• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring dielectric phenomena in sulflowerlike nanostructures via Monte Carlo technique

    2024-05-09 05:20:04SaberFadilHusseinSabbahMhirechKabouchiBahmadChaitanyJayprakashRaoraneSivaSankarSanaHassanFouadandMohamedHashem
    Communications in Theoretical Physics 2024年4期

    N Saber ,Z Fadil,? ,Hussein Sabbah ,A Mhirech ,B Kabouchi ,L Bahmad ,Chaitany Jayprakash Raorane,Siva Sankar Sana,Hassan Fouad and Mohamed Hashem

    1 Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI).Research Unit Labelled CNRST,URL-CNRST-17.Faculty of Sciences.PO Box 1014,Mohammed V University in Rabat,Morocco

    2 College of Engineering and Technology,American University of the Middle East,Egaila 54200,Kuwait

    3 School of Chemical Engineering,Yeungnam University,Gyeongsan,38541,Republic of Korea

    4 Applied Medical Science Department,Community College,King Saud University,PO Box 11433,Riyadh Saudi Arabia

    5 Department of Dental Health,College of Applied Medical Sciences,King Saud University,PO Box 12372,Riyadh,Saudi Arabia

    Abstract This research focuses on the electric behavior of a mixed ferrielectric sulflower-like nanostructure.The structure includes a core with spin -1atoms and a shell with spin -5/ 2atoms.The Blume–Capel model and the Monte Carlo technique (MCt) with the Metropolis algorithm are employed.Diagrams are established for absolute zero,investigating stable spin configurations correlated with various physical parameters.The MCt method explores phase transition behavior and electric hysteresis cycles under different physical parameters.

    Keywords: sulflower-like nanostructure,dielectric characteristics,Monte Carlo technique,phase transition,phase diagrams,electric hysteresis

    1.Introduction

    Efflorescence in science and nanotechnology have allowed for the successful synthesis of nanomaterials with diverse sizes and structures as well.In particular,carbon-sulfur compounds have gained colossal attention due to the possibility of using them in a myriad of organic electronic devices,including organic field-effect transistors,light modulators,light-emitting diodes,photovoltaic cells and hydrogen-storage devices [1–4].One of the recently discovered carbon-sulfur compounds that have attracted attention is sulflower [5–7].This compound has a unique molecular symmetry resulting from anti-aromaticity and orbital degeneracy,combined with its intermolecular packing due to exposed sulfur atoms,making it a promising material for organic electronics[8–10].Sulflower is chemically stable [11],making it an archetypal candidate for electronic devices.Studies have shown that thin-film OFETs made with a sulflower exhibit promising characteristics,containing a gateway threshold voltage of 45 V and a hole mobility of 9.10-3cm2Vs-1[12].Additionally,researchers have investigated the potential of sulflower systems decorated with Be2+and Mg2+to adsorb molecular hydrogen using density-functional theory (DFT)calculations [13].The decorated systems consist of cyclic polythiophene rings.In addition,DFT and time-dependent density functional theory (TD-DFT) computations have proclaimed by Shakerzadeh’s research [14] that the interaction among C16S8sulflower and a lithium atoms exhibited nonlinear optical feedback,indicating the compound’s potential as a novel nonlinear optical material.However,Donget al[15] have presented a novel method of synthesizing the first-ever fully sulfur-substituted polycyclic aromatic hydrocarbon,or‘sulflower.’This unique compound has a coronene core and represents an innovative carbon-sulfur hybrid with promising potential for various applications.

    Figure 1. Schematic illustration of a sulflower-like structure,highlighting spins labeled as S (red balls) and σ (yellow balls),alongside different exchange linkages (depicted using blue and black).

    In recent research,investigations of the magnetic,magnetocaloric,and dielectric characteristics of diverse structures have been done via the Monte Carlo technique (MCt),including nano-islands [16],nanowires [17],Borophene Superlattices and core–shell [18,19],graphene-like nanoribbons [20],copper fluorides [21],a nano-graphene bilayer[22],a diluted graphdiyne monolayer with defects [23],a trilayer graphene-like structure[24],a polyhedral chain[25],the Kagome Ferromagnet [26].Ising models have also been utilized to investigate the mixed systems,like the TbMnO3multiferroic system [27],the Gd2O3nanowire [28],the graphyne[29]and the core–shell Nanotube[30]systems and the Ising thin-film [31].These models have been useful in predicting magnetic phenomena in a variety of structures,from nanoscale to bulk materials.

    Moreover,according to what we know,no theoretical investigations have been conducted to analyze the dielectric properties of a sulflower-like structure with a mixed spin configuration consisting of-1 and-5/2.We employ the MCt with the Metropolis algorithm to examine the dielectric characteristics of a sulflower-like structure.It is worth noting that in our previous research,we effectively utilized the MCt to inspect the magnetic and dielectric characteristics of various types of nanostructures [32–37].Furthermore,the application of an external electric field in the study of dielectric properties is crucial for understanding the response of materials to electric fields,characterizing dielectric behavior,determining polarization,dielectric susceptibility,electric hysteresis cycles,studying phase transitions,and manipulating material properties[17,18,35,36,38,39].Indeed,the study of ferroelectric or ferrielectric materials can contribute to progress in the multiferroic field [27],promising diverse applications such as magnetoelectric sensors and data storage.

    This article is set out as follows: in section 2,we explain the formalism and examples of how the MCt was utilized to explore the physical properties during the simulations.In section 3,we discuss the dielectric characteristics and hysteresis demeanors,and provide our findings.First,we show the major configuration of spin in the phase diagrams in subsection 3.1.Finally,we sum up our findings in section 4.

    2.Model and method

    Our study focuses on studying the dielectric behavior of the sulflower-like structure inside the Blume–Capel model under free frontier circumstances.For this investigation,we utilized the MCt with the Metropolis algorithm [40–46].The nanosystem contains a total of 24 atoms,including 16 atoms with values of=±1 and 0,as well as 8 atoms with values of=±5/2,±3/2,and±1/2(figure 1).Our results involved implementing 106steps through Monte Carlo computations for every spin while neglecting the first 105steps to ensure thermal stabilization.

    The Hamiltonian pertaining to the sulflower-like structure takes the form:

    The terms 〈i,j〉 and 〈k,l〉 denote neighboring site pairs,specifically (iandj) and (kandl).The exchange linkages between adjacent atoms possessing spinsS-SandS—σ are represented byJSSandJSσ,respectively.The parameter μ stands for the dipole moment,and we simplify by assuming μ=1 [38,39].An external longitudinal electric field is introduced asEZ.Additionally,there are crystal fieldsDSandDσinfluencing spinsSiand σj,respectively.Our investigation is confined to cases whereDis equal toDSand toDσ.

    The energy content per individual site is:

    whereNT=NS+Nσ=16+8=24 defining the overall number of atoms in the studied nanosystem.

    The polarizations,both partial and total,exhibited by the sulflower-like structure are as follows:

    The dielectric susceptibilities,both partial and total,exhibited by the sulflower-like structure are as follows:

    whereβ=,the Boltzmann’s constant,kBis utilized in this instance.To make calculations simpler,kBis set to 1.The absolute temperature is symbolized byT.

    3.Results and analysis through numerical methods

    The focus of this section lies in the utilization of the MCt to establish the configuration of spin in the phase diagrams in subsection 3.1.Additionally,subsection 3.2 delves into the analysis of polarizations and dielectric susceptibilities,considering their dependencies on different physical parameters.

    3.1.Configuration of spin in the phase diagrams

    The configuration of spin in the phase diagrams of the mixed sulflower-like structure with spins-1 and-5/2 in several physical parameters (EZ,D,JSS,and JSσ) planes are shown in this subsection.For the ground state investigation,we simulate the energy spins,we found that (2S+1)×(2σ+1)=3×6=18 possible configurations using the Hamiltonian of equation (1).These diagrams provide comprehensive information about spin configurations of the system during the adjustment of different variables.

    Plotting figure 2(a) in the (EZ,D) plane for the constant values of exchange coupling interactions asJSS=1 andJσS=-0.01,it becomes evident that out of the 18 potential configurations,only 6 remained stable.Within this plane,a flawless symmetry is observable among the configurations with respect to theEZ=0 axis.Particularly,the stable configurations corresponding toEZ>0 are: (-1,+1/2);(-1,+3/2);and (-1,+5/2).Whereas the stable configurations obtained to EZ<0 are: (+1,-1/2);(+1,-3/2) and(+1,-5/2).

    Figure 2(b) portrays the phase diagram within the (Jss,Ez) plane in the absence of a crystal field (D=0),while maintaining a constant exchange coupling parameter ofJsσ=-1.In this plane,only two configurations,specifically(+1,-5/2) and (-1,+5/2),remained stable,aligning with the highest spin values.

    Figure 2. Configuration of spins in the phase diagrams plotted for:(a)Jss set to 1 and Jsσ to-1,followed by(b)Jsσ at-1 and D at 0,(c)Jss at 1 and D at 0,(d)Jsσ at-1 and Ez at 0,(e)Jss at 1 and Ez at 0,and finally (f) D at 0 and Ez at 0.

    Figure 2.(Continued.)

    Figure 3. (a) The total of polarization,and (b) the total dielectric susceptibility relative to temperature.The depicted figures were generated using constant parameters: JSS=1,JSσ=-0.01,Ez=0.5,and D=0.

    Figure 4. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the JSS parameter.These figures were plotted while adhering to consistent parameters D=0,JSσ=-0.01 and Ez=0.5.

    Figure 5. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the JSσ parameter.These figures were plotted while adhering to consistent parameters D=0,JSS=1 and Ez=0.5.

    Figure 6. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the Ez parameter.These figures were plotted while adhering to consistent parameters D=0, JSS=1 and JSσ=-0.01.

    Figure 7. Hysteresis cycles of the sulflower-like structure,for different values of T for: Jss=1,JSσ=-0.01 and D=0.

    Figure 8. Hysteresis cycles of the sulflower-like structure,for different values of JSS for: JSσ=-0.01,T=0.1 and D=0.

    Figure 9. Hysteresis cycles of the sulflower-like structure,for different values of JSσ when Jss=1,T=0.1 and D=0.

    Figure 10. Hysteresis cycles of the sulflower-like structure,for different values of D for: Jss=1,JSσ=-0.01 and T=0.1.

    Figure 2(c) delves into the exploration of the impacts stemming from the ferrielectric parameter (Jsσ) and the external longitudinal electric field (Ez) within the (Jsσ,Ez)plane,all while refraining from applying the external longitudinal electric field (Ez=0),and keeping the exchange coupling interaction fixed atJss=1.In this plane,stability is observed across four phases,namely(-1,-5/2),(+1,+5/2),(+1,-5/2),and (-1,+5/2).

    Additionally,in figure 2(d),without applying the external longitudinal electric field(Ez=0)and with a constant value set for the ferrielectric parameterJsσ=-1,we observed that only six stable configurations exist,namely(-1,+1/2),(+1,-1/2),(+1,-3/2),(-1,+3/2),(-1,+5/2),and (+1,-5/2).The spin configurations were displayed in the (Jss,D) plane.

    In order to examine how the configurations that remain stable are affected by the ferrielectric parameterJsσand the crystal fieldD,a graph was generated on the (Jsσ,D)plane withJss=1 andEz=0,as shown in figure 2(e).This graphical representation showcases six stable phases,namely:(-1,-1/2),(-1,-3/2),(-1,-5/2),(-1,+1/2),(-1,+3/2),and (-1,+5/2).

    Ultimately,the impact of the ferrielectric parameterJsσand the exchange coupling parameterJsswas investigated.Figure 2(f)illustrates this exploration within the(Jss,Jsσ)plane,with fixed parametersEz=0 andD=0.In this visual representation,merely four stable configurations are evident,namely(-1,+5/2),(+1,-5/2),(-1,-5/2),and (+1,+5/2).

    3.2.Monte Carlo technique (MCt)

    Within this segment,the dielectric attributes of the Sulflowerlike structure are scrutinized using the MCt with the Metropolis algorithm.

    The temperature-evolving tendencies of polarizations(PS,Pσ,andPtot) are presented in figure 3(a),withJss=1,Jsσ=-0.01,Ez=0.1,andD=0.At exceedingly low temperatures,partial polarizationsPS=1 andPσ=5/2 yieldPtot==1.5.The intricate relationship between spin polarization and dielectric reliability holds substantial importance,given that dielectric reliability serves as the precise indicator of the transition point where spin polarization undergoes a shift from order to disorder.This critical juncture is identified as the ‘blocking temperature,’ and it signifies a transformative phase within the system.During this phase,the system experiences a notable transition from a state of orderliness to a state of disorder,marking a significant change in its overall behavior and characteristics.As the temperature nears the transition temperature (Ttr),polarizations decrease.Interestingly,polarizations decrease as the system transitions into the superparaelectric phase around the transition temperature.For accurate determination of the transition temperature,we scrutinize the partial and total dielectric susceptibilities against temperature,employing the same parameter values featured in figures 3(a) and (b).The dielectric susceptibility peaks related to polarization transition temperatures for σ andSspins were approximatelyTtr(σ)≈2.83 andTtr(S)≈4.5,respectively.The total susceptibility also showed a peak,which occurs atTtr(tot)≈4.

    Results obtained for the JSSinteraction on the total polarization and the dielectric susceptibility were summarized in figures 4(a)–(c).The results were presented for:D=0,Jss=1,JSσ=-0.01 andEz=0.5.As indicated in figure 4(a),an augmentation of theJSSparameter leads to the noticeable shifting of the transition temperature towards high temperatures.Similarly,for the purpose of identifying the precise transition temperature that distinguishes between the ferrielectric and superparaelectric phases,figure 4(b) was generated alongside the total dielectric susceptibility,with varyingJssvalues and using the same set of fixed parameter values as presented in figure 4(a).The outcome showcases that the displacement of the peaks in total dielectric susceptibility gravitates towards higher temperature values asJssvalues increase,confirming the behavior observed in the total polarization.The determined transition temperatures forJssvalues of 1,2,3,and 4 are approximatelyTtr≈2.3,2.7,3.4 and 4,respectively.Drawing upon figures 4(a) and (b),we created figure 4(c)to enhance our comprehension of how the transition temperature relates to theJSSparameter.This visual representation reaffirms the nearly linear increase in the transition temperature when increasingJSS.

    To delve into the impact of the ferrielectric parameterJSσon the thermal total polarization and total dielectric susceptibility,we illustrate the behavior of this parameter in figures 5(a)—(c).These visualizations were derived across varying ferrielectric parameter values:JSσ=-1,-2,-3,and-4,all while adhering to fixed parameters:D=0,Jss=1,Ez=0.5.From the insight provided by figure 5(a),it’s evident that with an increase in the absolute value of the ferrielectric parameter |JSσ|,there is a corresponding decrease in the total polarizationPtot.Furthermore,it’s observable that the curve of the total polarization closely resembles the pattern of the total polarizationPtot(figure 4(a)).To accurately determine the transition temperature values,we mapped out the total dielectric susceptibility as illustrated in figure 5(b).The shift of the peaks of the total dielectric susceptibility towards lower temperature values becomes pronounced with an increase in the ferrielectric parameter |JSσ|.The transition temperatures identified for the ferrielectric parameters |JSσ|=1,2,3,and 4 are approximatelyTtr≈4.2,4.6,5,and 5.2,respectively.To emphasize the outcomes of figures 5(a) and(b),we delineate the trend of the transition temperature with respect to the parameterJSσin figure 5(c).This graphical representation clearly demonstrates that the transition temperature rises almost linearly as the ferrielectric parameter|JSσ|increases.

    Pursuing a similar rationale,we investigated the influence of the electric field parameterEzon the thermal tendencies of total polarizations and total dielectric susceptibility across variousEzvalues (Ez=0.5,1,1.5,and 2).The outcomes are presented in figures 6(a)and(b),assumingD=0,Jss=1,andJSσ=-0.01.As depicted in figure 6(a),we observed that the total polarization diminishes towards an earlier transition temperatureTtrfor lower external longitudinal electric field values compared to higher ones.This effect arises due to the interplay between the promoting influence of the external longitudinal electric field on order within the system and the temperature’s role in promoting disorder.Additionally,figure 6(b)showcases the thermal total dielectric susceptibility.The transition temperature values align with the peaks of the total dielectric susceptibility,withTtrvalues approximately ≈4,4.5,5.5,and 6.5 forEzvalues of 0.5,1,1.5,and 2 respectively.To synthesize the findings from figures 6(a) and (b),we present a graphical representation in figure 6(c),illustrating the correlation between the transition temperature and theEzparameter.In order to consolidate the results depicted in figures 6(a) and (b),we have included a graphical representation in figure 6(c) that illustrates the correlation between the transition temperature and the parameterEz.The figure effectively demonstrates that there was an almost linear increase in the transition temperature as the ferrielectric parameterEzis progressively elevated.

    To complete the study,our focus is on scrutinizing the effect of temperature (T) on hysteresis loops,visualized in figure 7 with fixed parametersD=0,Jss=1,andJSσ=-0.01.As the temperature rises,the hysteresis loop maintains its singular nature,though its area contracts.Upon reaching a threshold temperature of 2,the loop vanishes,denoting the system’s transition from the ferrielectric to the paraelectric phases.This occurrence underscores the gradual evolution of the system into a paraelectric state with increasing temperature.

    Furthermore,figure 8 portrays the influence of the exchange coupling parameterJSSon the hysteresis loop,with constantsJSσ=-0.01,T=0.1,andD=0.The system retains a singular loop structure.Yet,in contrast to the effect ofJSS,the loops change in area,coercivity,and saturation field asJSSvalues rise.This transformation arises due to the enhanced exchange coupling,imparting greater stability to the system.

    In figure 9,we also examined the effect of the ferrielectric parameterJSσon the hysteresis cycles,plotted withD=0,Jss=1 andT=0.1 and by decreasing the parameterJSσ,the hysteresis cycles show multiple loops.The saturation also increases when decreasing the parameterJSσ.

    To wrap up,we analyze the effect of the crystal field D on hysteresis loops,illustrated in figure 10 while maintaining constantsJss=1,JSσ=-0.01,andT=0.1.A reduction in theDparameter correlates with a reduction in the hysteresis loop’s size.Upon reaching a crystal field value of -7,the loop’s presence vanishes.This shift signifies the transition of the system from the ferrielectric to the paraelectric phases.

    4.Conclusion

    In this study,we utilized the MCt to explore the dielectric characteristics of a sulflower-like structure.The structure considered in our investigation consists of mixed spins(1,5/2).One of the main objectives was to determine and analyze the configuration of spin in the phase diagrams.Moreover,we examined dielectric characteristics of the system considering their dependencies on different physical parameters.Specifically,we investigated the impact of temperature,as well as external longitudinal electric on polarization,dielectric susceptibility,and hysteresis cycles.In summary,the findings demonstrate a linear decrease in transition temperature asJSSincreases,a corresponding increase in transition temperature with |JSσ|,and a clear linear rise in transition temperature with increasingEz.As temperature rises,the solitary hysteresis loop contracts and vanishes at 2,signifying the transition from ferrielectric to paraelectric phases.Maintaining a uniform loop structure,the system exhibits altered traits asJSSvalues increase,influenced by enhanced exchange coupling.Besides,decreasingJSσyields multiple loops and elevated saturation.Moreover,loweringDfurther contracts hysteresis loops,and a crystal field of -7 erases the loop,marking the ferrielectric to paraelectric transformation.

    Acknowledgments

    This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(2020R1I1A3052258).This work is funded by Researcher Supporting Project number (RSP2024R117),King Saud University,Riyadh,Saudi Arabia.

    Conflicts of interest or competing interests

    The authors confirm that there are no known conflicts of interest associated with this publication.

    Author contributions

    Not Applicable

    Data and code availability

    This investigation was made using Monte Carlo simulations under the Metropolis algorithm by a Fortran code.

    ORCID iDs

    亚洲欧美精品综合久久99| 无人区码免费观看不卡| 亚洲免费av在线视频| 国产成人啪精品午夜网站| 亚洲精品av麻豆狂野| 九色亚洲精品在线播放| 免费看a级黄色片| 男女床上黄色一级片免费看| 男人的好看免费观看在线视频 | 精品国产超薄肉色丝袜足j| 色在线成人网| 国产精品一区二区三区四区久久 | 亚洲成人久久性| 精品电影一区二区在线| 中文亚洲av片在线观看爽| 国产一区二区三区视频了| 一级黄色大片毛片| 黄色毛片三级朝国网站| 国产av精品麻豆| 黄片小视频在线播放| 天堂动漫精品| 免费在线观看完整版高清| 一二三四社区在线视频社区8| 亚洲精品国产精品久久久不卡| 神马国产精品三级电影在线观看 | 99精国产麻豆久久婷婷| 久久国产乱子伦精品免费另类| 一区二区日韩欧美中文字幕| 亚洲熟妇中文字幕五十中出 | 国产精品久久电影中文字幕| 在线播放国产精品三级| 成人18禁高潮啪啪吃奶动态图| 国产伦一二天堂av在线观看| 国产精品1区2区在线观看.| 欧美精品啪啪一区二区三区| 中文亚洲av片在线观看爽| 亚洲 国产 在线| 成人三级黄色视频| 久久精品影院6| 久久久国产精品麻豆| 99国产精品免费福利视频| 一进一出好大好爽视频| 亚洲激情在线av| 一a级毛片在线观看| 一区二区日韩欧美中文字幕| 欧美在线黄色| 国产一区在线观看成人免费| 午夜福利欧美成人| 欧美午夜高清在线| 99热只有精品国产| 99精品欧美一区二区三区四区| 男女床上黄色一级片免费看| 嫩草影院精品99| 性色av乱码一区二区三区2| 亚洲黑人精品在线| 嫁个100分男人电影在线观看| 亚洲成国产人片在线观看| 色综合婷婷激情| 18禁观看日本| 亚洲精品美女久久av网站| 视频在线观看一区二区三区| 国产精品一区二区在线不卡| 成人特级黄色片久久久久久久| 一区福利在线观看| 交换朋友夫妻互换小说| 色尼玛亚洲综合影院| 午夜激情av网站| 精品一品国产午夜福利视频| 亚洲人成电影观看| 亚洲欧美日韩高清在线视频| 国产精品综合久久久久久久免费 | 久久香蕉国产精品| 97超级碰碰碰精品色视频在线观看| 美女福利国产在线| 日本五十路高清| 久久久精品欧美日韩精品| 久久久精品国产亚洲av高清涩受| 日日夜夜操网爽| 国产一区二区三区视频了| 日本精品一区二区三区蜜桃| tocl精华| 亚洲中文日韩欧美视频| 久久久国产欧美日韩av| 欧美在线一区亚洲| 成人18禁高潮啪啪吃奶动态图| 国产精品免费视频内射| 91精品三级在线观看| 国产精品偷伦视频观看了| 久久国产精品人妻蜜桃| 久久婷婷成人综合色麻豆| 国产av一区二区精品久久| 欧美黑人欧美精品刺激| 精品久久久久久久毛片微露脸| 免费女性裸体啪啪无遮挡网站| 欧美在线一区亚洲| 欧美乱妇无乱码| 美女午夜性视频免费| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产综合久久久| 在线国产一区二区在线| 激情视频va一区二区三区| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜制服| 午夜精品久久久久久毛片777| 多毛熟女@视频| 女人爽到高潮嗷嗷叫在线视频| 老司机亚洲免费影院| 亚洲人成网站在线播放欧美日韩| 日韩免费av在线播放| 精品一区二区三卡| 一二三四社区在线视频社区8| 国产黄a三级三级三级人| 成在线人永久免费视频| 大香蕉久久成人网| 久久草成人影院| 免费观看精品视频网站| 国产乱人伦免费视频| 国产精品1区2区在线观看.| 老司机靠b影院| av中文乱码字幕在线| 亚洲国产精品999在线| 男女下面进入的视频免费午夜 | 日韩 欧美 亚洲 中文字幕| 日韩欧美一区二区三区在线观看| 亚洲熟妇熟女久久| 国产三级黄色录像| 亚洲av第一区精品v没综合| 欧美日韩视频精品一区| av片东京热男人的天堂| 制服人妻中文乱码| 黑人操中国人逼视频| 侵犯人妻中文字幕一二三四区| 大型黄色视频在线免费观看| 久久精品国产清高在天天线| 欧美成人性av电影在线观看| 国产精品秋霞免费鲁丝片| av网站在线播放免费| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 免费女性裸体啪啪无遮挡网站| 欧美一级毛片孕妇| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 色尼玛亚洲综合影院| 国产视频一区二区在线看| 亚洲成人国产一区在线观看| 在线观看免费午夜福利视频| 一本大道久久a久久精品| 成人国产一区最新在线观看| 午夜亚洲福利在线播放| 亚洲精品国产色婷婷电影| 亚洲 欧美 日韩 在线 免费| 欧美黑人精品巨大| 日本免费a在线| 国产午夜精品久久久久久| 日本欧美视频一区| 午夜福利在线免费观看网站| videosex国产| 一区二区三区精品91| 精品午夜福利视频在线观看一区| 日韩大尺度精品在线看网址 | 精品一区二区三区av网在线观看| 侵犯人妻中文字幕一二三四区| 在线观看免费视频日本深夜| 老熟妇仑乱视频hdxx| 两个人免费观看高清视频| 极品教师在线免费播放| 亚洲五月婷婷丁香| 久久精品国产99精品国产亚洲性色 | 亚洲一区二区三区色噜噜 | 成人手机av| av天堂久久9| 亚洲精品成人av观看孕妇| 成人三级黄色视频| 男人的好看免费观看在线视频 | 热re99久久国产66热| 欧美精品啪啪一区二区三区| 日韩精品青青久久久久久| 国产精品一区二区三区四区久久 | 高潮久久久久久久久久久不卡| 国产精品国产高清国产av| 日本五十路高清| 久久精品国产清高在天天线| 国内毛片毛片毛片毛片毛片| 久久性视频一级片| 亚洲国产中文字幕在线视频| 99国产精品99久久久久| 亚洲精品在线美女| 一区福利在线观看| 免费高清在线观看日韩| 亚洲人成电影免费在线| av天堂久久9| 亚洲人成网站在线播放欧美日韩| 国产免费av片在线观看野外av| 久久99一区二区三区| 国产亚洲欧美精品永久| 欧美日韩av久久| 日韩欧美一区二区三区在线观看| 久久久久久久久久久久大奶| 一级毛片精品| 宅男免费午夜| 精品欧美一区二区三区在线| 嫩草影视91久久| av超薄肉色丝袜交足视频| 高潮久久久久久久久久久不卡| 日本黄色视频三级网站网址| 欧美黑人精品巨大| 俄罗斯特黄特色一大片| 精品无人区乱码1区二区| 国产1区2区3区精品| 欧美日韩亚洲高清精品| 十八禁网站免费在线| 后天国语完整版免费观看| 怎么达到女性高潮| 成人av一区二区三区在线看| 老汉色av国产亚洲站长工具| 成人黄色视频免费在线看| 精品国内亚洲2022精品成人| 欧美一区二区精品小视频在线| 女生性感内裤真人,穿戴方法视频| 国产极品粉嫩免费观看在线| 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放| 久热这里只有精品99| 视频在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区| 国产精品成人在线| 久久人妻av系列| 色哟哟哟哟哟哟| 19禁男女啪啪无遮挡网站| 国产欧美日韩一区二区精品| 高清在线国产一区| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 欧美在线一区亚洲| 免费在线观看亚洲国产| 搡老乐熟女国产| 又黄又爽又免费观看的视频| 久热爱精品视频在线9| 亚洲熟女毛片儿| 国产在线观看jvid| 国产黄a三级三级三级人| 十八禁人妻一区二区| 精品午夜福利视频在线观看一区| 夜夜躁狠狠躁天天躁| 国产亚洲精品久久久久久毛片| 久久国产精品男人的天堂亚洲| 91麻豆精品激情在线观看国产 | 亚洲精品在线美女| 日本五十路高清| 男人舔女人的私密视频| 欧美另类亚洲清纯唯美| 免费av中文字幕在线| 亚洲在线自拍视频| 日韩精品中文字幕看吧| 亚洲欧洲精品一区二区精品久久久| 国产成人欧美在线观看| 淫妇啪啪啪对白视频| 欧美乱码精品一区二区三区| 在线观看免费视频日本深夜| 丝袜在线中文字幕| 久久久国产欧美日韩av| 日本黄色日本黄色录像| 亚洲国产欧美一区二区综合| 91麻豆av在线| 丁香六月欧美| 国产精品乱码一区二三区的特点 | www.精华液| 美女扒开内裤让男人捅视频| 丰满人妻熟妇乱又伦精品不卡| 一本大道久久a久久精品| 97人妻天天添夜夜摸| 欧美日本亚洲视频在线播放| 亚洲成av片中文字幕在线观看| 国产精品久久视频播放| 黑人猛操日本美女一级片| 无限看片的www在线观看| 高潮久久久久久久久久久不卡| 精品高清国产在线一区| 午夜视频精品福利| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 欧美丝袜亚洲另类 | 成人黄色视频免费在线看| 91大片在线观看| 精品国产超薄肉色丝袜足j| 99精品欧美一区二区三区四区| tocl精华| 99精品在免费线老司机午夜| 久久精品91蜜桃| 他把我摸到了高潮在线观看| 这个男人来自地球电影免费观看| 免费av中文字幕在线| 9热在线视频观看99| 亚洲精品一二三| 久久久久久久精品吃奶| 免费av中文字幕在线| 亚洲中文字幕日韩| 国产一区二区三区综合在线观看| 国产av又大| 人妻丰满熟妇av一区二区三区| 伊人久久大香线蕉亚洲五| 亚洲九九香蕉| 亚洲一区高清亚洲精品| 成年版毛片免费区| 日韩欧美一区二区三区在线观看| 99riav亚洲国产免费| 美女扒开内裤让男人捅视频| 老司机亚洲免费影院| 韩国精品一区二区三区| 宅男免费午夜| 人成视频在线观看免费观看| 少妇的丰满在线观看| 香蕉久久夜色| 丁香欧美五月| 性色av乱码一区二区三区2| 国产成人一区二区三区免费视频网站| 淫妇啪啪啪对白视频| 老司机亚洲免费影院| 久久久国产欧美日韩av| 国产精品九九99| a在线观看视频网站| 真人做人爱边吃奶动态| 国产91精品成人一区二区三区| 久久精品亚洲av国产电影网| 激情在线观看视频在线高清| 久久中文字幕人妻熟女| 黄色a级毛片大全视频| 一a级毛片在线观看| 中文字幕人妻熟女乱码| 水蜜桃什么品种好| 黄色视频,在线免费观看| xxxhd国产人妻xxx| 精品一区二区三卡| 极品人妻少妇av视频| 黄色成人免费大全| 十八禁网站免费在线| 久久草成人影院| 老熟妇仑乱视频hdxx| 亚洲av第一区精品v没综合| 最近最新中文字幕大全电影3 | 精品日产1卡2卡| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 久久人人爽av亚洲精品天堂| 国产主播在线观看一区二区| 校园春色视频在线观看| 99久久人妻综合| 久久久久九九精品影院| 黑人操中国人逼视频| 一进一出好大好爽视频| 人妻久久中文字幕网| 欧美日韩亚洲高清精品| 69精品国产乱码久久久| 国产精品一区二区精品视频观看| 中文字幕另类日韩欧美亚洲嫩草| 国产1区2区3区精品| 亚洲成av片中文字幕在线观看| 久久草成人影院| 免费在线观看影片大全网站| 99精国产麻豆久久婷婷| netflix在线观看网站| 一a级毛片在线观看| 久久这里只有精品19| 在线观看免费视频日本深夜| 香蕉丝袜av| 91老司机精品| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 久久婷婷成人综合色麻豆| 亚洲一码二码三码区别大吗| 国产精品99久久99久久久不卡| 亚洲人成77777在线视频| 欧美久久黑人一区二区| 国产精品久久久人人做人人爽| 极品人妻少妇av视频| 麻豆久久精品国产亚洲av | 欧美在线一区亚洲| 麻豆一二三区av精品| 久久香蕉精品热| 99精国产麻豆久久婷婷| 欧美最黄视频在线播放免费 | 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 精品久久久久久,| 免费女性裸体啪啪无遮挡网站| 夜夜夜夜夜久久久久| 欧美日韩精品网址| 18禁国产床啪视频网站| 色在线成人网| 亚洲三区欧美一区| 波多野结衣av一区二区av| 19禁男女啪啪无遮挡网站| 又大又爽又粗| 18禁黄网站禁片午夜丰满| 精品第一国产精品| 午夜91福利影院| 欧美乱妇无乱码| 老司机福利观看| 少妇的丰满在线观看| 久久 成人 亚洲| 999久久久国产精品视频| 国产1区2区3区精品| 中文字幕精品免费在线观看视频| 看黄色毛片网站| 老司机深夜福利视频在线观看| 日韩精品青青久久久久久| 亚洲成人免费电影在线观看| 12—13女人毛片做爰片一| 婷婷六月久久综合丁香| 叶爱在线成人免费视频播放| 国产成人欧美在线观看| 黑人猛操日本美女一级片| 亚洲av成人一区二区三| 日日摸夜夜添夜夜添小说| 国产片内射在线| 成人av一区二区三区在线看| 99国产精品免费福利视频| 黄色片一级片一级黄色片| 香蕉久久夜色| 在线观看免费视频网站a站| 电影成人av| 亚洲情色 制服丝袜| 一区二区三区激情视频| 国产一区二区激情短视频| 99久久国产精品久久久| 国产亚洲精品一区二区www| 无遮挡黄片免费观看| 日韩av在线大香蕉| 亚洲精品国产一区二区精华液| 搡老乐熟女国产| 国产成人免费无遮挡视频| 啦啦啦免费观看视频1| 国产精品久久久久久人妻精品电影| 女人被狂操c到高潮| 日韩精品中文字幕看吧| 丰满的人妻完整版| 在线观看日韩欧美| 午夜91福利影院| 日韩 欧美 亚洲 中文字幕| 91成年电影在线观看| 免费不卡黄色视频| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 国产一区二区三区在线臀色熟女 | 免费搜索国产男女视频| 精品久久久久久成人av| 色婷婷久久久亚洲欧美| 国产真人三级小视频在线观看| 色精品久久人妻99蜜桃| 搡老乐熟女国产| av天堂在线播放| 国产av又大| 亚洲欧美激情在线| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 国产亚洲欧美在线一区二区| 亚洲 欧美一区二区三区| 亚洲av成人不卡在线观看播放网| 欧美人与性动交α欧美精品济南到| 757午夜福利合集在线观看| 亚洲男人天堂网一区| 中出人妻视频一区二区| 欧美一区二区精品小视频在线| 免费看十八禁软件| 9热在线视频观看99| 高清黄色对白视频在线免费看| 免费日韩欧美在线观看| 在线天堂中文资源库| 一级毛片高清免费大全| 亚洲av电影在线进入| 可以在线观看毛片的网站| 欧美日本中文国产一区发布| 丰满人妻熟妇乱又伦精品不卡| 久久亚洲精品不卡| 夫妻午夜视频| 亚洲片人在线观看| 国产精品电影一区二区三区| 亚洲精品美女久久久久99蜜臀| 午夜久久久在线观看| 国产精品国产av在线观看| 午夜久久久在线观看| 在线观看免费视频网站a站| 亚洲欧美日韩高清在线视频| 天堂√8在线中文| 久久热在线av| 欧美激情极品国产一区二区三区| 日日摸夜夜添夜夜添小说| 女生性感内裤真人,穿戴方法视频| 一本综合久久免费| 国产有黄有色有爽视频| 午夜福利影视在线免费观看| 中亚洲国语对白在线视频| 国产精品免费视频内射| 99riav亚洲国产免费| 一本大道久久a久久精品| 国产精品爽爽va在线观看网站 | 国产免费男女视频| 久久99一区二区三区| 亚洲一区中文字幕在线| 制服诱惑二区| 777久久人妻少妇嫩草av网站| 后天国语完整版免费观看| 亚洲熟女毛片儿| 丝袜人妻中文字幕| 激情视频va一区二区三区| av片东京热男人的天堂| 国产又爽黄色视频| 午夜久久久在线观看| 久久精品国产清高在天天线| 在线播放国产精品三级| 国产av一区二区精品久久| 欧美成人免费av一区二区三区| 日本 av在线| 在线播放国产精品三级| 在线免费观看的www视频| 精品国产国语对白av| 久久久久久大精品| 精品国产国语对白av| 在线看a的网站| 少妇 在线观看| 91国产中文字幕| 色在线成人网| 成人亚洲精品av一区二区 | 丰满迷人的少妇在线观看| 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| 国产亚洲精品一区二区www| 老司机亚洲免费影院| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 国产精品99久久99久久久不卡| av超薄肉色丝袜交足视频| 日本黄色视频三级网站网址| 国产精华一区二区三区| 乱人伦中国视频| 精品久久蜜臀av无| 精品人妻1区二区| 亚洲国产中文字幕在线视频| 91麻豆精品激情在线观看国产 | 久久久久久免费高清国产稀缺| 国产精品成人在线| 国产亚洲精品第一综合不卡| 99久久综合精品五月天人人| 国产av一区二区精品久久| 91精品国产国语对白视频| 99精国产麻豆久久婷婷| 757午夜福利合集在线观看| 欧美色视频一区免费| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| 亚洲成人国产一区在线观看| 免费在线观看日本一区| 国产成人精品在线电影| 黄色成人免费大全| 制服诱惑二区| 女人高潮潮喷娇喘18禁视频| 91大片在线观看| 亚洲熟妇熟女久久| 欧美乱色亚洲激情| 成年人黄色毛片网站| 男人舔女人的私密视频| 亚洲成国产人片在线观看| a级片在线免费高清观看视频| 亚洲在线自拍视频| 视频区欧美日本亚洲| 一边摸一边抽搐一进一出视频| 又大又爽又粗| 亚洲成人久久性| 美女 人体艺术 gogo| www.自偷自拍.com| 亚洲欧美激情综合另类| 亚洲激情在线av| 日日夜夜操网爽| 国产午夜精品久久久久久| 一本大道久久a久久精品| 亚洲五月天丁香| 久久久久亚洲av毛片大全| 中文字幕色久视频| 国产精品国产av在线观看| 男女高潮啪啪啪动态图| 国产精品二区激情视频| 一区二区三区国产精品乱码| 国产黄色免费在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产单亲对白刺激| 国产一区二区三区综合在线观看| 成人精品一区二区免费| 色综合站精品国产| 国产亚洲精品一区二区www| 另类亚洲欧美激情| 9色porny在线观看| 99re在线观看精品视频| 国产1区2区3区精品| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 久久精品影院6| 国产精品久久久久成人av| 动漫黄色视频在线观看| 91国产中文字幕| 亚洲成人免费电影在线观看| 首页视频小说图片口味搜索| 精品人妻在线不人妻| 色综合婷婷激情| 丝袜美腿诱惑在线| 欧美成人午夜精品| 亚洲一区高清亚洲精品| 国产精品久久久人人做人人爽| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕一二三四区| 精品国产亚洲在线|