高舒嘉 邵軍榮 成宇 朱宗強 胡承志
DOI:?10.11835/j.issn.2096-6717.2023.026
收稿日期:2022?12?05
基金項目:國家自然科學基金國際(地區(qū))合作與交流項目(51820105011)
作者簡介:高舒嘉(1998-),女,主要從事硫自養(yǎng)反硝化污水脫氮處理研究,E-mail:gao_sjaaa@163.com。
通信作者:胡承志(通信作者),男,研究員,博士生導師,E-mail:czhu@rcees.ac.cn。
Received: 2022?12?05
Foundation item: International (Regional) Cooperation and Exchange Program of National Natural Science Foundation of China (No. 51820105011)
Author brief: GAO Shujia (1998-?), main research interest: nitrogen removal of wastewater by sulfur autotrophic denitrification, E-mail: gao_sjaaa@163.com.
corresponding author:HU Chengzhi (corresponding author), researcher, doctorial supervisor, E-mail: czhu@rcees.ac.cn.
摘要:硫自養(yǎng)反硝化(SAD)是一種綠色低碳的污水脫氮技術,具有成本低、污泥產(chǎn)量少、無須外加有機碳源等優(yōu)點,已成為污水脫氮技術研究的熱點之一。闡述SAD填料組成與復合硫源填料的合成方法,歸納SAD固定床反應器和流化床反應器的結(jié)構及其適用條件,回顧SAD與電化學、異養(yǎng)反硝化、厭氧氨氧化耦合工藝等方面的研究進展,并總結(jié)SAD耦合技術的優(yōu)缺點以及耦合工藝的脫氮特征。微生物的代謝功能是實現(xiàn)高效SAD的關鍵因素,列舉不同代謝特性的SAD功能微生物種類,闡述代表性微生物Thiobacillus和Sulfurimonas在SAD過程中的反硝化特性及其生長條件。目前,SAD技術在填料、反應器和耦合工藝等方面取得顯著進步,但仍面臨諸多挑戰(zhàn),在SAD技術溫度適應性、高處理負荷反應器設計以及工藝流程優(yōu)化等方面進一步創(chuàng)新。
關鍵詞:反硝化;污水脫氮;污水處理;研究進展
中圖分類號:X703.1 ????文獻標志碼:A ????文章編號:2096-6717(2024)02-0227-09
Research progress of sulfur autotrophic denitrification in wastewater
GAO Shujia1,2,?SHAO Junrong3,?CHENG Yu2,?ZHU Zongqiang1,?HU Chengzhi1,2,4
(1. School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, P. R. China;?2. State Key Laboratory of Environmental Water Quality, Center for Chinese Academy of Sciences and Ecology, Beijing 100085, P. R. China;?3. Yangtze River Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, P. R. China;?4.University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
Abstract: Sulfur autotrophic denitrification (SAD) has become one of the hotspots in nitrogen removal technology during wastewater treatment because of its characteristic green and low-carbon technology for nitrogen removal from sewage, which has the advantages of low cost, low sludge yield and no need for organic carbon sources. In this paper, the research progress on SAD of carrier compositions and synthesis method of composite sulfur source filler. The structure and applicable conditions of SAD packed bed reactor and fluidized bed reactor were summarized. The research progress of SAD coupled with electrochemical, heterotrophic denitrification and Anammox technology was reviewed. The advantages and disadvantages of SAD coupled technology were summarized. The metabolic function of microorganisms is a key factor in the realization of effective SAD. This review enumerates the types of SAD functional microorganisms with different metabolic characteristics, the denitrification characteristics and growth conditions ofThiobacillusandSulfurimonas in the SAD process were described. Currently, SAD technology has made significant progress in the fields of filler, reactor and coupling process, but still faces many challenges, further innovations have been made in temperature adaptability of SAD technology, reactor design with high treatment load, and process optimization.
Keywords: denitrification;?sewage nitrogen removal;?sewage treatment;?research progress
中國市政生活污水處理碳源不足問題突出,控氮減碳特別是低C/N污水中硝酸鹽的低碳處理已成為行業(yè)重大技術挑戰(zhàn)[1]?,F(xiàn)有污水處理常常需要補充有機碳源以提升反硝化效能,在主流的異養(yǎng)生物反硝化處理中額外投加的有機碳源轉(zhuǎn)化為大量污泥和二氧化碳,這是與污水低碳理念背道而馳的無奈之舉。污水的綠色低碳處理已成為環(huán)境工程技術研究的熱點,是構建可持續(xù)水循環(huán)系統(tǒng)的重要途徑。
硫自養(yǎng)反硝化(SAD)是通過活性污泥中的SAD菌,硫化物作為電子供體,NO3-作為電子受體,將NO3-和NO2-轉(zhuǎn)化為N2進而達到脫氮的效果。其中反硝化體系中的反硝化微生物將NO3-還原為N2或N2O的過程為:NO3-→NO2-→NO→N2O→N2[2-4]。并且SAD工藝污泥產(chǎn)量低,無須添加有機碳源,能克服傳統(tǒng)異養(yǎng)反硝化缺點,具有很廣闊的應用前景。
隨著“雙碳”目標深入推進,具有綠色低碳特征的SAD技術愈發(fā)受到科研領域的關注。近幾年來,SAD技術在工藝和反硝化微生物作用機制方面取得了新的進展。筆者簡述不同種類SAD填料的研究進展,從反應器構型和工藝耦合等角度對SAD及SAD水處理集成工藝技術的研究進行回顧和總結(jié),并展望該技術未來發(fā)展方向。
1 SAD填料
電子供體是SAD技術中反應效果及效率的決定性因素[5]。目前在SAD技術中應用較廣泛的電子供體主要有S0和S2-,常見對應的還原性含硫物質(zhì)分別為單質(zhì)硫、硫化亞鐵等,它們可以分別制成不同類型的填料:單質(zhì)硫與硫化物填料、復合硫源填料。
1.1 單質(zhì)硫與硫化物填料
單質(zhì)硫填料價格低、毒性小、便于運輸和操作,在SAD技術中被廣泛使用。研究表明,單質(zhì)硫填料粒徑越小,比表面積就越大,給微生物提供的代謝結(jié)合位點越多,可以更好地提升反硝化效率。粒徑0.8、3 mm的單質(zhì)硫填料在經(jīng)過培養(yǎng)后,當進水NO3--N濃度為80~90 mg/L時,粒徑0.8 mm填料的TN去除率達到87%,粒徑3 mm硫磺填料TN去除率僅71%[6]。粒徑0.5~1.0 mm的硫磺填料在用于生活污水處理時,SAD系統(tǒng)硝酸鹽去除率可以達到84.86%[7]。
但單質(zhì)硫的低水溶性(5 μg/L 20 ℃)導致脫氮效率難以進一步提升[8],因此,含硫化合物(如:Fe2S3、H2S、Na2S2O3等)成為更適宜的電子供體,當硫化鐵填料用于處理地下水時,可以同時去除亞砷酸鹽和硝酸鹽,出水濃度分別低至(7.84±7.29)μg/L和(3.78±1.14)mg/L[9]。另外,將H2S作為硫源,二氧化碳為無機碳源,同時使用磷礦石補充堿度,在脫氮效率達到99.1%的同時解決了SAD工藝中pH值降低的問題,優(yōu)化了SAD的運行效率[10]。
1.2 復合硫源填料
SAD工藝中會消耗大量堿度,降低出水pH值[11],進而導致污泥酸化。SAD的理想輔助填料應當能補充堿度且避免增加出水硬度,因此,引入石灰石、牡蠣殼等可提供堿度的pH值調(diào)節(jié)材料制成復合硫源填料,可顯著提升SAD效率。例如,將硫粉和石灰石以1:1的比例通過膠凝黏附法制備硫-石灰石復合硫源填料,將其應用于生活污水尾水的深度脫氮,對TN去除率為90%左右,而未投加填料的去除率僅在80%[12]。但硫-石灰石復合硫源填料存在一些弊端,如出水硬度高、SO42-含量升高等問題。為此,也有學者用其他填料代替石灰石,如貝殼[13]、沸石[14]、陶粒[15]和珊瑚石[16]等。
不僅如此,最優(yōu)的SAD輔助填料還應當能保障填料具有良好透氣性和傳質(zhì)條件,并且能為微生物生長提供良好環(huán)境。因此,提高填料比表面積有利于增加SAD微生物的附著生長和提升反硝化速率,一些可強化反硝化效率的新型復合硫源填料應運而生。例如,采用包埋法制備的硫鐵生物填料具有疏松多孔結(jié)構,有效提高了填料的比表面積,在進水硝酸鹽濃度為30 mg/L、HRT為10 h時脫氮效率可以達到99.8%[17],相比簡易復合硫源填料提高了10%左右。此外,利用混合烘干等方式制備的固體復合填料也可以提高脫氮效率,同時使得SAD系統(tǒng)在微生物富集和穩(wěn)定S/C比方面表現(xiàn)良好;例如將硫磺粉、粉末活性炭和碳酸鈣混合后烘干制成3~5 mm的復合填料,相比未投加填料對TN的去除率提高了40%左右[18]。將熔融態(tài)硫單質(zhì)、蛋殼或扇貝殼粉末、石灰石粉末混合制成粒狀均質(zhì)復合硫源填料,在處理地下水硝酸鹽時,反硝化效率超過99.7%,并且能為SAD過程提供充足的堿度與無機碳源[19]。
2 SAD生物反應器
SAD填料的形式多種多樣,常有不同類型的反應器與之匹配。基于填料在反應器中的狀態(tài)分為填充床反應器和流化床反應器兩大類。
2.1 SAD填充床反應器
SAD填充床反應器(如圖1(a))適用機械強度弱、密度大、不易堵塞的填料,水質(zhì)適用范圍廣。使用單質(zhì)硫-碳酸鈣顆?;旌咸盍蠒r,填充床反應器的脫氮效率可以達到膜生物反應器的兩倍[20];但混合填料存在堵塞、污染的問題,因此,在此基礎上發(fā)展出了使用復合硫源填料SAD填充床反應器,對飼料廢水的處理負荷達到0.36 kg/(m3·d)[21]。此外,SAD填充床反應器被成功應用于地下水硝酸鹽污染控制、城市污水深度脫氮等:當采用硫-石灰多孔陶瓷為載體的3 L填充床反應器處理污染地下水時,反應器反硝化效率達到99.5%[22];采用體積為0.8 L的玉米芯-硫為填料的填充床反應器處理城市污水時,最低出水NO3--N濃度為0.31 mg/L,去除率為98.62%[23]。SAD填充床反應器仍存在一些缺點,其單位體積負荷相對較低,不適合大規(guī)模污水脫氮處理工程。
2.2 SAD流化床反應器
SAD流化床反應器(如圖1(b))具有傳質(zhì)條件好、單位體積負荷高、高速脫氮且低成本[24]等優(yōu)點,但對填料要求較高,需要使用密度低且有一定機械強度的懸浮填料。在厭氧連續(xù)流流化床膜生物反應器(AnFB-MBR)中使用S0顆粒填料和Fe0顆粒填料,顆粒填料與水接觸面積大,處理效率提升顯著,AnFB-MBR的硝酸鹽去除率高達98%,相比于同條件下的SAD填充床反應器的脫氮效率提高了4.4倍,并有效抑制了SO42-的生成和pH值的降低[25]。不同電子供體在流化床反應器中擁有不同的脫氮效率,F(xiàn)eS2驅(qū)動的反硝化過程僅產(chǎn)生少量SO42-,無須調(diào)節(jié)pH值,反硝化速率最高可達到142.2 mg/(L·d);但S0驅(qū)動的反硝化過程需要碳酸鈣保持pH值為中性,因此會產(chǎn)生更多的污泥(硫酸鈣沉淀),反硝化速率最高為184.4 mg/(L·d)?[26]。
綜上,填料的內(nèi)部結(jié)構和不同的電子供體對反應器的脫氮效果均有影響,此外,不同的進水污水種類、水力停留時間、反應器的傳質(zhì)性能、排氣排泥的效率等諸多因素對脫氮的影響都值得探究。在研究中需將這些參數(shù)進行模擬和優(yōu)化,以設計最佳反應器構建形式,使脫氮效率進一步提高。
3 SAD水處理集成工藝
SAD過程會消耗硫源與堿度,并產(chǎn)生SO42-副產(chǎn)物,將其與其他生物技術組合,優(yōu)勢互補,形成耦合工藝,能提升反硝化系統(tǒng)的抗沖擊負荷能力,降低副產(chǎn)物和工藝運行成本,具有很好的應用前景。
3.1 SAD-電化學工藝
SAD耦合電化學工藝(如圖2(a))的優(yōu)勢主要在于:1)SAD產(chǎn)生的H+可被電化學反應中和,保持出水pH值的穩(wěn)定。SAD(S室)-電化學氫自養(yǎng)(H室)耦合工藝(圖2(b))可以同時去除ClO4-和NO3-,S室產(chǎn)生的H+被H室中的電化學反應消耗(圖2(c)),實現(xiàn)了出水pH值的穩(wěn)定[27]。2)電化學直接產(chǎn)氫還原硝酸鹽可以降低SAD負荷,減少副產(chǎn)物SO42-的產(chǎn)生。在電極驅(qū)動的硫自養(yǎng)反硝化工藝中,SAD過程對硝酸鹽去除的貢獻率為75.3%~83.1%,SO42-產(chǎn)量降低了17%~25%[28];此外,S0粒子和電極都作為反硝化細菌的生物載體,促進了硫粒子和陰極上協(xié)同反硝化群落和功能基因的形成[29]。還有相當一部分的SAD-電化學工藝研究集中在反應器設計、脫氮性能與工藝優(yōu)化等方面。例如:生物電化學和SAD耦合體系[30]、基于質(zhì)子交換膜電滲析(PEMED)的SAD脫氮體系[31]等,均可實現(xiàn)90%左右的硝酸鹽去除率,其中,PEMED的SAD脫氮體系無亞硝酸鹽積累,且pH值穩(wěn)定。
3.2 SAD-異養(yǎng)反硝化(HD)耦合脫氮
SAD和HD耦合有以下優(yōu)點:1)無須外加有機碳源,降低了運行成本;2)減少副產(chǎn)物SO42-的生成[33];3)脫氮效率大幅提高,污泥產(chǎn)量降低[34]。因此,有很多研究將SAD引入污水生化處理中,大多以SAD濾池為深度處理單元(圖3(a))。在污水深度脫氮工藝中,SAD濾池在未外加有機碳源的情況下,脫氮效率可以與投加了外碳源的HD濾池相當,硝酸鹽去除率達到了(0.268±0.047)kg/(m3·d),大大降低了運行成本[35]。以SAD濾池的形式耦合HD有著造價高、工藝流程長的缺點,因此,直接將SAD引入HD單元實現(xiàn)高效耦合,促進了異養(yǎng)反硝化和SAD協(xié)同脫氮,NO3--N和TN的去除效率分別達到98.9%和95.7%[2]。近期也有研究將SAD與A2O結(jié)合到同一反應器或工藝中,即將硫源填料(如S0、CaCO3、PAC和NaSiO3混合制成的復合填料)投加進A2O反應器中(圖3(b));結(jié)果TN的去除率由50.2%提高至81.2%,SO42-實際平均生成量為(235.39±43.37)mg/L,小于SO42-生成量理論值[36],說明SAD和A2O工藝耦合不僅可以提高脫氮效率,還減少了SAD過程中SO42-的生成量,也可能有利于降低污泥產(chǎn)量,無須碳源實現(xiàn)綠色低碳脫氮。
3.3 SAD-厭氧氨氧化耦合工藝
厭氧氨氧化(Anammox)的優(yōu)勢同SAD一樣,即無須外加有機物、無須曝氣,可以大大節(jié)約經(jīng)濟成本,但Anammox過程將水中污染物NO2--N和NH4+轉(zhuǎn)化為N2的同時產(chǎn)生了NO3--N,導致出水硝酸鹽含量升高[38],而SAD過程將水中NO3-轉(zhuǎn)化為N2的同時導致副產(chǎn)物NO2--N、H+和SO42-的生成。因此,將SAD與Anammox耦合可以有效取長補短。大多數(shù)研究表明,SAD耦合Anammox工藝(SDA工藝)后總氮去除率高達95%以上[39-41]。SDA工藝不僅脫氮效率高,還有以下優(yōu)點:1)SAD中的硫氧化細菌(SOB)對硫化物的快速氧化可以緩解硫化物對SDA體系中Anammox的抑制作用[42];2)Anammox可以為SAD過程提供堿度,平衡SDA工藝出水pH值[43];3)Anammox可以消除SAD失衡導致過量生成的NO2--N,減少出水副產(chǎn)物[44]。
將SAD耦合部分硝化-厭氧氨氧化(PNA)工藝有著同樣的作用機制,與傳統(tǒng)的PNA和SAD工藝相比,耦合工藝中SAD產(chǎn)生的NO2--N易被PNA反應所利用,可實現(xiàn)SO42-產(chǎn)量降低59%,總脫氮效率達到98%[45]。因此,耦合工藝系統(tǒng)較SAD或Anammox更加穩(wěn)定,運行操作簡單、脫氮效率高。
4 硫自養(yǎng)反硝化微生物
微生物的代謝功能是實現(xiàn)高效SAD的關鍵。SAD的功能微生物種類、生長條件及其生理特性見表1。其中,硫氧化細菌(SOB)是一類將單質(zhì)硫或低價的還原性硫化物部分氧化為高價硫化物或完全氧化為硫酸鹽(SO42-)的菌群[46]。SOB菌種類多樣,分布廣泛,其中一部分SOB菌能夠利用還原性硫化物作為電子供體來還原NO3-或NO2-[47-48],是參與SAD過程的關鍵微生物。
Thiobacillus和Sulfurimonas是已報道的最普遍的兩種SAD細菌,在SAD過程中,它們易受到如電子受體不同、水中有機碳含量和電子供體濃度等環(huán)境因素影響,使其相對豐度發(fā)生變化。Chen等[49]研究發(fā)現(xiàn),當電子受體從NO3-轉(zhuǎn)變?yōu)镹O2-,Thiobacillus顯著增加,且SAD系統(tǒng)表現(xiàn)出較強的處理能力。不僅如此,水中有機碳含量也是影響細菌組成的重要因素,有機組分可抑制Thiobacillus生長,而Sulfurovum更適合在有機碳豐富的條件下生存[50];在C/N從2.7減小至0的過程中,Sulfurovum的相對豐度由15.4%降至0.9%,而Thiobacillus成為主要優(yōu)勢菌落,相對豐度達到0.1%~50.2%[51]。此外,Thauera作為SAD過程中的重要異養(yǎng)硝酸鹽還原菌,其在低硫化物濃度的條件下可以和Thiobacillus共同維持體系脫氮平衡[52]。許多研究[11, 53-54]也表明,在SAD過程中,Proteobacteria是SAD中主要優(yōu)勢菌門,Sulfurimonas denitrificans (e-proteobacteria)和Thiobacillus denitrificans ?????(β-proteobacteria)是SAD過程中最常見的優(yōu)勢菌屬,它們普遍是嗜中性粒細胞或嗜中溫的,廣泛分布在海洋和陸地生態(tài)系統(tǒng)。因此,可以說SAD是氮的生物地球化學過程的人工強化。
5 結(jié)論與展望
SAD技術在填料、反應器、耦合工藝等方面的研究取得了顯著進步,成為污水綠色低碳脫氮的重要技術選擇,且中國已在部分工程上得到了推廣和應用。然而,SAD技術的工程化應用仍面臨諸多限制:SAD工藝溫度適應性需提高、反應器處理負荷亟待提升以及工程化工藝缺乏進一步創(chuàng)新等。以下幾個方面未來可能成為SAD研究重點:
1)開發(fā)適應低溫的SAD技術。研制抗低溫SAD菌、設計適合低溫運行的SAD工藝系統(tǒng)、開發(fā)耐低溫的SAD填料載體,克服因低溫導致SAD過程脫氮效率低的問題,提高SAD的溫度適用范圍。
2)提高硫自養(yǎng)反應器的處理負荷。加快傳質(zhì),促進S0的生物利用率,提高反應器單位體積處理負荷。此外,應用高效生物硫載體材料,如使用粒徑較小的S0顆?;騼?yōu)化S0顆粒表面結(jié)構,以及引入細胞外氧化還原介質(zhì)或?qū)щ姴牧?,都能提高反應器的處理負荷,這些思路還需要更多的研究驗證。
3)SAD工藝的創(chuàng)新與應用?,F(xiàn)有大多數(shù)研究采用SAD生物濾池的形式用于污水的深度脫氮,這增加了污水處理的流程且作用單一。未來研究應進一步縮短現(xiàn)有工藝,直接將SAD復合填料引入主流水處理工藝中,探究SAD和異養(yǎng)反硝化細菌的協(xié)同脫碳機制,并開展工程應用研究。
參考文獻
[1] ?WU Z, LIU Y, LIANG Z Y, et al. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference [J]. Water Research, 2017, 116: 231-240.
[2] ?LI Y Y, LIU L, WANG H J. Mixotrophic denitrification for enhancing nitrogen removal of municipal tailwater: Contribution of heterotrophic/sulfur autotrophic denitrification and bacterial community [J]. Science of the Total Environment, 2022, 814: 151940.
[3] ?LI X, SHI M, ZHANG M, et al. Progresses and challenges in sulfur autotrophic denitrification-enhanced Anammox for low carbon and efficient nitrogen removal [J]. Critical Reviews in Environmental Science and Technology, 2022, 52(24): 4379-4394.
[4] ?WANG H C, LIU Y, YANG Y M, et al. Element sulfur-based autotrophic denitrification constructed wetland as an efficient approach for nitrogen removal from low C/N wastewater [J]. Water Research, 2022, 226: 119258.
[5] ?LI Y Y, LIU Y X, LUO J H, et al. Emerging onsite electron donors for advanced nitrogen removal from anammox effluent of leachate treatment: A review and future applications [J]. Bioresource Technology, 2021, 341: 125905.
[6] ?馬航, 朱強, 朱亮, 等. 單質(zhì)硫顆粒尺寸及反應器類型對硫自養(yǎng)反硝化反應器啟動的影響[J]. 環(huán)境科學, 2016, 37(6): 2235-2242.
MA H, ZHU Q, ZHU L, et al. Effect of element sulfur particle size and type of the reactor on start-up of sulfur-based autotrophic denitrification reactor [J]. Environmental Science, 2016, 37(6): 2235-2242. (in Chinese)
[7] ?KONG Z, FENG C P, CHEN N, et al. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment [J]. Bioresource Technology, 2014, 159: 272-279.
[8] ?UCAR D, YILMAZ T, DI CAPUA F, et al. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor (SMBR) [J]. Bioresource Technology, 2020, 299: 122574.
[9] ?LI R H, GUAN M S, WANG W. Simultaneous arsenite and nitrate removal from simulated groundwater based on pyrrhotite autotrophic denitrification [J]. Water Research, 2021, 189: 116662.
[10] ?LIU Y J, CHEN N, TONG S, et al. Performance enhancement of H2S-based autotrophic denitrification with bio-gaseous CO2as sole carbon source through new pH adjustment materials [J]. Journal of Environmental Management, 2020, 261: 110157.
[11] ?TIAN T, YU H Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters [J]. Bioresource Technology, 2020, 299: 122686.
[12] ?李天昕, 邱誠翔, 徐昊, 等. 硫/石灰石自養(yǎng)反硝化處理低碳高氮城市污水的工藝[J]. 環(huán)境工程學報, 2014, 8(3): 1062-1066.
LI T X, QIU C X, XU H, et al. Low carbon and high nitrogen concentration municiple wastewater treatment with sulfur/limestone autotrophic denitrification technology [J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1062-1066. (in Chinese)
[13] ?SAHINKAYA E, DURSUN N, KILIC A, et al. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production [J]. Water Research, 2011, 45(20): 6661-6667.
[14] ?QAMBRANI N A, OH S E. Effect of dissolved oxygen tension and agitation rates on sulfur-utilizing autotrophic denitrification: Batch tests [J]. Applied Biochemistry and Biotechnology, 2013, 169(1): 181-191.
[15] ?史航, 隆添翼, 柳聰, 等. 基于異養(yǎng)-硫自養(yǎng)反硝化耦合技術的陶粒-硫磺混合生物填料對城市污水處理廠尾水的深度脫氮[J]. 環(huán)境工程學報, 2022, 16(4): 1363-1372.
SHI H, LONG T Y, LIU C, et al. Deep nitrogen removal from urban wastewater by ceramsite-sulfur mixed biological fillers based on heterotrophy-sulfur autotrophic denitrification coupling technology [J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1363-1372. (in Chinese)
[16] ?阮赟杰, 羅國芝, 譚洪新, 等. 硫/珊瑚石填料床的自養(yǎng)反硝化反應器[J]. 福建農(nóng)林大學學報(自然科學版), 2009, 38(2): 198-202.
RUAN Y J, LUO G Z, TAN H X, et al. A sulfur and corallite packed-bed reactor for autotrophic denitrification [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2009, 38(2): 198-202. (in Chinese)
[17] ?劉艷芳, 劉曉帥, 尹思婕, 等. 包埋硫鐵生物填料的制備及自養(yǎng)反硝化性能[J]. 中國環(huán)境科學, 2022, 42(11): 5136-5143.
LIU Y F, LIU X S, YIN S J, et al. Preparation and autotrophic denitrification properties of embedded sulfur/iron biological filler [J]. China Environmental Science, 2022, 42(11): 5136-5143. (in Chinese)
[18] ?WOO Y C, LEE J J, JEONG A, et al. Removal of nitrogen by a sulfur-based carrier with powdered activated carbon (PAC) for denitrification in membrane bioreactor (MBR) [J]. Journal of Water Process Engineering, 2020, 34: 101149.
[19] ?LIANG J, CHEN N, TONG S, et al. Sulfur autotrophic denitrification (SAD) driven by homogeneous composite particles containing CaCO3-type kitchen waste for groundwater remediation [J]. Chemosphere, 2018, 212: 954-963.
[20] ?VO T K Q, JEONG A, SONG J, et al. Nitrogen removal by using sulfur-based carriers: A comparison of configurations for the denitrification process [J]. Desalination and Water Treatment, 2019, 167: 212-217.
[21] ?VO T K Q, KANG S, AN S N, et al. Exploring critical factors influencing on autotrophic denitrification by elemental sulfur-based carriers in upflow packed-bed bioreactors [J]. Journal of Water Process Engineering, 2021, 40: 101866.
[22] ?HAN G B, PARK J K. NO3--N removal with sulfur-lime porous ceramic carrier (SLPC) in the packed-bed bioreactors by autosulfurotrophic denitrification [J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(4): 591-596.
[23] ?MA W C, ZHOU D P, ZHONG D, et al. Study of nitrogen removal efficiency of the filled bed reactors using alkali-treated corncobs-sulfur (mixotrophic) for treating the effluent from simulated urban wastewater plants [J]. Bioresource Technology, 2022, 349: 126630.
[24] ?QIU Y Y, GUO J H, ZHANG L, et al. A high-rate sulfidogenic process based on elemental sulfur reduction: Cost-effectiveness evaluation and microbial community analysis [J]. Biochemical Engineering Journal, 2017, 128: 26-32.
[25] ?ZHANG L L, SONG Y D, ZUO Y, et al. Integrated sulfur-?and iron-based autotrophic denitrification process and microbial profiling in an anoxic fluidized-bed membrane bioreactor [J]. Chemosphere, 2019, 221: 375-382.
[26] ?CARBONI M F, MILLS S, ARRIAGA S, et al. Autotrophic denitrification of nitrate rich wastewater in fluidized bed reactors using pyrite and elemental sulfur as electron donors [J]. Environmental Technology & Innovation, 2022, 28: 102878.
[27] ?GAO M C, WANG S, REN Y, et al. Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy [J]. Chemical Engineering Journal, 2016, 284: 1008-1016.
[28] ?LIU Y W, NGO H H, GUO W S, et al. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in hydrogenotrophic denitrification [J]. Biotechnology and Bioengineering, 2018, 115(4): 978-988.
[29] ?CHEN F, LI Z L, YE Y, et al. Coupled sulfur and electrode-driven autotrophic denitrification for significantly enhanced nitrate removal [J]. Water Research, 2022, 220: 118675.
[30] ?WANG H Y, LYU W L, HU X L, et al. Effects of current intensities on the performances and microbial communities in a combined bio-electrochemical and sulfur autotrophic denitrification (CBSAD) system [J]. Science of the Total Environment, 2019, 694: 133775.
[31] ?WAN D J, LIU H J, LIU R P, et al. Study of a combined sulfur autotrophic with proton-exchange membrane electrodialytic denitrification technology: Sulfate control and pH balance [J]. Bioresource Technology, 2011, 102(23): 10803-10809.
[32] ?CHEN F, YE Y, FAN B L, et al. Simultaneous removal of tetrachloroethylene and nitrate with a novel sulfur-packed biocathode system: The synergy between bioelectrocatalytic dechlorination and sulfur autotrophic denitrification [J]. Chemical Engineering Journal, 2022, 439: 135793.
[33] ?SAHINKAYA E, DURSUN N. Use of elemental sulfur and thiosulfate as electron sources for water denitrification [J]. Bioprocess and Biosystems Engineering, 2015, 38(3): 531-541.
[34] ?李祥, 馬航, 黃勇, 等. 異養(yǎng)與硫自養(yǎng)反硝化協(xié)同處理高硝氮廢水特性研究[J]. 環(huán)境科學, 2016, 37(7): 2646-2651.
LI X, MA H, HUANG Y, et al. Characteristics of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of high nitrate in water [J]. Environmental Science, 2016, 37(7): 2646-2651. (in Chinese)
[35] ?WANG S S, CHENG H Y, ZHANG H, et al. Sulfur autotrophic denitrification filter and heterotrophic denitrification filter: Comparison on denitrification performance, hydrodynamic characteristics and operating cost [J]. Environmental Research, 2021, 197: 111029.
[36] ?WOO Y C, LEE J J, KIM H S. Removal of nitrogen from municipal wastewater by denitrification using a sulfur-based carrier: A pilot-scale study [J]. Chemosphere, 2022, 296: 133969.
[37] ?QIANG J X, ZHOU Z, WANG K C, et al. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment [J]. Water Research, 2020, 170: 115280.
[38] ?DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: Opportunities of extending application for anammox [J]. Environment International, 2019, 131: 105001.
[39] ?LI X, YUAN Y, HUANG Y, et al. Simultaneous removal of ammonia and nitrate by coupled S0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater [J]. Science of the Total Environment, 2019, 661: 235-242.
[40] ?CHEN F M, LI X, YUAN Y, et al. An efficient way to enhance the total nitrogen removal efficiency of the Anammox process by S0-based short-cut autotrophic denitrification [J]. Journal of Environmental Sciences, 2019, 81: 214-224.
[41] ?王拓. 厭氧氨氧化與硫自養(yǎng)反硝化兩段式耦合工藝運行機理研究?[D]. 天津:天津城建大學, 2020: 70.
WANG T. Study on the mechanism of two-stage coupled process of anammox and sulfur-based autotrophic denitrification [D]. Tianjin: Tianjin Chengjian University, 2020: 70.
[42] ?DENG Y F, WU D, HUANG H, et al. Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment [J]. Water Research, 2021, 193: 116905.
[43] ?LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell anammox culture [J]. Water Research, 2014, 60: 1-14.
[44] ?DENG Y F, ZAN F X, HUANG H, et al. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review [J]. Water Research, 2022, 224: 119051.
[45] ?ZHANG K, KANG T L, YAO S, et al. A novel coupling process with partial nitritation-anammox and short-cut sulfur autotrophic denitrification in a single reactor for the treatment of high ammonium-containing wastewater [J]. Water Research, 2020, 180: 115813.
[46] ?POKORNA D, ZABRANSKA J. Sulfur-oxidizing bacteria in environmental technology [J]. Biotechnology Advances, 2015, 33(6): 1246-1259.
[47] ?HAN F, ZHANG M R, SHANG H G, et al. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater [J]. Bioresource Technology, 2020, 315: 123826.
[48] ?LIU C S, LI Y Z, GAI J N, et al. Cultivation of sulfide-driven partial denitrification granules for efficient nitrite generation from nitrate-sulfide-laden wastewater [J]. Science of the Total Environment, 2022, 804: 150143.
[49] ?CHEN F M, LI X, GU C W, et al. Selectivity control of nitrite and nitrate with the reaction of S0and achieved nitrite accumulation in the sulfur autotrophic denitrification process [J]. Bioresource Technology, 2018, 266: 211-219.
[50] ?MOULANA A, ANDERSON R E, FORTUNATO C S, et al. Selection is a significant driver of gene gain and loss in the pangenome of the bacterial genusSulfurovumin geographically distinct deep-sea hydrothermal vents [J]. mSystems, 2020, 5(2): e00673-e00719.
[51] ?QIU Y Y, ZHANG L, MU X T, et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation [J]. Water Research, 2020, 169: 115084.
[52] ?ZHANG R C, XU X J, CHEN C, et al. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification [J]. Water Research, 2018, 143: 355-366.
[53] ?LI Y Y, WANG Y L, WAN D J, et al. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure [J]. Bioresource Technology, 2020, 300: 122682.
[54] ?YANG J F, QIN Y J, LIU X Y, et al. Effects of different electron donors on nitrogen removal performance and microbial community of denitrification system [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107915.
[55] ?ZHANG Y W, WEI D Y, MORRISON L, et al. Nutrient removal through pyrrhotite autotrophic denitrification: Implications for eutrophication control [J]. Science of the Total Environment, 2019, 662: 287-296.
[56] ?WANG W, WEI D Y, LI F C, et al. Sulfur-siderite autotrophic denitrification system for simultaneous nitrate and phosphate removal: From feasibility to pilot experiments [J]. Water Research, 2019, 160: 52-59.
[57] ?KELLERMANN C, GRIEBLER C.Thiobacillus thiophilussp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(3): 583-588.
[58] ?SOROKIN D Y, TOUROVA T P, SJOLLEMA K A, et al. Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake [J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 6): 1779-1783.
[59] ?KEN T K, SUZUKI M, NAKAGAWA S, et al.Sulfurimonas paralvinellaesp. nov., a novel mesophilic, hydrogen-?and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification ofThiomicrospira denitrificansasSulfurimonas denitrificanscomb. nov. and emended description of the genusSulfurimonas[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(8): 1725-1733.
[60] ?KOJIMA H, FUKUI M.Sulfuricella denitrificans Gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake [J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 12): 2862-2866.
[61] ?CUI Y X, BISWAL B K, VAN LOOSDRECHT M C M, et al. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor [J]. Water Research, 2019, 166: 115038.
[62] ?SUN S S, LIU J, ZHANG M P, et al. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission [J]. Bioresource Technology, 2020, 300: 122651.
[63] ?GEVERTZ D, TELANG A J, VOORDOUW G, et al. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine [J]. Applied and Environmental Microbiology, 2000, 66(6): 2491-2501.
[64] ?QIAN J, LU H, JIANG F, et al. Beneficial co-treatment of simple wet flue gas desulphurization wastes with freshwater sewage through development of mixed denitrification–SANI process [J]. Chemical Engineering Journal, 2015, 262: 109-118.
(編輯??胡英奎)