劉奔
趾端壓裂滑套代替連續(xù)管射孔用于水平井首段壓裂施工具有較高的經(jīng)濟(jì)效益。針對(duì)常規(guī)趾端滑套難以滿足開(kāi)啟壓力窗口范圍較窄的油氣井首段壓裂問(wèn)題,研發(fā)了一種電子趾端滑套。采用特殊設(shè)計(jì)的低成本鎖定與開(kāi)啟控制系統(tǒng),通過(guò)定制的壓力波形實(shí)現(xiàn)遠(yuǎn)程觸發(fā)開(kāi)啟,可以有效避免滑套在施工過(guò)程中與壓力相關(guān)的風(fēng)險(xiǎn),開(kāi)展了電子趾端滑套結(jié)構(gòu)及功能設(shè)計(jì),并對(duì)其壓力信號(hào)采集精度、整體能耗和開(kāi)啟性能進(jìn)行了地面測(cè)試。研究結(jié)果表明:壓力采集精度受密封件摩擦影響,在50 MPa以上高壓時(shí),采集壓力與實(shí)際壓力差值穩(wěn)定在3 MPa左右;電子趾端滑套在150 ℃環(huán)境下持續(xù)工作電流只需9 mA,整機(jī)能耗為216 mA·h/d;在地面試驗(yàn)中,電子趾端滑套能夠成功識(shí)別壓力波形信號(hào)并解鎖電磁式液壓鎖,試驗(yàn)最高壓力達(dá)到98 MPa。研究結(jié)果可為深層、超長(zhǎng)水平段油氣開(kāi)發(fā)提供選擇。
壓裂工具;趾端滑套;電子滑套;壓力信號(hào);電磁式液壓鎖
Development and Experiment of Electronic Toe-End Frac Sliding Sleeve
It has high economic benefits to use the toe-end frac sliding sleeve to replace coiled tubing perforation in the first section fracturing construction of horizontal wells.However,the conventional toe-end sliding sleeve is difficult to meet the first section fracturing of oil and gas wells with narrow opening pressure window;therefore,an electronic toe-end frac sliding sleeve was developed in the paper.With the help of a specially designed low-cost locking and unlocking control system,the customized pressure waveform was used to realize remote triggering unlocking,effectively avoiding the risks related to pressure of sliding sleeve during the construction process.Moreover,the structure and function of electronic toe-end frac sliding sleeve were designed,and the pressure signal acquisition accuracy,overall energy consumption and unlocking performance of it were tested on the ground.The research results show that the pressure acquisition accuracy is affected by the friction of the sealing element;when the pressure exceeds 50 MPa,the difference between the collected pressure and the actual pressure remains stable at about 3 MPa;the electronic toe-end frac sliding sleeve only needs 9 mA of continuous working current in a 150 ℃ environment,and the overall energy consumption is 216 mA·h/d;in ground tests,the electronic toe-end frac sliding sleeve can successfully recognize pressure waveform signals and unlock electromagnetic hydraulic locks,with a maximum test pressure coming to 98 MPa.The research results provide choices for oil and gas development of deep and ultra-long horizontal sections.
fracturing tool;toe-end sliding sleeve;electronic sliding sleeve;pressure signal;electromagnetic hydraulic lock
0 引 言
在深層頁(yè)巖氣井和超長(zhǎng)水平段井采用連續(xù)管和爬行器進(jìn)行首段射孔需要花費(fèi)較長(zhǎng)的井場(chǎng)作業(yè)時(shí)間和作業(yè)成本,而采用趾端壓裂滑套進(jìn)行首段壓裂已被證實(shí)具有較高的經(jīng)濟(jì)效益[1-4]。趾端壓裂滑套的工作原理是在下套管固井過(guò)程中,趾端滑套隨管柱一起下入到井中,當(dāng)需要進(jìn)行壓裂施工時(shí),通過(guò)井口施加一定的壓力,可直接開(kāi)啟趾端滑套,實(shí)現(xiàn)管柱內(nèi)和地層之間的溝通,完成油氣井首段壓裂?,F(xiàn)有趾端滑套一般在入井之前提前采用剪切銷(xiāo)釘、爆破閥等工具設(shè)置好啟動(dòng)壓力[5-7],在施工時(shí),通過(guò)井口施加高于啟動(dòng)壓力的壓力值來(lái)開(kāi)啟趾端滑套。針對(duì)頁(yè)巖氣井在壓裂前需要全井筒試高壓的要求,近年具有延時(shí)開(kāi)啟功能的趾端滑套也被應(yīng)用到頁(yè)巖氣井的壓裂中[8-11],其主要采用流體流經(jīng)微型節(jié)流閥、循環(huán)壓力棘輪、可溶剪釘?shù)葋?lái)實(shí)現(xiàn)延時(shí)和多次試壓要求。
趾端滑套的開(kāi)啟壓力設(shè)定一般需要低于油氣井的最高施工壓力,為了防止趾端滑套提前啟動(dòng),需要將趾端滑套的啟動(dòng)壓力設(shè)置在固井最高壓力和施工最高壓力之間,并留有壓力波動(dòng)空間[12-13]。然而,隨著深層頁(yè)巖氣的逐漸開(kāi)發(fā),一些采用高密度鉆井液固井的頁(yè)巖氣井,在固井過(guò)程中的壓力較高,與最高施工壓力之間的差值較小,使得趾端滑套設(shè)置啟動(dòng)壓力的范圍變窄;而且剪切銷(xiāo)釘和爆破閥的材料和加工誤差造成的壓力波動(dòng)范圍較難精確控制,使趾端滑套的施工風(fēng)險(xiǎn)增加[14-15],常規(guī)的機(jī)械式趾端滑套難以適應(yīng)這類(lèi)油氣井。鑒于此,本文結(jié)合頁(yè)巖氣壓裂施工工藝,提出了一種電子趾端滑套,其采用特殊設(shè)計(jì)的低成本鎖定與開(kāi)啟控制系統(tǒng),通過(guò)定制的壓力波形來(lái)觸發(fā)開(kāi)啟,克服了滑套在施工過(guò)程中與壓力相關(guān)的風(fēng)險(xiǎn),不僅對(duì)各種井況有著更好的適應(yīng)性,而且兼顧經(jīng)濟(jì)和可靠性,可為頁(yè)巖氣井首段壓裂提供新的解決方案。
1 電子趾端滑套總體設(shè)計(jì)
1.1 結(jié)構(gòu)設(shè)計(jì)
電子趾端滑套總體結(jié)構(gòu)如圖1所示。適用于139.7 mm(51/2 in)井眼的電子趾端滑套總長(zhǎng)1 400 mm,最小內(nèi)通徑104 mm,承壓能力140 MPa。滑套本體周向上設(shè)計(jì)有壓裂孔眼,其在組裝及入井狀態(tài)下靠?jī)?nèi)滑套的2個(gè)密封圈將滑套內(nèi)外隔離及密封。本體內(nèi)部和內(nèi)滑套外部組合后形成一個(gè)環(huán)空的液壓油腔。電控短節(jié)上對(duì)稱(chēng)布置有2條長(zhǎng)細(xì)孔與液壓油腔連通,通過(guò)長(zhǎng)細(xì)孔往腔體內(nèi)注滿液壓油,整套鎖定與開(kāi)啟系統(tǒng)被密閉封裝在電控短節(jié)上的環(huán)空中。由于內(nèi)滑套為壓差式結(jié)構(gòu),當(dāng)井內(nèi)有壓力時(shí),內(nèi)滑套會(huì)被推力有移動(dòng)的趨勢(shì),并將壓力傳遞到液壓油腔中,然后通過(guò)電控短節(jié)上的長(zhǎng)細(xì)孔傳遞到鎖定與開(kāi)啟系統(tǒng)。為了保證內(nèi)滑套不移動(dòng),鎖定與開(kāi)啟系統(tǒng)需提供足夠的密封能力,封堵住長(zhǎng)細(xì)孔使內(nèi)滑套被液壓鎖定。當(dāng)達(dá)到開(kāi)啟條件時(shí),鎖定與開(kāi)啟系統(tǒng)將不再密封這一長(zhǎng)細(xì)孔,液壓油腔內(nèi)的液壓油將從小孔中流出,使內(nèi)滑套不再被液壓鎖定。此時(shí),內(nèi)滑套在井內(nèi)壓力的作用下將移動(dòng)開(kāi)啟,井筒內(nèi)通過(guò)滑套上的壓裂孔實(shí)現(xiàn)與地層的溝通,進(jìn)行壓裂作業(yè)。
電子趾端滑套與大部分電控和智能滑套相比的一個(gè)顯著的特點(diǎn)是,其開(kāi)啟的驅(qū)動(dòng)力仍然是井內(nèi)的壓力,這樣滑套不再需要采用復(fù)雜的空心電機(jī)或液壓回路來(lái)驅(qū)動(dòng)內(nèi)滑套的動(dòng)作,從而大大簡(jiǎn)化滑套結(jié)構(gòu)與電控系統(tǒng)部件,降低了滑套成本,提高了其應(yīng)用的可靠性。
電子趾端滑套在承內(nèi)壓140 MPa,承外壓60 MPa時(shí)的有限元分析應(yīng)力云圖如圖2所示?;撞捎?5CrMo材料加工,其屈服強(qiáng)度835 MPa,抗拉強(qiáng)度985 MPa?;椎淖畲髴?yīng)力在電控短節(jié)上的長(zhǎng)細(xì)孔上,該部位對(duì)滑套的整體承壓無(wú)影響,其余部位應(yīng)力均在材料屈服極限內(nèi),滿足承壓要求。
1.2 鎖定與開(kāi)啟系統(tǒng)
根據(jù)電子趾端滑套的結(jié)構(gòu)設(shè)計(jì),為了使內(nèi)滑套按需移動(dòng),露出壓裂孔,需要一套可控的封堵和釋放電控短節(jié)上長(zhǎng)細(xì)孔通道的微型鎖定與開(kāi)啟系統(tǒng),并將其密封在電控短節(jié)的環(huán)空中。因此,設(shè)計(jì)了帶密封圈的液壓推桿來(lái)封堵住這一長(zhǎng)細(xì)孔。由于液壓油腔體內(nèi)的壓力與滑套受到的井內(nèi)壓力一樣,鎖定系統(tǒng)的液壓推桿必定受到較大的推力。設(shè)計(jì)的封堵和釋放長(zhǎng)細(xì)孔通道的微型電磁式液壓鎖見(jiàn)圖3,其承壓能力達(dá)到140 MPa以上,但最大外徑只有22 mm,有效保證了趾端滑套的結(jié)構(gòu)緊湊性和大通徑的設(shè)計(jì)。封堵另一個(gè)長(zhǎng)細(xì)孔道的是壓力信號(hào)采集裝置,其通過(guò)監(jiān)測(cè)液壓油腔內(nèi)的油壓實(shí)現(xiàn)對(duì)井筒內(nèi)壓力信號(hào)的采集。典型的鎖定與開(kāi)啟系統(tǒng)如圖3所示,其包含電磁式液壓鎖、壓力信號(hào)采集裝置,控制系統(tǒng)與供電系統(tǒng)。控制系統(tǒng)內(nèi)的程序可根據(jù)現(xiàn)場(chǎng)不同的井況要求通過(guò)上位機(jī)進(jìn)行編輯定制,實(shí)現(xiàn)趾端滑套開(kāi)啟信號(hào)設(shè)定與延時(shí)功能。
1.3 功能設(shè)計(jì)
電子趾端滑套相比于常規(guī)機(jī)械式趾端滑套的最大優(yōu)勢(shì)在于其獨(dú)特的開(kāi)啟方式,井內(nèi)壓力峰值不再是其唯一的開(kāi)啟信號(hào)。這樣,電子趾端滑套在入井前可以設(shè)定極高的鎖定力,保證滑套工具在入井、試壓、開(kāi)啟過(guò)程中不再需要擔(dān)心壓力相關(guān)風(fēng)險(xiǎn),大大提高其應(yīng)用的可靠性。電子趾端滑套上配備的壓力信號(hào)采集裝置可以采集井筒內(nèi)的壓力,滑套在入井之前,會(huì)對(duì)滑套開(kāi)啟的特殊壓力信號(hào)進(jìn)行設(shè)置。滑套入井之后,壓力信號(hào)采集裝置會(huì)持續(xù)采集井內(nèi)壓力信號(hào),并與預(yù)先寫(xiě)入控制系統(tǒng)內(nèi)的壓力信號(hào)進(jìn)行對(duì)比,當(dāng)識(shí)別到匹配信號(hào)后,控制系統(tǒng)會(huì)解鎖電磁式液壓鎖,實(shí)現(xiàn)電子趾端滑套的開(kāi)啟。
圖4為一個(gè)典型的壓力開(kāi)啟信號(hào)波形隨時(shí)間的關(guān)系。這個(gè)壓力波形經(jīng)歷了4個(gè)階段。其中藍(lán)線為設(shè)定的壓力信號(hào)與時(shí)間的關(guān)系,藍(lán)線周?chē)年幱盀樵试S的壓力波動(dòng)范圍;紅線為實(shí)際的加壓曲線。只要紅線在藍(lán)線周?chē)年幱胺秶鷥?nèi),即實(shí)際的加壓曲線在壓力信號(hào)允許的壓力波動(dòng)范圍內(nèi),則認(rèn)為這一壓力信號(hào)為有效信號(hào)?;祖i定與開(kāi)啟系統(tǒng)識(shí)別到有效信號(hào)后,會(huì)執(zhí)行相應(yīng)的操作。各階段的壓力信號(hào)p0、p1、p2、p3和時(shí)間點(diǎn)t1、t2、t3、t4需要根據(jù)現(xiàn)場(chǎng)的施工能力提前設(shè)定。其中最低壓力p0不應(yīng)低于管柱內(nèi)的靜液柱壓力,最高壓力p3不應(yīng)高于現(xiàn)場(chǎng)最高施工壓力。各階段之間的時(shí)間差值Δt需要考慮現(xiàn)場(chǎng)的加壓速率,并根據(jù)各階段的壓力差值Δp合理設(shè)置。
2 地面測(cè)試
2.1 壓力信號(hào)采集裝置精度測(cè)試
為了驗(yàn)證壓力信號(hào)采集系統(tǒng)的信號(hào)采集精度,在壓力試驗(yàn)機(jī)上進(jìn)行了等效模擬測(cè)試,如圖5所示。
利用壓力機(jī)給液壓推桿施加軸向力來(lái)模擬等效液壓油對(duì)推桿的壓力,測(cè)試數(shù)據(jù)如圖6所示。此次測(cè)試的等效壓力范圍為0~140 MPa。當(dāng)壓力低于20 MPa時(shí),傳感器壓力值與壓力機(jī)數(shù)據(jù)符合度較好,差值在0.6 MPa左右波動(dòng);當(dāng)壓力逐漸升高到50 MPa時(shí),傳感器壓力值與壓力機(jī)數(shù)據(jù)差值逐漸增大,從0.6 MPa增加到3.0 MPa;當(dāng)壓力高于50 MPa時(shí),傳感器壓力值與壓力機(jī)數(shù)據(jù)差值在3.0 MPa左右波動(dòng),其誤差范圍為2.2%~6.0%。這一誤差主要由活塞推桿與缸體之間密封件的摩擦阻力引起,可以通過(guò)優(yōu)化密封件設(shè)計(jì)和提高活塞和缸體表面質(zhì)量來(lái)進(jìn)一步減小摩擦阻力,提高壓力信號(hào)采集系統(tǒng)的精度。
2.2 壓力信號(hào)采集裝置能耗測(cè)試
由于電子趾端滑套采用無(wú)纜設(shè)計(jì),供電系統(tǒng)也封裝在滑套上的電控短節(jié)中,能耗測(cè)試能為高溫電池組的能量需求提供參考,實(shí)現(xiàn)合理的供電設(shè)計(jì),保證滑套在井下的可靠工作時(shí)間。根據(jù)壓力信號(hào)采集裝置的功能設(shè)計(jì),壓力傳感器在入井后就會(huì)持續(xù)采集井內(nèi)的壓力信號(hào),并與設(shè)定的壓力波形信號(hào)進(jìn)行匹配,這樣壓力信號(hào)采集裝置與控制系統(tǒng)會(huì)持續(xù)工作;而關(guān)于電磁式液壓鎖的能耗,只需要在壓力信號(hào)匹配完成后執(zhí)行。因此,需要測(cè)量壓力信號(hào)采集裝置與控制系統(tǒng)持續(xù)工作時(shí)的能耗,以及電磁式液壓鎖解鎖的瞬時(shí)能耗。
圖7為能耗測(cè)試試驗(yàn)裝置。為模擬滑套在井下的高溫環(huán)境,將待測(cè)的壓力信號(hào)采集裝置、控制系統(tǒng)和電磁式液壓鎖均安放在高溫試驗(yàn)箱中,溫度設(shè)定為150 ℃,并采用直流電源供電和讀取電流信號(hào),供電電壓為5 V。壓力信號(hào)采集裝置與控制系統(tǒng)持續(xù)工作時(shí)的供電電流穩(wěn)定在9 mA,開(kāi)啟電磁式液壓鎖的供電電流平均值約為880 mA,如圖8所示。這樣壓力信號(hào)采集裝置的整體能耗為216 mA·h/d,具有較低的功耗。開(kāi)啟電磁式液壓鎖的電流雖然較高,但其持續(xù)時(shí)間很短,整體功耗也很低。
2.3 電子趾端滑套功能測(cè)試
2023年5月,在德州大陸架石油工程技術(shù)有限公司的高壓測(cè)試系統(tǒng)上進(jìn)行了電子趾端滑套的功能測(cè)試,如圖9所示。鎖定與開(kāi)啟系統(tǒng)安裝在電控短節(jié)的環(huán)空中,為了便于調(diào)試與功能測(cè)試,沒(méi)有裝配電控短節(jié)外殼。利用萬(wàn)用表單獨(dú)接線采集傳感器數(shù)據(jù),不僅可以實(shí)時(shí)讀取滑套內(nèi)的真實(shí)壓力,監(jiān)控滑套的工作狀態(tài),還可以進(jìn)一步對(duì)比泵壓與滑套內(nèi)壓力的關(guān)系。在控制系統(tǒng)中提前設(shè)定好的開(kāi)啟壓力范圍如圖10中陰影部分所示,為4個(gè)階段:第1階段在15~45 MPa之間保持不短于5 min;第2階段在35~65 MPa之間保持不短于5 min;第3階段在55~85 MPa之間保持不短于5 min;第4階段在75~105 MPa之間保持不短于25 min。通過(guò)調(diào)整泵壓的加載速率,使其完全落在設(shè)定的開(kāi)啟壓力范圍內(nèi),滑套最高試壓到98 MPa,在到達(dá)設(shè)定的時(shí)間后,滑套順利開(kāi)啟。
3 結(jié) 論
(1)設(shè)計(jì)的電子趾端滑套適用于139.7 mm(51/2 in)井眼,最小內(nèi)通徑104 mm,承壓能力達(dá)到140 MPa。
(2)設(shè)計(jì)的鎖定與開(kāi)啟系統(tǒng)能夠有效地采集井筒內(nèi)的壓力信號(hào),其壓力采集精度受密封件摩擦影響,在0~140 MPa之間,采集的壓力與實(shí)際的壓力差值先符合較好,然后逐漸增大到3 MPa,最后在3 MPa左右波動(dòng)。
(3)鎖定與開(kāi)啟系統(tǒng)供電電壓5 V,供電電流只需9 mA,開(kāi)啟電磁式液壓鎖的瞬時(shí)電流為880 mA,電子趾端滑套在150 ℃環(huán)境下工作的能耗為216 mA·h/d。
(4)電子趾端滑套在地面試驗(yàn)中能夠成功識(shí)別壓力波形信號(hào)并解鎖電磁式液壓鎖,試驗(yàn)最高壓力達(dá)到98 MPa。
[1] 袁光杰,付利,王元,等.我國(guó)非常規(guī)油氣經(jīng)濟(jì)有效開(kāi)發(fā)鉆井完井技術(shù)現(xiàn)狀與發(fā)展建議[J].石油鉆探技術(shù),2022,50(1):1-12.
YUAN G J,F(xiàn)U L,WANG Y,et al.The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J].Petroleum Drilling Techniques,2022,50(1): 1-12.
[2] CASERO A.20 years of horizontal multistage completions: a summary of industry evolution in unconventional and conventional plays[C]∥ Abu Dhabi International Petroleum Exhibition & Conference.Calgary: Society of Petroleum Engineer,2021: SPE 207698-MS.
[3] TREBING C,WHITWORTH J,BESZTERDA A.Cost effective solutions to achieve injection post toe valve failure[C]∥SPE/ICoTA Coiled Tubing & Well Intervention Conference & Exhibition.Calgary: Society of Petroleum Engineers,2015: SPE 173678-MS.
[4] 張國(guó)榮,王俊方,張龍富,等.南川常壓頁(yè)巖氣田高效開(kāi)發(fā)關(guān)鍵技術(shù)進(jìn)展[J].油氣藏評(píng)價(jià)與開(kāi)發(fā),2021,11(3):365-376.
ZHANG G R,WANG J F,ZHANG L F,et al.Key technical progress in efficient development of Nanchuan normal-pressure shale gas field[J].Reservoir Evaluation and Development,2021,11(3): 365-376.
[5] Weatherford.Optio4 immediate-open toe sleeve[EB/OL].[2023-08-11].https:∥www.weatherford.com/documents/technical-specification-sheet/products-and-services/completions/optio-immediate-open-toe-sleeve/.
[6] Baker Hughes.Alpha pressure-activated toe sleeve[EB/OL].[2023-08-11] https:∥www.bakerhughes.com/completions/multistage-completion-solutions/frac-sleeve-systems/alpha-pressureactivated-toe-sleeve.
[7] 劉斌輝,唐守勇,曲從鋒,等.頁(yè)巖氣水平井固井趾端壓裂滑套的研制[J].天然氣工業(yè),2021,41(增刊1):192-196.
LIU B H,TANG S Y,QU C F,et al.Development of toe fracturing sleeve for shale gas horizontal well cementing[J].Natural Gas Industry,2021,41(S1): 192-196.
[8] 朱玉杰,劉曉平,魏遼.水平井延時(shí)啟動(dòng)趾端滑套關(guān)鍵技術(shù)研究[J].鉆采工藝,2019,42(3):80-83.
ZHU Y J,LIU X P,WEI L.Research on key technology of time delayed activation of toe sleeve in horizontal well[J].Drilling & Production Technology,2019,42(3): 80-83.
[9] 楊同玉,魏遼,馮麗瑩,等.水平井趾端壓裂關(guān)鍵工具設(shè)計(jì)與試驗(yàn)[J].石油鉆探技術(shù),2018,46(4):54-58.
YANG T Y,WEI L,F(xiàn)ENG L Y,et al.Design and test of key tools in horizontal well toe-end fracturing[J].Petroleum Drilling Techniques,2018,46(4): 54-58.
[10] 王偉鵬,隆世明,李景彬.溶解延時(shí)開(kāi)啟趾端滑套的研制[C]∥ 2022油氣田勘探與開(kāi)發(fā)國(guó)際會(huì)議論文集Ⅳ.西安: 西安石油大學(xué),2022:325-331.
WANG W P,LONG S M,LI J B.Design and test of delay-opening toe-end sliding sleeves with soluble materials[C]∥ Proceedings of the Academic International Field Exploration and Development ConferenceⅣ.Xian: Xian Shiyou University,2022: 325-331.
[11] WELLHOEFER B,CANNING S,ALKEK T,et al.New toe sleeve enables true casing-pressure test in an eagle ford shale well: a case study[C]∥ SPE Asia Pacific Unconventional Resources Conference and Exhibition.Calgary: Society of Petroleum Engineers,2015: SPE 176876-MS.
[12] 魏遼.基于井況的趾端滑套應(yīng)用分析與結(jié)構(gòu)改進(jìn)[J].天然氣工業(yè),2022,42(增刊1):102-105.
WEI L.Application analysis and structure improvement of toe silding sleeve based on well condition[J].Natural Gas Industry,2022,42(S1): 102-105.
[13] MEHUS C,KEERTHIVASAN V K,KOLY T R,et al.Toe initiation sleeve with time-delay functionality improves operational efficiency of offshore NCS wells[C]∥SPE Annual Technical Conference and Exhibition.Calgary: Society of Petroleum Engineers,2021: SPE 206268-MS.
[14] YUAN F,PALMER C,BLANTON E,et al.Improved efficiency of Multi-Stage fracturing operations: an innovative pressure activated toe sleeve[C]∥SPE Middle East Unconventional Resources Conference and Exhibition.Calgary: Society of Petroleum Engineers.2015: SPE 172971-MS.
[15] TREBING C,WHITWORTH J,BESZTERDA A.Cost effective solutions to achieve injection post toe valve failure[C]∥SPE/ICoTA Coiled Tubing & Well Intervention Conference & Exhibition.Calgary: Society of Petroleum Engineers,2015: SPE 173678-MS.
[17] 邢佶慧,黃河,張家云,等.碟形彈簧力學(xué)性能研究[J].振動(dòng)與沖擊,2015,34(22):167-172.
XING J H,HUANG H,ZHANG J Y,et al.Mechanical properties of disc springs[J].Journal of Vibration and Shock,2015,34(22): 167-172.
[18] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì).碟形彈簧:GB/T 1972—2005[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2005.
General Administration of Quality Supervision,Inspection and Quarantine of the Peoples Republic of China,Standardization Administration of China.Disc spring: GB/T 1972—2005[S].Beijing: Standards Press of China,2005.
[19] 米月花,寇子明.盤(pán)式制動(dòng)器組合碟簧的仿真實(shí)驗(yàn)研究[J].中國(guó)農(nóng)機(jī)化學(xué)報(bào),2015,36(4):41-44.
MI Y H,KOU Z M.Simulation experiment of combined disc spring for disc brake[J].Journal of Chinese Agricultural Mechanization,2015,36(4): 41-44.
[20] 王四一,李泉新,劉建林,等.沖擊螺桿馬達(dá)研制[J].煤田地質(zhì)與勘探,2019,47(5):225-231.
WANG S Y,LI Q X,LIU J L,et al.Development of impact screw motor[J].Coal Geology & Exploration,2019,47(5): 225-231.
[21] SONG C,CHUNG J,CHO J S,et al.Optimal design parameters of a percussive drilling system for efficiency improvement[J].Advances in Materials Science and Engineering,2018,2018: 2346598.
[22] LI X B.Energy transmission of down hole hammer tool and its conditionality[J].Transactions of Nonferrous Metals Society of China,2000,10(1): 109-113.