of inequalitiesS′,the soundness of Stage 2 is then the equivalence of the following two conditions:

    · F ?&S ?i0≤?i1;

    · F ?&S′?i0≤?i1;

    where&Sdenote the meta-conjunction of inequalities ofS.It suffices to show the following property:

    · For anyτB-Kripke frame F=(W,R1,...,Rn),any binary relationsH1,...,Hm,any valuationVon it,if(F,H1,...,Hm,V)?S,then there is a valuationV′and binary relations,...,such thatV′(i0)=V(i0),V′(i1)=V(i1)and(F,,...,,V′)?S′;

    · For anyτB-Kripke frame F=(W,R1,...,Rn),any binary relations,...,,any valuationV′on it,if(F,,...,H′m,V′) ?S′,then there is a valuationVand binary relationsH1,...,Hmsuch thatV(i0)=V′(i0),V(i1)=V′(i1)and(F,H1,...,Hm,V)?S.

    Proposition 6.The splitting rules,the approximation rules for ◇,□,■,the residuation rules for?,◇,□are sound inF.

    Proof.The proof is similar to[7,Proposition 6.4 and 6.11].□

    Proposition 7.The Ackermann rules for propositional variables are sound inF.

    Proof.The proof is similar to[7,Proposition 6.17].□

    Proposition 8.The right-handed Ackermann rule for helper modalities is sound inF.

    This rule is the key rule of the algorithm ALBARQsince it eliminates helper modalities.The proof method is similar to the soundness proof of the right-handed Ackermann rule for propositional variables.Without loss of generality,we assume thatk1=k2=m=1.To prove Proposition 8,it suffices to prove the following right-handed Ackermann lemma for helpers:

    Lemma 1.Assume that β1is positive inand negative inandγ1is negative inand positive inthen for any τB-Kripke frameF=(W,R1,...,Rn),any binary relations H1,...,Hm,any valuation V on it,thefollowing are equivalent

    (1) M:=(F,H1,...,Hm,V)?β1(S/Hi)≤γ1(S/Hi)?

    (2)there is a binary relationsuch thatM′:=(F,H1,...,Hi-1,,Hi+1,...,Hm,V)

    Since helper modalities with subscriptido not occur inβ1(S/Hi)andγ1(S/Hi),we have M ?β1(S/Hi)≤γ1(S/Hi).□

    7 Success

    In this section,we prove that ALBARQsucceeds on all Sahlqvist formulas.The proof structure is similar to[7].

    Theorem 9.ALBARQsucceeds on all Sahlqvist formulas.

    Definition 9(Definiteε-Sahlqvist inequality,similar to Definition 7.2 in[7]).Given any order-typeε,?∈{-,+},the signed generation tree?φof the termφ(p1,...,pn)isdefinite ε-Sahlqvistif there is no+∨,-∧occurring in the outer part on anε-critical branch.An inequalityφ ≤ψis definiteε-Sahlqvist if the trees+φand-ψare both definiteε-Sahlqvist.

    Lemma 2.Let {φi ≤ψi}i∈I=Preprocess(φψ)obtained by exhaustive application of the rules in Stage 1 on an input ε-Sahlqvist formula φψ.Then each φi ≤ψi is a definite ε-Sahlqvist inequality.

    Proof.Same as[7,Lemma 7.3].□

    Definition 10(Innerε-Sahlqvist signed generation tree,similar to Definition 7.4 in[7]).Given an order typeε,?∈{-,+},the signed generation tree?φof the termφ(p1,...,pn)isinner ε-Sahlqvistif its outer partP2on anε-critical branch is always empty,i.e.itsε-critical branches have inner nodes only.

    Lemma 3.Given inequalitiesi0≤φi and ψi ≤?i1obtained from Stage 1 where+φi and-ψi are definite ε-Sahlqvist,by applying the rules in Substage 1 of Stage 2 exhaustively,the inequalities that we get are in one of the following forms:

    1.pure inequalities which does not have occurrences of propositional variables?

    2.inequalities of the formi≤α where+α is inner ε-Sahlqvist?

    3.inequalities of the form β ≤?iwhere-β is inner ε-Sahlqvist.

    Proof.Similar to [7,Lemma 7.5].For the sake of the proof of the next lemma we repeat the proof here.Indeed,the rules in the Substage 1 of Stage 2 deal with outer nodes in the signed generation trees +φiand -ψiexcept +∨,-∧.For each rule,without loss of generality assume we start with an inequality of the form i≤α,then by applying the approximation rules,splitting rules and the residuation rules for negation in Stage 2,the inequalities we get are either a pure inequality without propositional variables,or an inequality where the left-hand side (resp.right-hand side) is i (resp.?i),and the other side is a formulaα′which is a subformula ofα,such thatα′has one root connective less thanα.Indeed,ifα′is on the left-hand side(resp.right-hand side)then-α′(+α′)is definiteε-Sahlqvist.

    By applying the rules in the Substage 1 of Stage 2 exhaustively,we can eliminate all the outer connectives in the critical branches,so for non-pure inequalities,they become of form 2 or form 3.□

    The next two lemmas are crucial to the success of the whole algorithm,which also justify the definition of Sahlqvist formulas and inequalities:

    Lemma 4.In Lemma 3,all the occurrences of+◇H’s and-□H’s are in the form ofi≤◇Hjand □H?j≤?i,and in form 2 and 3,+α and-β only contain positive occurrences of □H’s and negative occurrences of ◇H’s.

    Proof.As we can see from the proof of Lemma 3 and the second item of Definition 6 for Sahlqvist inequalities,during the decomposition of the outer part of the Sahlqvist signed generation trees,all occurrences of+◇H’s and-□H’s are in the outer part of the signed generation tree,hence are treated by the approximation rules.Before the application of the approximation rules,the inequalities are of the form i≤◇Hαor of the form □Hα ≤?i.By applying the approximation rules,they are in the form of i≤◇Hj and □H?j≤?i.For the rest of occurrences of ◇H’s and □H’s,they could only be in form 2 and 3,and ◇H’s occur only negatively and □H’s occur only positively.□

    Lemma 5.Assume we have inequalities of the form as described in Lemma 3 and 4,the right-handed Ackermann rule for helper modalities is applicable and therefore all helper modalities can be eliminated.

    Proof.It is easy to check that the shape of the system exactly satisfies the requirement of the application of the right-handed Ackermann rule for helper modalities.In addition,since in the result of the rule,some inequalities are deleted and the other inequalities have helper modalities replaced by the same kind of modalities(e.g.diamond by diamond,box by box,white connectives by white connectives,black connectives by black connectives),we still have pure inequalities and inequalities of the form 2 and 3 as described in Lemma 3,but now without helper modalities.□

    Lemma 6.Assume we have an inequalityi≤α or β ≤?iwhere+α and-β are inner ε-Sahlqvist,by applying the splitting rules and the residuation rules in Stage 2,we have inequalities of the following form:

    1.α ≤p,where ε(p)=1,α is pure?

    2.p ≤β,where ε(p)=?,β is pure?

    3.α ≤γ,where α is pure and+γ is ε?-uniform?

    4.γ ≤β,where β is pure and-γ is ε?-uniform.

    Proof.The proof is similar to[7,Lemma 7.6].Notice that for each input inequality,it is of the form i≤αorβ ≤?i,where+αand-βare innerε-Sahlqvist.By applying the splitting rules and the residuation rules,it is easy to check that the inequality will have one side pure,and the other side still innerε-Sahlqvist.By applying these rules exhaustively,one will either havepas the non-pure side (with thispon a critical branch),or have an innerε-Sahlqvist signed generation tree with no critical branch,i.e.,ε?-uniform.□

    Lemma 7.Assume we have inequalities of the form as described in Lemma 6,the Ackermann rules for propositional variables are applicable and therefore all propositional variables can be eliminated.

    Proof.Immediate observation from the requirements of the Ackermann rules.□

    Proof of Theorem 9Assume we have an Sahlqvist formulaas input.By Lemma 2,we get a set of definiteε-Sahlqvist inequalities.Then by Lemma 3,we get inequalities as described in Lemma 3 and 4.By Lemma 5,all helper modalities are eliminated.By Lemma 6,we get the inequalities as described.Finally by Lemma 7,the inequalities are in the right shape to apply the Ackermann rules for propositional variables,and thus we can eliminate all the propositional variables and the algorithm succeeds on the input.□

    8 Examples

    In this section we show how to run the algorithm ALBARQon some examples that we give in the introduction.By the Goldblatt-Thomason theorem [1,Theorem 3.19],a first-order definable class of Kripke frames is modally definable iff it is closed under taking bounded morphic images,generated subframes,disjoint unions and reflects ultrafilter extensions.Since|W|≤1 andR=W×Ware not closed under taking disjoint unions,they are not definable by ordinary modal formulas,so our results go beyond Sahlqvist theorem in ordinary modal logic.

    Example 3.We have input formula ◇Hp□Hp.To make the validity quantification pattern clear,we add quantifiers for the propositional variables,nominals and helper modalities:

    First we transform the input formula into inequality:

    Stage 1:By first approximation,we have:

    Stage 2:By the approximation rule for ◇H,we have:

    By the approximation rule for □H,we have:

    By the right-handed Ackermann rule for ◇Hand □H,we have(notice that there is no receiving inequalities,so we just eliminate the inequalities i≤◇Hk and □H?k′≤?j):

    By the right-handed Ackermann rule forp,we have:

    Stage 3:

    By standard translation,we have:

    By first-order logic,we have:

    By first-order logic,we have:

    which is:

    which is:

    Example 4.We have input formula □Bp□Hp.To make the validity quantification pattern clear,we add quantifiers for the propositional variables,nominals and helper modalities:

    First we transform the input formula into inequality:

    Stage 1:

    By first approximation,we have:

    Stage 2:

    By the approximation rule for □H,we have:

    By the right-handed Ackermann rule for □H,we have(notice that there is no receiving inequalities,so we just eliminate the inequality □H?k≤?j):

    By the left-handed Ackermann rule forp,we have:

    The following are not really obtained by rules in ALBARQ,but they are soundly obtained:

    Stage 3:

    By standard translation we have:

    which is:

    9 Conclusion

    In the present paper,we develop the correspondence theory for modal logic with helpers and bosses,define the Sahlqvist formulas in this setting,give an algorithm ALBARQwhich transforms input Sahlqvist formulas into their first-order correspondents.

    There is one issue remains to be dealt with.In the algorithm ALBARQ,we have the right-handed Ackermann rule for the helper modalities.It seems plausible to also have the left-handed Ackermann rule for the helper modalities,which is more difficult since+□H’s and-◇H’s do not occur in the outer part of the signed generation tree,they cannot be in the form of i ≤◇Hj or □H?j≤?i,which makes it more difficult to compute the corresponding minimal/maximal relation.Therefore we leave it to future work.

    午夜日韩欧美国产| 好男人在线观看高清免费视频| 亚洲激情在线av| 中文亚洲av片在线观看爽| 成人一区二区视频在线观看| 精品人妻熟女av久视频| 天美传媒精品一区二区| 最新中文字幕久久久久| 精品国产亚洲在线| 亚洲欧美日韩高清在线视频| 亚洲精品456在线播放app | 亚洲国产精品999在线| 亚洲av中文字字幕乱码综合| 国产精品自产拍在线观看55亚洲| av国产免费在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品野战在线观看| xxxwww97欧美| 一级作爱视频免费观看| 淫秽高清视频在线观看| 亚洲成人中文字幕在线播放| 亚洲av成人不卡在线观看播放网| 亚洲色图av天堂| 一本精品99久久精品77| 欧美色欧美亚洲另类二区| 成人无遮挡网站| 噜噜噜噜噜久久久久久91| 久久亚洲精品不卡| 国产乱人视频| 在线天堂最新版资源| 亚洲色图av天堂| 18+在线观看网站| 亚洲第一电影网av| 精品无人区乱码1区二区| а√天堂www在线а√下载| 深夜精品福利| 男人舔奶头视频| 成年版毛片免费区| 老女人水多毛片| 久久久国产成人免费| 69人妻影院| 91在线精品国自产拍蜜月| 深爱激情五月婷婷| a级毛片免费高清观看在线播放| 我要看日韩黄色一级片| 有码 亚洲区| 国产一区二区亚洲精品在线观看| 亚洲国产欧美人成| 国产黄色小视频在线观看| 天美传媒精品一区二区| 亚洲七黄色美女视频| 亚洲熟妇熟女久久| 男女床上黄色一级片免费看| 亚洲av美国av| 丰满的人妻完整版| 一区福利在线观看| 最好的美女福利视频网| 亚洲自拍偷在线| 99热只有精品国产| 午夜福利欧美成人| 成人国产一区最新在线观看| 亚洲第一区二区三区不卡| 国产黄片美女视频| 亚洲国产精品合色在线| 国产精品人妻久久久久久| 国产伦精品一区二区三区四那| 国产高清三级在线| 日韩欧美国产在线观看| 如何舔出高潮| 日韩欧美在线二视频| 欧美另类亚洲清纯唯美| 99热这里只有是精品在线观看 | 国产精品电影一区二区三区| 免费在线观看日本一区| 午夜精品一区二区三区免费看| 免费看日本二区| 国产亚洲欧美98| 国产中年淑女户外野战色| 午夜精品在线福利| 免费观看的影片在线观看| 亚洲av免费高清在线观看| 亚洲最大成人手机在线| 色播亚洲综合网| 亚洲五月天丁香| 给我免费播放毛片高清在线观看| 久久午夜亚洲精品久久| 男人和女人高潮做爰伦理| 婷婷六月久久综合丁香| 欧美日本亚洲视频在线播放| 久久久久亚洲av毛片大全| 日本与韩国留学比较| avwww免费| www.999成人在线观看| 亚洲精品粉嫩美女一区| 淫秽高清视频在线观看| 免费看美女性在线毛片视频| 91久久精品国产一区二区成人| 亚洲国产精品成人综合色| 亚洲av第一区精品v没综合| 国产精品精品国产色婷婷| 乱人视频在线观看| 少妇裸体淫交视频免费看高清| 色综合站精品国产| 长腿黑丝高跟| 18禁在线播放成人免费| 女人十人毛片免费观看3o分钟| 免费观看人在逋| 有码 亚洲区| 99在线人妻在线中文字幕| 久久99热这里只有精品18| 国产成年人精品一区二区| 美女高潮喷水抽搐中文字幕| 91麻豆精品激情在线观看国产| 在线免费观看的www视频| 亚洲自偷自拍三级| 亚洲av.av天堂| 国产精品一及| 亚洲av成人av| 狠狠狠狠99中文字幕| 露出奶头的视频| 欧美性猛交黑人性爽| 久久久久久国产a免费观看| 亚洲精品粉嫩美女一区| 亚洲无线在线观看| 九九热线精品视视频播放| 一区二区三区四区激情视频 | 亚洲,欧美精品.| 在线免费观看的www视频| 女生性感内裤真人,穿戴方法视频| 国产黄a三级三级三级人| 亚洲精品粉嫩美女一区| 国产精品爽爽va在线观看网站| 听说在线观看完整版免费高清| 综合色av麻豆| 露出奶头的视频| 制服丝袜大香蕉在线| 国产高清有码在线观看视频| 99国产精品一区二区蜜桃av| 亚洲av第一区精品v没综合| 51午夜福利影视在线观看| 99国产精品一区二区蜜桃av| 日韩av在线大香蕉| 中国美女看黄片| 久久午夜亚洲精品久久| 中文字幕精品亚洲无线码一区| 国产单亲对白刺激| 欧美另类亚洲清纯唯美| 日本一本二区三区精品| 午夜精品一区二区三区免费看| 小蜜桃在线观看免费完整版高清| 欧美日韩瑟瑟在线播放| 波野结衣二区三区在线| 999久久久精品免费观看国产| ponron亚洲| 2021天堂中文幕一二区在线观| 国产av在哪里看| 日本 av在线| 国产91精品成人一区二区三区| 亚洲激情在线av| 丰满人妻一区二区三区视频av| 国产成人福利小说| 欧美性感艳星| 亚洲av第一区精品v没综合| 性插视频无遮挡在线免费观看| 日韩高清综合在线| 最近在线观看免费完整版| 在线看三级毛片| 中文字幕av在线有码专区| 国产一级毛片七仙女欲春2| 草草在线视频免费看| 我要搜黄色片| 18禁黄网站禁片午夜丰满| 美女 人体艺术 gogo| 高清在线国产一区| 在线播放无遮挡| 在线天堂最新版资源| 午夜福利在线在线| 亚洲自偷自拍三级| 超碰av人人做人人爽久久| 黄色视频,在线免费观看| 亚洲精品色激情综合| 我的女老师完整版在线观看| 国产精品一及| 亚洲国产欧洲综合997久久,| 99国产综合亚洲精品| 精品久久国产蜜桃| 亚洲av.av天堂| 淫秽高清视频在线观看| 免费观看的影片在线观看| 最新在线观看一区二区三区| 国产一区二区三区在线臀色熟女| 国产精品久久视频播放| 成年免费大片在线观看| 精品人妻一区二区三区麻豆 | 老熟妇仑乱视频hdxx| 亚洲自偷自拍三级| 国产亚洲av嫩草精品影院| 午夜激情福利司机影院| 性欧美人与动物交配| av黄色大香蕉| 成人一区二区视频在线观看| 色综合婷婷激情| 日日摸夜夜添夜夜添av毛片 | 脱女人内裤的视频| 赤兔流量卡办理| 国产成+人综合+亚洲专区| 婷婷精品国产亚洲av| 麻豆久久精品国产亚洲av| 久久久久亚洲av毛片大全| 一级a爱片免费观看的视频| 国产精品av视频在线免费观看| 亚洲av免费在线观看| 亚洲av日韩精品久久久久久密| 最近中文字幕高清免费大全6 | 美女免费视频网站| 久久精品国产亚洲av香蕉五月| 国产精品精品国产色婷婷| 精品一区二区三区视频在线| 99热这里只有是精品在线观看 | 日本免费一区二区三区高清不卡| 国产男靠女视频免费网站| 久久亚洲精品不卡| 少妇的逼好多水| 嫩草影院精品99| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩高清专用| 欧美3d第一页| 亚洲天堂国产精品一区在线| 免费一级毛片在线播放高清视频| 亚洲最大成人中文| 成年版毛片免费区| av在线蜜桃| 高清日韩中文字幕在线| 中亚洲国语对白在线视频| 国产视频内射| 国产精品电影一区二区三区| 在线十欧美十亚洲十日本专区| 色哟哟哟哟哟哟| 精品国产三级普通话版| 亚洲内射少妇av| 午夜福利视频1000在线观看| 久久精品国产亚洲av天美| 国产伦一二天堂av在线观看| 国内少妇人妻偷人精品xxx网站| 国产不卡一卡二| 亚洲无线在线观看| 午夜老司机福利剧场| 婷婷丁香在线五月| 国产精品一区二区免费欧美| 欧美激情久久久久久爽电影| 亚洲电影在线观看av| 美女免费视频网站| 久久久久久久午夜电影| 青草久久国产| 久久伊人香网站| 成人欧美大片| 在线a可以看的网站| 亚洲美女黄片视频| 亚洲精品色激情综合| а√天堂www在线а√下载| 久久久国产成人精品二区| 九色国产91popny在线| 一级黄色大片毛片| 男女做爰动态图高潮gif福利片| 搡老妇女老女人老熟妇| 很黄的视频免费| 成人一区二区视频在线观看| 亚洲最大成人中文| 中文亚洲av片在线观看爽| 男女做爰动态图高潮gif福利片| 日韩av在线大香蕉| 蜜桃久久精品国产亚洲av| 国产色婷婷99| 小说图片视频综合网站| 午夜福利欧美成人| 成人午夜高清在线视频| 亚洲男人的天堂狠狠| 亚洲av二区三区四区| 一进一出好大好爽视频| 国产真实乱freesex| 久久久久久久久久成人| 欧美+亚洲+日韩+国产| 99热只有精品国产| 丝袜美腿在线中文| 欧美黄色淫秽网站| 又黄又爽又免费观看的视频| 日韩人妻高清精品专区| 深爱激情五月婷婷| 欧美黄色淫秽网站| 成人永久免费在线观看视频| 97碰自拍视频| 久久精品综合一区二区三区| 成人性生交大片免费视频hd| 免费黄网站久久成人精品 | 91午夜精品亚洲一区二区三区 | 国产亚洲精品久久久久久毛片| 嫩草影视91久久| 9191精品国产免费久久| 欧美高清性xxxxhd video| 亚洲色图av天堂| 免费电影在线观看免费观看| 久久久色成人| 看黄色毛片网站| 国产精品综合久久久久久久免费| 神马国产精品三级电影在线观看| 亚洲片人在线观看| 搡老妇女老女人老熟妇| 日日干狠狠操夜夜爽| 久9热在线精品视频| 欧美高清性xxxxhd video| 亚洲av二区三区四区| 在线观看av片永久免费下载| 欧美精品国产亚洲| 日韩高清综合在线| 中文在线观看免费www的网站| 日本黄色视频三级网站网址| 男女下面进入的视频免费午夜| 久久久久久大精品| 精品一区二区三区视频在线| 免费一级毛片在线播放高清视频| 91久久精品电影网| 在线免费观看的www视频| 国产成人影院久久av| 免费在线观看日本一区| 色在线成人网| 嫩草影院新地址| 91麻豆av在线| 99国产精品一区二区三区| 亚洲美女黄片视频| 最近中文字幕高清免费大全6 | 九九久久精品国产亚洲av麻豆| 日本免费a在线| av女优亚洲男人天堂| 亚洲国产精品久久男人天堂| 精品国产亚洲在线| 九色成人免费人妻av| 亚洲欧美清纯卡通| 色尼玛亚洲综合影院| 又黄又爽又免费观看的视频| 美女免费视频网站| 中文字幕熟女人妻在线| 熟女人妻精品中文字幕| 午夜精品一区二区三区免费看| 少妇高潮的动态图| 中文字幕人成人乱码亚洲影| 亚洲性夜色夜夜综合| 久99久视频精品免费| 男女那种视频在线观看| 全区人妻精品视频| 久久久久久久久大av| 嫩草影院入口| 亚洲av不卡在线观看| 看片在线看免费视频| 91久久精品电影网| 精品久久久久久久久av| 国产人妻一区二区三区在| 中文在线观看免费www的网站| 亚洲精品一卡2卡三卡4卡5卡| 美女免费视频网站| 亚洲av第一区精品v没综合| 最新在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 精品福利观看| 男人舔女人下体高潮全视频| 两个人视频免费观看高清| 国产单亲对白刺激| 国产探花极品一区二区| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女| 国产中年淑女户外野战色| 午夜免费男女啪啪视频观看 | 岛国在线免费视频观看| 色av中文字幕| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线| 亚洲欧美日韩卡通动漫| 成熟少妇高潮喷水视频| 国产黄片美女视频| 午夜福利欧美成人| 免费搜索国产男女视频| 老司机福利观看| 国内精品一区二区在线观看| 亚洲成人中文字幕在线播放| 51午夜福利影视在线观看| 久久草成人影院| 99国产精品一区二区三区| 波多野结衣高清作品| 久久99热6这里只有精品| .国产精品久久| 男人舔女人下体高潮全视频| 久久天躁狠狠躁夜夜2o2o| 免费在线观看日本一区| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| 中文字幕高清在线视频| 一区福利在线观看| 欧美xxxx性猛交bbbb| 亚洲精品在线美女| 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久成人av| 久久精品91蜜桃| 久久人人爽人人爽人人片va | 国产精品久久电影中文字幕| 亚洲专区中文字幕在线| 天天躁日日操中文字幕| 看免费av毛片| 午夜福利18| 久久九九热精品免费| 中文字幕av在线有码专区| 中文字幕人成人乱码亚洲影| 亚洲五月婷婷丁香| 韩国av一区二区三区四区| 91麻豆精品激情在线观看国产| 午夜精品久久久久久毛片777| 久久久久免费精品人妻一区二区| 日本 av在线| 久99久视频精品免费| 两性午夜刺激爽爽歪歪视频在线观看| 99久久精品热视频| 久久午夜亚洲精品久久| 国产在线男女| 日韩欧美精品v在线| 禁无遮挡网站| 亚洲一区二区三区不卡视频| 国产免费av片在线观看野外av| 国产人妻一区二区三区在| 国产精品一区二区三区四区免费观看 | 午夜精品在线福利| 99精品在免费线老司机午夜| 亚洲国产精品999在线| 欧美色视频一区免费| 91在线观看av| www.色视频.com| 国产淫片久久久久久久久 | 91久久精品电影网| 日日干狠狠操夜夜爽| 九色国产91popny在线| 亚洲国产精品sss在线观看| 国产精华一区二区三区| 国产精品亚洲美女久久久| 国产精品一区二区三区四区久久| 97超级碰碰碰精品色视频在线观看| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 亚洲av不卡在线观看| 麻豆久久精品国产亚洲av| 91在线精品国自产拍蜜月| av专区在线播放| av国产免费在线观看| 桃红色精品国产亚洲av| 成人美女网站在线观看视频| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 啪啪无遮挡十八禁网站| 欧美激情国产日韩精品一区| 有码 亚洲区| 久久国产精品人妻蜜桃| 97碰自拍视频| 成人无遮挡网站| 日日摸夜夜添夜夜添av毛片 | 日本与韩国留学比较| 久久午夜福利片| 少妇熟女aⅴ在线视频| 天堂动漫精品| av黄色大香蕉| 国产伦精品一区二区三区视频9| 亚洲第一欧美日韩一区二区三区| 亚洲 欧美 日韩 在线 免费| 国产伦人伦偷精品视频| 91在线观看av| 一二三四社区在线视频社区8| 国产成人啪精品午夜网站| 国产黄片美女视频| 亚洲无线在线观看| 国产精品一区二区免费欧美| 97人妻精品一区二区三区麻豆| 午夜精品在线福利| 99久久九九国产精品国产免费| 国产亚洲欧美在线一区二区| 内地一区二区视频在线| 日韩精品青青久久久久久| 99riav亚洲国产免费| 国产精品亚洲美女久久久| 亚洲av美国av| 人妻久久中文字幕网| 99久久久亚洲精品蜜臀av| 久久亚洲真实| 91九色精品人成在线观看| 免费av毛片视频| 在线看三级毛片| 成年女人看的毛片在线观看| 国产伦人伦偷精品视频| 中文字幕久久专区| avwww免费| 99久久精品国产亚洲精品| 日本黄色视频三级网站网址| 一个人免费在线观看电影| 国内精品久久久久精免费| 欧美bdsm另类| 午夜激情欧美在线| 日本黄色视频三级网站网址| 狠狠狠狠99中文字幕| 丁香六月欧美| 国产欧美日韩一区二区三| 色视频www国产| 欧美日韩黄片免| 搡老妇女老女人老熟妇| 脱女人内裤的视频| 久久99热这里只有精品18| 国产亚洲欧美98| ponron亚洲| 免费观看的影片在线观看| 国产精品亚洲美女久久久| 国产av不卡久久| 久久精品国产亚洲av天美| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| 国产欧美日韩精品亚洲av| 老女人水多毛片| 一进一出好大好爽视频| 男人狂女人下面高潮的视频| 日本免费一区二区三区高清不卡| 国产精华一区二区三区| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 成年女人毛片免费观看观看9| 两个人的视频大全免费| 日韩欧美免费精品| 看免费av毛片| 深夜精品福利| 天堂影院成人在线观看| 国内揄拍国产精品人妻在线| 一级av片app| 亚洲成人中文字幕在线播放| 美女高潮的动态| 亚洲真实伦在线观看| 无人区码免费观看不卡| 午夜福利高清视频| 日本一二三区视频观看| 波野结衣二区三区在线| 欧美日韩乱码在线| 国产伦在线观看视频一区| 成人特级av手机在线观看| 日韩大尺度精品在线看网址| 国产成年人精品一区二区| 国产综合懂色| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 国产成年人精品一区二区| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 国产69精品久久久久777片| 人人妻,人人澡人人爽秒播| 一级作爱视频免费观看| 免费在线观看影片大全网站| 男人和女人高潮做爰伦理| 欧美日韩综合久久久久久 | 欧美激情久久久久久爽电影| 日本免费a在线| 欧美激情国产日韩精品一区| 俄罗斯特黄特色一大片| 国产探花极品一区二区| 亚洲欧美日韩卡通动漫| 国产伦在线观看视频一区| 欧美性猛交╳xxx乱大交人| 在线播放无遮挡| 亚洲最大成人av| 韩国av一区二区三区四区| 国产一区二区三区在线臀色熟女| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| www.色视频.com| 99久久成人亚洲精品观看| 国产精品久久久久久精品电影| 国产大屁股一区二区在线视频| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 久久久久久久久久黄片| 国产高清三级在线| 亚洲av美国av| 日本一本二区三区精品| 深夜精品福利| 天堂网av新在线| 久久精品影院6| 日日夜夜操网爽| 亚洲18禁久久av| 啦啦啦观看免费观看视频高清| 长腿黑丝高跟| 丁香六月欧美| 90打野战视频偷拍视频| 国产精品人妻久久久久久| 国产精品自产拍在线观看55亚洲| 小蜜桃在线观看免费完整版高清| 色综合站精品国产| 国产亚洲精品综合一区在线观看| 露出奶头的视频| 国产熟女xx| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 岛国在线免费视频观看| 老熟妇乱子伦视频在线观看| 免费搜索国产男女视频| 亚洲经典国产精华液单 | 欧美最黄视频在线播放免费| 长腿黑丝高跟| a级一级毛片免费在线观看| 噜噜噜噜噜久久久久久91| 欧美绝顶高潮抽搐喷水| 久久亚洲真实| 999久久久精品免费观看国产| 国产真实乱freesex|