• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      石榴F3’H全基因組分析及其在籽粒花色苷合成中的作用

      2024-06-30 02:07:38陳延惠曹新悅馮志良譚彬胡悅張海朋簡在海孟海軍馮建燦萬然胡青霞
      果樹學(xué)報 2024年6期
      關(guān)鍵詞:石榴籽粒顏色

      陳延惠 曹新悅 馮志良 譚彬 胡悅 張海朋 簡在?!∶虾\姟●T建燦 萬然 胡青霞

      摘? ? 要:【目的】對石榴PgF3H進行全基因組鑒定,了解其成員大小、位置、結(jié)構(gòu)、系統(tǒng)發(fā)育關(guān)系及順式作用元件等相關(guān)信息,分析PgF3H在石榴籽?;ㄉ蘸铣芍械淖饔??!痉椒ā客ㄟ^生物信息學(xué)分析結(jié)合轉(zhuǎn)錄組數(shù)據(jù)了解石榴PgF3H基因家族成員,分析其在不同品種石榴籽粒中隨發(fā)育期的表達情況,并通過農(nóng)桿菌介導(dǎo)擬南芥異源轉(zhuǎn)化試驗驗證PgF3H3的功能?!窘Y(jié)果】鑒定到的3個PgF3H成員均含有保守結(jié)構(gòu)域CYP75B,具有比較保守的基因結(jié)構(gòu);對它們的順式作用元件和表達情況進行分析,表明PgF3H2和PgF3H可能受光和激素調(diào)節(jié),由MYB轉(zhuǎn)錄調(diào)控其表達,在石榴籽?;ㄉ蘸铣芍邪l(fā)揮重要作用;初步驗證了PgF3H3的功能。【結(jié)論】鑒定了石榴3個PgF3H基因成員,明確了PgF3H2和PgF3H3是與籽粒著色有關(guān)的重要候選基因,驗證了PgF3H3調(diào)控花色苷合成的功能。

      關(guān)鍵詞:石榴;F3H;籽粒;花色苷;顏色

      中圖分類號:S665.4 文獻標志碼:A 文章編號:1009-9980(2024)06-1064-14

      Genome-wide analysis of the pomegranate F3H family and their roles in aril anthocyanin biosynthesis

      CHEN Yanhui1, 2, 3, CAO Xinyue 1, 2, 3#, FENG Zhiliang 1, 2, 3, TAN Bin1, 2, 3, HU Yue4, ZHANG Haipeng1, 2, 3, JIAN Zaihai1, 2, 3, MENG Haijun1, 2, 3, FENG Jiancan1, 2, 3, WAN Ran1, 2, 3*, HU Qingxia1, 2, 3*

      (1College of Horticulture, Henan Agriculture University, Zhengzhou 450002, Henan, China; 2Henan Laboratory of Fruit and Cucurbit Biology, Zhengzhou 450002, Henan, China; 3International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou 450002, Henan, China; 4Dengfeng Branch of Agricultural Bank of China, Dengfeng 452470, Henan, China)

      Abstract: 【Objective】 Anthocyanins are important substance basis of coloration and intrinsic nutritional quality in Pomegranate (Punica granatum L.). Studies about anthocyanin associated genes in pomegranate are very important. F3H is an important kind of key enzymes in anthocyanin biosynthesis pathways. However, the role of PgF3H in aril anthocyanin biosynthesis is little known. This study introduced the PgF3H gene family information in the whole pomegranate genome, for example, length, location, gene structure, cis- elements in promoters, and analysis of their potential roles in anthocyanin biosynthesis and coloration of pomegranate arils. 【Methods】 The genome of the Tunisian soft seed pomegranate (PRJNA355913) download from NCBI was used to identify the PgF3H gene family. Their chromosomal distributions, sequences and structures, and phylogenetic relationships as well as cis-elements in promoters were analyzed through bioinformatics. Furthermore, the transcriptional expression of the PgF3Hs based on the transcriptomic data from the arils of three pomegranate cultivars (Tunisian soft seed with red color arils, Meilisuan with dark red color and Zimei with purple red color arils) at different developental stages were analyzed to explore the possible roles of the PgF3Hs in aril anthocyanin biosynthesis and coloration. The Agrobacterium mediated- heterogenous transformation in Arabidopsis was used to determine the PgF3H3 function. 【Results】 Three PgF3H genes in pomegranate were identified, which were renamed PgF3H1, PgF3H2 and PgF3H3. Their sequences were 2055-3933 bp, their proteins contain 208-280 amino acids. The 2D and 3D protein structures were predicted, primarily with α helices and random coils. The three PgF3Hs together with 44 F3H genes from other plant species were used to construct the phylogenetic tree. The results showed that the PgF3H3/AtF3H were orthologs and clustered in Group Ⅱ, while the PgF3H1/PgF3H2 were paralogues and clustered in Group Ⅲ. Moreover, the PgF3H1/PgF3H2 had a comparatively close distance to the FoF3H (Flos osmanthi Fragrantis) and the OsF3H2/OsF3H3 (Oryza sativa). Bioinformatic analysis showed that the PgF3Hs had conservative structures with 1-10 motifs with a similar order, and conserved function domain CYP75B. Furthermore, all of the PgF3H genes contained five kinds of cis- elements on their promoter regions, including growth and development, light, MYB, hormone and stress. The PgF3H2 and PgF3H3 promoters had 29 and 24 cis-elements, respectively, which were much more than those of the PgF3H1. This possibly implied that they had more important and active roles than PgF3H1. Remarkably, there were 4 TGAACG-boxes and 4 CGTCA-boxes related to growth and development, and 4 AUX associated cis- elements on the PgF3H2 promoter, whereas the PgF3H3 promoter contained 5 G-boxes related to response to light and 6 ABA associated cis- elements. Moreover, all of the 3 PgF3H genes had at least one MYB transcription factor binding sites. Subsequently, the transcriptomic data of different color arils from Tunisian soft seed and Meilisuan at the five developmental stages and Zimei at the three developmental stages were used to investigate the PgF3H expression patterns. The results indicated that each PgF3H showed similar expression trends in the three kinds of arils during fruit development. The PgF3H1 displayed an extremely low transcriptional level all the time in each kind of arils, indicating that it might have little implication in anthocyanin biosynthesis and coloration of the pomegranate arils. The expression levels of the PgF3H3 was dominantly increased before fruit expanding period, indicating that the PgF3H3 might be responsible for aril coloration at early stages of fruit development. Noticeably, the PgF3H2 with quite high expression levels in each kind of arils during development showed two increasing leaps at the turning and ripening stage. Therefore, the PgF3H2 and PgF3H3 might be much contributed to the anthocyanin biosynthesis and coloration of the pomegranate arils. Combined the results above, the PgF3H2 and PgF3H3 possibly were regulated by light and hormones, were speculated to play important roles in the anthocyanin biosynthesis and coloration in pomegranate. Finally, the PgF3H3 was cloned and showed a relative high similarity with the VvF3H (Vitis vinifera L.) and the MdF3H (Malus domestica). The PgF3H3 was then transformed into Arabidopsis todemonstrate its function of regulating anthocyanin biosynthesis and coloration. The young lines of the PgF3H3 over-expressed Arabidopsis had red cotyledons with the average anthocyanin level of 0.308 3 mg·g-1, however, the young WT lines showed a green color with no detection of anthocyanins. Also, the carotenoid and chlorophyll contents were significantly lower in the PgF3H3 over-expression lines than those of the WT. 【Conclusion】 The three identified PgF3H genes all had the conserved function domain CYP75B and conserved gene structures. The PgF3H2 and PgF3H3 might play important roles in anthocyanin biosynthesis and coloration of pomegranate arils, and their expression might be regulated by light and hormone. The PgF3H3 was suggested to be involved in aril coloration before fruit expansion, whereas, the PgF3H2 was probably implicated in continuous coloration of arils. Furthermore, the function of the PgF3H3 in regulating anthocyanin biosynthesis and coloration was primarily determined by heterogenous transformation. This study deepened the understanding of anthocyanin biosynthesis and coloration mechanism in pomegranate arils, and also supplied important basis for pomegranate color improvement.

      Key words: Pomegranate; F3H; Arils; Anthocyanin; Coloration

      石榴(Punica granatum L.)屬于千屈菜科(Lythraceae)石榴屬(Punica)植物,在中國有2000余年栽培歷史,味好、色美、富含營養(yǎng)和生物活性物質(zhì),備受消費者喜愛。石榴產(chǎn)業(yè)已發(fā)展為中國云南、四川和河南等地脫貧攻堅和鄉(xiāng)村振興的支柱產(chǎn)業(yè)[1-3]。顏色是影響石榴果實品質(zhì)和觀賞價值的重要性狀[4]?;ㄉ帐且环N廣泛存在于植物體中的天然水溶性色素,決定了石榴葉片、花器官[5]、果實及果汁色澤呈白色到深紅色甚至紫黑色等顏色特征[6-8];同時花色苷也是一類被熟知的抗氧化活性物質(zhì),其含量是石榴果實品質(zhì)及工業(yè)加工價值的重要指示性狀[5,9],因此,花色苷合成和顏色形成研究對石榴品種改良和新品種培育意義重大。

      石榴花色苷主要有飛燕草-3-葡萄糖苷、飛燕草-3,5-葡萄糖苷和矢車菊-3-葡萄糖苷等[10-11],其形成與積累因組織器官、品種和地源等不同存在一定變異??傮w上,泰山紅[5,7-8]、突尼斯軟籽[1,8]和墨石榴[7]等紅色、深紅色系石榴品種果實花色苷含量隨發(fā)育成熟期呈上升趨勢,相比之下,三白和泰山三白甜等淺或白色系石榴品種果實花色苷含量較低,而水晶甜果皮中不含花青苷[12-15]。榴花紅色石榴盛花期花瓣顏色較榴花粉色和榴花白色紅艷,其花色苷含量及其合成相關(guān)酶類活性均高于后者花瓣[16]。突尼斯軟籽石榴是中國流行栽培、品質(zhì)優(yōu)良的軟籽石榴品種,其果實色澤、花色苷含量在云貴高原產(chǎn)區(qū)均優(yōu)于河南等北方產(chǎn)區(qū)[6,17-18]。豫大籽和突尼斯軟籽石榴雜種后代幼葉顏色表現(xiàn)綠色、黃綠、紅和深紅性狀分離,這與其花色苷、葉綠素含量及其比值有關(guān)[19-20]。這些研究基礎(chǔ)為石榴色澤形成的分子機制研究提供了重要支撐。

      植物花色苷通常經(jīng)苯丙氨酸解氨酶(PAL)、查爾酮合成酶(CHS)、二氫黃酮醇3-羥化酶(F3H)、二氫黃酮醇4-還原酶(DFR)和花色素苷合酶(ANS)等一系列苯丙烷代謝途徑相關(guān)酶作用,再由糖基轉(zhuǎn)移酶(UGT)等催化與不同單糖結(jié)合形成,該生物過程主要受MYB、bHLH、WD40等轉(zhuǎn)錄因子調(diào)控[5,21]。隨著石榴基因組信息的公布,相繼克隆了PgMYB[11]、PgbZIP[11]、PgDFR[14]、PgANS[14]、PgUGT[22]和PgCHS等與石榴花色苷合成及紅色形成相關(guān)的基因,并分析了其序列與表達情況[15,23-25]。矢車菊素是石榴中主要的花色苷種類之一,F(xiàn)3H是合成矢車菊素的重要限速酶。Yuan等[26]及Harel-beja等[15]通過多組學(xué)分析發(fā)現(xiàn)石榴果皮著色過程中PgF3H基因表達上調(diào),但人們對石榴PgF3H基因家族成員的數(shù)目、大小、結(jié)構(gòu)和系統(tǒng)發(fā)育等基本信息尚不了解,它們在石榴籽粒著色過程中的表達情況及其功能并不清楚。因此,筆者在本研究中對石榴PgF3H基因家族成員進行了全基因組鑒定和分析,介紹了其長度、大小、結(jié)構(gòu)、系統(tǒng)發(fā)育,分析了其順式作用元件情況,并通過已有轉(zhuǎn)錄組數(shù)據(jù)分析了石榴PgF3H基因家族成員在石榴籽粒著色中的可能作用。

      F3H屬于P450細胞色素單加氧酶,主要負責(zé)在類黃酮分子B環(huán)上C位基團上加第二個羥基[15,27-28]。Nitarska等[29]通過DNA基因編輯技術(shù)獲得一品紅(Euphorbia pulcherrima Willd. et Kl.)Christmas EveEpF3H敲除株系,其矢車菊素含量下降,紅色變淺,驗證了該基因在矢車菊花色苷合成中的重要作用。在葡萄(Vitis vinifera L.)中鑒定出1個VvF3H基因,VvF3H1表達量在紅色漿果中持續(xù)顯著高于綠色漿果[28,30]。在蘋果(Malus domestica)中鑒定出2個MdF3H基因[31]。草莓(Fragaria × ananassa Duch.)FaF3H受FaMYB5正調(diào)控參與果實紅色色澤形成[32]。由此可見,F(xiàn)3H廣泛參與了植物花、種皮和果實著色。然而,截止到目前石榴PgF3H基因家族成員調(diào)控花色苷合成的功能并不明確,因此,筆者在本研究中進一步克隆了石榴PgF3H基因家族成員中PgF3H3基因,并初步驗證了其調(diào)控花色苷合成的功能。研究結(jié)果有助于加深對石榴色澤形成分子機制的理解,也為石榴品種色澤改良提供了重要理論依據(jù)。

      1 材料和方法

      1.1 試驗材料

      采集河南省鄭州市毛莊果園的突尼斯軟籽自交F1代深紅色株系葉片,用于克隆PgF3H3基因。用于基因功能驗證的擬南芥(Arabidopsis thaliana,ecotype Columbia)分別為野生型植株(WT)和PgF3H3過表達植株(OE),均種植于實驗室植物培養(yǎng)間,培養(yǎng)條件為溫度26 ℃、16 h/8 h光照/黑暗交替、濕度75%~85%。采集健康、發(fā)育相對一致的種植于河南省滎陽市的石榴品種突尼斯軟籽(TS,籽粒呈淺紅色)和美麗酸(MLS,籽粒呈深紅色)的坐果期、幼果期、轉(zhuǎn)色期、膨大期和成熟期果實籽粒,以及種植于四川省攀枝花市石榴品種紫美(ZM,籽粒呈紫紅色)幼果期、轉(zhuǎn)色期和成熟期果實籽粒(圖1),用于PgF3H基因家族成員表達分析。

      1.2 試驗方法

      1.2.1 石榴PgF3H基因家族成員鑒定 從NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/assembly/GCF_007655135.1)中檢索并下載突尼斯軟籽石榴基因組數(shù)據(jù)(PRJNA355913)。從Ensemble Plants數(shù)據(jù)庫(http://plants.ensembl.org/index.html)獲得水稻(Oryzasativa)OsF3H序列,通過BLASTP工具進行雙向blast比對篩選獲得PgF3H候選基因。利用NCBI CDD數(shù)據(jù)庫(Conserved Domain Database;http://www.ncbi.nlm.nih.gov//Structure/bwrpsb/bwrpsb.cgi)對候選PgF3H基因進行保守結(jié)構(gòu)域分析,最終確定石榴PgF3H基因家族的成員。利用石榴基因組注釋文件(https://www.ncbi.nlm.nih.gov/)分析PgF3H基因家族成員在染色體上的位置,并依次對各成員進行重命名,利用TBtools工具進行可視化作圖。使用TBtools工具分析石榴PgF3H基因家族編碼蛋白的理化性質(zhì),包括分子質(zhì)量、等電點、氨基酸數(shù)量、不穩(wěn)定系數(shù)和親水指數(shù)。利用Cell-PLoc 2.0(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)對PgF3H基因家族編碼蛋白亞細胞定位進行預(yù)測分析。利用SOPMA(https://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)和SWISS-MODEL(https://swissmodel.expasy.org/)對PgF3H基因家族成員編碼蛋白質(zhì)的二級結(jié)構(gòu)和三級結(jié)構(gòu)進行預(yù)測。

      1.2.2 石榴PgF3H基因的系統(tǒng)發(fā)育、分類、保守基序和基因結(jié)構(gòu)分析 使用MEGA11軟件,根據(jù)最大似然方法(maximum likelihood,ML),Bootstrap檢驗重復(fù)次數(shù)為1000次,其他參數(shù)設(shè)定為默認,對擬南芥、水稻等單子葉植物和葡萄、蘋果等雙子葉植物中共47個F3H全長蛋白序列構(gòu)建系統(tǒng)發(fā)育樹。利用MEME(https://meme-suite.org/meme/tools/meme)在線數(shù)據(jù)庫分析PgF3H蛋白保守基序,使用TBtools將外顯子-內(nèi)含子結(jié)構(gòu)進行可視化。

      1.2.3 石榴PgF3H基因啟動子順式作用元件分析 使用TBtools提取石榴PgF3H基因上游2000 bp的啟動子區(qū)序列信息;使用PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)在線工具預(yù)測分析PgF3H基因啟動子區(qū)順式元件,然后使用TBtools工具將結(jié)果可視化。

      1.2.4 石榴PgF3H家族基因表達分析 提取不同發(fā)育期突尼斯軟籽、美麗酸和紫美石榴果實籽粒RNA,設(shè)置3次重復(fù),轉(zhuǎn)錄組測序委托武漢邁特維爾生物科技有限公司完成,從轉(zhuǎn)錄組數(shù)據(jù)中提取PgF3H基因家族成員在不同品種不同發(fā)育期籽粒樣品中的表達信息,使用TBtools生成熱圖。

      1.2.5 石榴PgF3H3基因克隆及序列分析 利用RNA提取試劑盒(上海生工B518631-0100)提取突尼斯軟籽石榴自交F1代深紅色株系葉片總RNA,利用RNA反轉(zhuǎn)錄試劑盒(南京諾唯贊R233-01)獲得cDNA。參考石榴基因組PRJNA355913,使用Primer5.0設(shè)計PgF3H基因引物(F:ATGGACTCTCTCCCCTTCTTCCTGGC;R:TCAATAAACATGTCGCGGCAGCCTC),從上述cDNA中克隆PgF3H3基因。利用DNAMAN軟件和NCBIBlast對PgF3H3和草莓(Fragaria × ananassa)、櫻桃(Prunus avium)、蘋果(Malus domestica)和葡萄(Vitis vinifera)F3H進行多序列比對分析,使用MEGA11.0軟件構(gòu)建系統(tǒng)發(fā)育樹。

      1.2.6 石榴PgF3H3基因功能驗證 構(gòu)建PgF3H3基因過表達載體pSAK277:PgF3H3,將重組質(zhì)粒pSAK277:PgF3H3轉(zhuǎn)化入農(nóng)桿菌EHA105中。然后,利用農(nóng)桿菌侵染轉(zhuǎn)化方法[11]轉(zhuǎn)化野生型-哥倫比亞擬南芥(WT),經(jīng)50 mg·L-1 Kan篩選獲得轉(zhuǎn)化株系,提取轉(zhuǎn)化株系和WT株系葉片總DNA,通過PCR鑒定后獲得穩(wěn)定遺傳的擬南芥過表達PgF3H3株系(OE)。參考萬然等[20]和胡悅[33]的方法,采用pH示差法檢測OE和WT(14 d)子葉中花色苷含量,采用石油醚方法檢測其類胡蘿卜素含量,采用分光光度計法檢測其葉綠素含量;每個樣品重復(fù)檢測3次。

      1.2.7 數(shù)據(jù)處理及分析 用Microsoft Excel 2016對數(shù)據(jù)進行整理,用SPSS 19.0軟件對數(shù)據(jù)進行方差分析和多重比較(Duncans test,顯著水平p=0.05)。

      2 結(jié)果與分析

      2.1 石榴PgF3H基因家族成員鑒定

      從突尼斯軟籽石榴基因組中共鑒別到3個PgF3H基因家族成員,根據(jù)它們在染色體上的位置,按照順序依次將其重命名為PgF3H1、PgF3H2、PgF3H3,它們分別位于LG0、LG0和LG6上,序列長度分別為2055、3933、2606 bp(表1)。這3個PgF3H基因編碼蛋白所含氨基酸數(shù)目分別為520、580和508個,其相對分子質(zhì)量分別為58.3、66.2和56.4 kDa,它們均為堿性、親水性蛋白,另外,PgF3H1、PgF3H2蛋白質(zhì)穩(wěn)定性較PgF3H3更好。經(jīng)亞細胞定位預(yù)測分析,發(fā)現(xiàn)PgF3H1、PgF3H2和PgF3H3蛋白均可能定位于內(nèi)質(zhì)網(wǎng)發(fā)揮作用(表1)。蛋白結(jié)構(gòu)預(yù)測分析表明,PgF3H蛋白以α-螺旋和無規(guī)則卷曲為主,占比80%以上,其次為延伸鏈和β-折疊(表2,圖2)。以上這些結(jié)果為進一步研究PgF3H蛋白的純化、活性和功能提供了理論依據(jù)。

      2.2 石榴PgF3H基因家族成員系統(tǒng)發(fā)育分析

      為了揭示石榴PgF3Hs與其他植物F3Hs的進化關(guān)系,將節(jié)節(jié)麥和水稻2種單子葉植物以及擬南芥、葡萄、蘋果、桃等31種雙子葉植物共47個F3H共同用于構(gòu)建系統(tǒng)發(fā)育樹。系統(tǒng)發(fā)育分析表明,GmF3H蛋白位于系統(tǒng)進化樹末端單獨一分支上,形成單獨的一個亞族,即Group Ⅴ;剩余39個植物F3H蛋白被劃分為4個亞族,即Group Ⅰ、Ⅱ、Ⅲ、Ⅳ(圖3)。由進化樹可推知,在植物F3H蛋白進化樹末端分支上,存在11對同源基因,其中10對屬于直系同源基因,5對屬于旁系同源基因;旁系同源基因包括OsF3H4/OsF3H5、AtaF3H2/AtaF3H3、PgF3H1/PgF3H2、OsF3H2/OsF3H3和IbF3H1/OsF3H2等,它們起源于物種特異的基因復(fù)制擴增;直系同源基因包括OsF3H1/AtaF3H1、TcF3H/GbF3H、VaF3H/VvF3H、AtF3H/PgF3H3、MdF3H2/PpyF3H1和IbF3H1/OsF3H2等等,它們起源于物種分化事件(圖3)。此外,F(xiàn)3H基因數(shù)量在兩個及以上的物種有水稻、石榴、蘋果、番薯和節(jié)節(jié)麥等7個,其中只有水稻和石榴F3H基因聚類到不同的亞族,PgF3H1/PgF3H2與FoF3H、OsF3H2/OsF3H3同源,聚到Group Ⅲ,而PgF3H3與AtF3H同源,聚到Group Ⅱ;其余同一物種內(nèi)的F3H基因均在同一亞族(圖3)。

      2.3 PgF3H基因的保守基序和基因結(jié)構(gòu)分析

      利用MEME在線工具對PgF3H基因的保守基序(motif)及保守結(jié)構(gòu)域進行了分析(圖4)。結(jié)果表明,PgF3H基因結(jié)構(gòu)保守,除了PgF3H3沒有motif 7和motif 8以外,PgF3H1、PgF3H2和PgF3H3基因均含有motif 1~10,一般一個基因中一種motif都只有1個;它們從5端到3端均依次分布motif 10、motif 5、motif 2、motif 7(除PgF3H3)、motif 6、motif 8(除PgF3H3)、motif 4、motif 1、motif 3和motif 9;根據(jù)基序編碼氨基酸序列顯示出3個PgF3H蛋白間的保守性與變異性,每個堆疊高度越高代表此處序列越高保守,每個氨基酸符號的高度代表它在此位點出現(xiàn)的頻率(圖4-A、C)。此外,PgF3H基因均含有典型的CYP75B結(jié)構(gòu)域,并具有4~5個內(nèi)含子(圖4-B)。這些關(guān)于基因結(jié)構(gòu)分析的結(jié)果表明了PgF3H基因的保守性。

      2.4 石榴PgF3H基因啟動子順式作用元件(cis-elements)分析

      花色苷合成是植物生長發(fā)育和抗逆反應(yīng)的重要生物學(xué)過程。通過順式作用元件分析,發(fā)現(xiàn)PgF3H基因家族成員的啟動子區(qū)均分布有生長發(fā)育相關(guān)元件、光響應(yīng)元件、MYB相關(guān)元件、激素響應(yīng)元件和應(yīng)激反應(yīng)元件(圖5)。PgF3H1基因啟動子區(qū)含有16個不同的順式作用元件,其中有6種激素響應(yīng)元件各1個以及1個MYB轉(zhuǎn)錄因子結(jié)合位點CCAAT-box。PgF3H2基因啟動子區(qū)具有最多的順式作用元件,共29個,分別包括9個生長發(fā)育相關(guān)元件(其中有4個TGACG-motif和4個CGTCA-motif);8個光響應(yīng)元件(其中有2個G-box和2個TCT-box);9個激素響應(yīng)元件[其中有3個ABRE(脫落酸ABA)和4個TGA-element(生長素AUX)];以及1個MYB轉(zhuǎn)錄因子結(jié)合位點(MBS)和2個應(yīng)激反應(yīng)元件(圖5)。PgF3H3基因啟動子區(qū)分別含有9個光響應(yīng)元件(其中有5個G-box);8個激素響應(yīng)元件(其中有6個ABRE);4個生長發(fā)育相關(guān)元件(其中2個TGACG-motif和2個CGTCA-motif);1個MYB轉(zhuǎn)錄因子結(jié)合位點(MBS)和2個應(yīng)激反應(yīng)元件(ARE)(圖5)。

      2.5 PgF3H基因在不同顏色石榴籽粒著色過程中的表達分析

      為了進一步了解PgF3H基因在石榴果實籽粒著色及花色苷積累中的作用,從已有的突尼斯軟籽、美麗酸和紫美在不同發(fā)育期的籽粒樣品轉(zhuǎn)錄組數(shù)據(jù)中,獲得PgF3H1、PgF3H2和PgF3H3的表達情況(圖6)。結(jié)果表明,在這3個石榴品種中,PgF3H1基因的表達量始終處于較低水平,說明該基因可能與石榴籽粒著色關(guān)系不大;相比而言,PgF3H2和PgF3H3具有更高的表達水平;此外,隨果實發(fā)育和籽粒著色,PgF3H2和PgF3H3均在不同石榴品種中表現(xiàn)出相似的表達趨勢,這說明它們與石榴籽粒著色有重要關(guān)系。

      PgF3H2在這3個石榴品種籽粒中均呈顯著上調(diào)表達趨勢,其表達水平在幼果期之前極低且無顯著變化;此后開始快速大幅上升,至轉(zhuǎn)色期分別顯著增加了11 616.68%、9 381.51%和10 942.06%;然后,其表達水平繼續(xù)顯著上調(diào)表達,至成熟期又分別增加了254.98%、602.27%和198.76%(圖6)。PgF3H3在坐果期突尼斯軟籽、美麗酸和紫美籽粒中即已轉(zhuǎn)錄表達,至轉(zhuǎn)色期其表達水平分別提高了271.41%、138.70%和793.05%;不過,PgF3H3在突尼斯軟籽二次膨大期籽粒中未繼續(xù)上調(diào)表達,到成熟期反而下降了38.84%;在美麗酸中卻持續(xù)小幅上調(diào)表達,至成熟期其表達水平又提高了48.76%;另外,PgF3H3在紫美籽粒中至轉(zhuǎn)色期其表達水平提高了793.05%,至成熟期又下降了38.84%。此外,至成熟期時,在這3個石榴品種籽粒中,PgF3H2的表達量均顯著高于PgF3H3。比較分析以上研究結(jié)果說明,PgF3H3可能主要作用于石榴籽粒早期花色苷合成和顏色形成,而PgF3H2可能是石榴成熟籽?;ㄉ蘸铣珊统噬闹饕饔没颉?/p>

      2.6 PgF3H3基因克隆及功能驗證

      筆者課題組前期研究已發(fā)現(xiàn),突尼斯軟籽石榴自交1代植株幼葉紅色深淺與其花色苷含量呈正相關(guān)[20],PgF3H3表達量隨著幼葉顏色由紅轉(zhuǎn)綠而逐漸下降[20]。故PgF3H3可能與石榴器官發(fā)育前期著色有關(guān)。因此克隆了PgF3H3基因,并對PgF3H3、VvF3H、FaF3H、CaF3H和MdF3H等不同園藝作物中F3H蛋白進行了多序列比對分析,結(jié)果發(fā)現(xiàn)PgF3H3與VvF3H和MdF3H相似度較高(75%左右)(圖7-A)。

      為了探明PgF3H3在調(diào)控石榴花色苷合成方面的功能,通過農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化技術(shù),成功獲得PgF3H3過表達擬南芥植株,該基因被穩(wěn)定整合到擬南芥基因組中,表達量顯著高于野生型(圖7-B~D)。根據(jù)表型觀察,發(fā)現(xiàn)野生型植株幼苗子葉呈現(xiàn)綠色,PgF3H3過表達擬南芥植株幼苗子葉呈現(xiàn)紅色(圖7-B)。通過檢測花色苷、類胡蘿卜素和葉綠素含量,發(fā)現(xiàn)PgF3H3過表達擬南芥子葉中花色苷含量為0.308 3 mg·g-1,然而在野生型子葉中未檢測到花色苷,此外,其類胡蘿卜素和葉綠素含量顯著低于野生型(圖7-E)。

      3 討 論

      “榴枝婀娜榴實繁,榴膜輕明榴子鮮”,石榴兼具營養(yǎng)、保健、觀賞、生態(tài)、文化及文明等多重價值,備受國內(nèi)外關(guān)注和喜愛。石榴花色苷是其色澤性狀構(gòu)成的重要物質(zhì)基礎(chǔ),也是其果實營養(yǎng)保健價值的重要物質(zhì)來源[4,19]。國內(nèi)外學(xué)者圍繞石榴不同品種[16]、發(fā)育期[1]、組織及地源間花色苷種類、含量情況進行了諸多研究[5,19],盡管如此,石榴花色苷合成相關(guān)基因的研究仍有待加強。F3H參與決定了植物葉色[30]、花色[29]、種皮和果實著色等性狀[34-35]。因此,筆者在本研究中比較詳細地介紹了石榴PgF3H基因家族成員的序列、大小、編碼蛋白結(jié)構(gòu)預(yù)測、基因結(jié)構(gòu)和順式作用元件等信息,并分析了PgF3H基因家族成員在石榴籽?;ㄉ蘸铣芍械淖饔?,為石榴色澤形成研究和品種改良提供科學(xué)依據(jù)。

      根據(jù)已有報道,水稻(5個)和節(jié)節(jié)麥(3個)等單子葉植物以及擬南芥(1個)、歐洲葡萄(1個)[31]和蘋果(2個)[32]等雙子葉植物中F3H基因數(shù)量均較少,也有研究從12種單子葉植物中共鑒定了44個F3H基因[34]。類似地,筆者在本研究中根據(jù)突尼斯軟籽石榴基因組信息,共鑒定到3個PgF3H基因,它們均具有典型的CYP75B結(jié)構(gòu)域,它是決定F3H控制植物器官花色苷合成和呈色的功能結(jié)構(gòu)域[36]。進而對來自不同物種的47個PgF3H構(gòu)建了系統(tǒng)發(fā)育樹,結(jié)果發(fā)現(xiàn)PgF3H3和AtF3H具有較近的親緣關(guān)系,屬于Group Ⅱ,而PgF3H1和PgF3H2同源,與OsF3H2/3具有較近的親緣關(guān)系,屬于Group Ⅲ,這說明它們可能具有相似的功能。研究結(jié)果還證明了PgF3H1和PgF3H2具有比較保守的基序和結(jié)構(gòu)域(CYP75B),并且這些保守基序的排列順序也相當(dāng)保守。這與已有研究發(fā)現(xiàn)“不同單子葉和雙子葉植物中F3H基因保守基序的排列順序及其CYP75B結(jié)構(gòu)域相當(dāng)保守”的論點一致[26,33]。然而,相比旁系同源基因?qū)gF3H1/PgF3H2,PgF3H3缺失了motif 7,這可能是它們分屬于不同亞族的原因,它們在具體生物學(xué)功能上可能有不同分工。

      筆者在本研究中進一步分析了石榴PgF3Hs上游2000 bp啟動子序列內(nèi)的順式作用元件,以了解其可能的調(diào)控機制,結(jié)果發(fā)現(xiàn)PgF3H2和PgF3H3啟動子上具有比PgF3H1數(shù)量更多的順式作用元件,而且PgF3H2啟動子上有8個生長發(fā)育相關(guān)及4個AUX相關(guān)的作用元件,而PgF3H3有5個G-box光響應(yīng)及6個ABA相關(guān)的作用元件。植物花色苷合成受AUX和ABA顯著調(diào)控,蘋果中生長素響應(yīng)因子MdARF結(jié)合MdDFR啟動子抑制其表達從而負調(diào)控花色苷合成[37];ABA處理提高了夏黑葡萄錦葵素、矮牽牛素水平[38];在草莓中,ABA處理顯著促進了果實紅色素及花色苷積累,而AUX處理則相反[39]。以上分析暗示著PgF3H2和PgF3H3的表達與激素和光有關(guān),相比PgF3H1,是作用于石榴籽?;ㄉ蘸铣筛匾幕?。還發(fā)現(xiàn)與PgF3H2和PgF3H3相比,PgF3H1在石榴籽粒發(fā)育過程中表達量極低,這也說明了PgF3H2和PgF3H3的重要性。另外,PgF3H2和PgF3H3啟動子上均具有MYB結(jié)合位點。已有研究表明PgMYB1能夠直接結(jié)合下游PgGSTF6啟動子區(qū),從而調(diào)控石榴花色苷合成[40];草莓FaMYB5與FaEGL3、FaLWD1/FaLWD1-like互作形成MYB-bHLH-WD40復(fù)合體(MBW)直接激活FaF3H轉(zhuǎn)錄表達,從而賦予草莓果皮和果肉紅色色澤[27];此外,龍眼和獼猴桃等園藝作物果皮著色機制中也存在類似的作用模式[41-42]。由此筆者課題組推測PgF3H2或PgF3H3基因表達受MYB轉(zhuǎn)錄調(diào)控,通過影響花色苷水平和種類,在石榴籽粒顏色形成中發(fā)揮重要作用。因此,進一步解析PgF3Hs基因功能,深入研究其調(diào)控機制對闡明石榴籽粒顏色形成的作用非常重要。

      F3H基因調(diào)控植物組織器官花色苷合成及顏色形成在不同物種中均有報道[27,30,34]。筆者在本研究中進而分析了石榴PgF3H家族成員隨果實籽粒著色的表達情況,發(fā)現(xiàn)PgF3H3可能主要作用于石榴籽粒早期花色苷合成,而PgF3H2是石榴成熟籽粒呈色的主要作用基因。筆者實驗室前期利用突尼斯軟籽石榴呈顏色分離的自交后代材料為研究對象,從中克隆到一個和石榴幼葉呈紅色相關(guān)的PgF3H3基因[20,33],PgF3H3[20,33]與園藝作物櫻桃、葡萄[30]和蘋果[31]中的F3H相似度較高,而據(jù)報道它們均與果實著紅色有關(guān)[27-28,43],因此,PgF3H3可能是石榴籽?;ㄉ蘸铣傻闹匾饔没?。景宗慧等[27]通過同源遺傳轉(zhuǎn)化試驗證明了過表達草莓(Fragaria×ananassa)FaF3H后其果肉由淺紅色變成深紅色,矢車菊素-3-O葡萄糖苷含量顯著增加,而天竺葵色素-O-葡萄糖苷含量顯著下降。筆者在本研究中通過異源轉(zhuǎn)化擬南芥試驗,發(fā)現(xiàn)過表達PgF3H3株系的幼苗子葉呈紅色而野生型呈綠色,并且其花色苷含量顯著高于野生型而類胡蘿卜素和葉綠素含量顯著低于野生型。以上研究結(jié)果表明了PgF3H3具有調(diào)控花色苷積累和紅色形成的功能,并在石榴籽粒顏色形成過程中發(fā)揮重要作用。

      此外,筆者在本研究中還發(fā)現(xiàn)PgF3H基因的表達水平及表達趨勢在不同品種石榴籽粒中比較相似,但其成熟籽粒的紅色差別比較大,推測除了PgF3H基因外,與花色苷合成相關(guān)的苯丙烷代謝途徑中其他支路基因應(yīng)該也發(fā)揮了作用。植物顏色形成是多級調(diào)控多基因參與的一個復(fù)雜網(wǎng)絡(luò)作用的結(jié)果,包括參與早期柚皮素前體物質(zhì)合成的PAL、CHS和CHI,負責(zé)合成中間代謝物二氫黃酮醇、二氫楊梅黃酮和二氫櫟皮酮的F3H、F3H和F35H,后期負責(zé)合成呈藍紫色的錦葵素、呈磚紅色的花葵素和呈紫紅色的芍藥素的DFR、ANS、UFGT等,以及負責(zé)轉(zhuǎn)運至液泡的GST、MATE及ABC transport等[20-22]。因此,需要通過基因同源轉(zhuǎn)化及基因編輯技術(shù)積極探索PgF3H2和PgF3H3基因?qū)κ褡蚜;ㄉ战M分的影響,通過與其他相關(guān)基因比較,分析它們對石榴籽?;ㄉ辗e累及顏色形成的貢獻。

      4 結(jié) 論

      筆者在本研究中對石榴PgF3H基因家族成員進行了全基因組鑒定和分析,提供了石榴PgF3H基因家族3個成員包括染色體位置、基因大小、蛋白結(jié)構(gòu)、系統(tǒng)發(fā)育、基因結(jié)構(gòu)、保守結(jié)構(gòu)域和啟動子區(qū)順式作用元件等信息。利用已有轉(zhuǎn)錄組數(shù)據(jù),分析了石榴PgF3H基因家族3個成員在不同品種石榴籽粒中隨發(fā)育期的表達情況,明確了PgF3H2和PgF3H3可能是石榴籽粒著色和花色苷合成的重要作用基因。結(jié)合前期研究結(jié)果,通過遺傳轉(zhuǎn)化擬南芥初步驗證了PgF3H3具有調(diào)控花色苷合成和紅色形成的功能。PgF3H2和PgF3H3可能受光和激素影響,通過MYB調(diào)控石榴籽粒著色的功能和作用機制有待深入研究。

      參考文獻 References:

      [1] 胡青霞,馮夢晨,陳延惠,郭強,簡在海,史江莉,萬然,鄭先波. 突尼斯軟籽石榴果實生長發(fā)育及其品質(zhì)形成規(guī)律研究[J]. 果樹學(xué)報,2022,39(3):426-438.

      HU Qingxia,F(xiàn)ENG Mengchen,CHEN Yanhui,GUO Qiang,JIAN Zaihai,SHI Jiangli,WAN Ran,ZHENG Xianbo. Growth and development of Tunisia soft seed pomegranate and its quality formation regulation[J]. Journal of Fruit Science,2022,39(3):426-438.

      [2] 陳延惠,史江莉,萬然,簡在海,胡青霞. 中國軟籽石榴產(chǎn)業(yè)發(fā)展現(xiàn)狀與發(fā)展建議[J]. 落葉果樹,2020,52(3):1-4.

      CHEN Yanhui,SHI Jiangli,WAN Ran,JIAN Zaihai,HU Qingxia. Development status and suggestions of soft seed pomegranate industry in China[J]. Deciduous Fruits,2020,52(3):1-4.

      [3] BOROCHOV-NEORI H,JUDEINSTEIN S,HARARI M,BAR-YA AKOV I,PATIL B S,LURIE S,HOLLAND D. Climate effects on anthocyanin accumulation and composition in the pomegranate (Punica granatum L.) fruit arils[J]. Journal of Agricultural and Food Chemistry,2011,59(10):5325-5334.

      [4] 曹尚銀,牛娟,曹達,李好先,薛輝,陳利娜,張富紅,趙弟廣. 石榴果實成熟期果皮色澤差異蛋白質(zhì)組比較分析[C]//曹尚銀,李好先. 中國石榴研究進展(二). 北京:中國林業(yè)出版社,2014:141-149.

      CAO Shangyin,NIU Juan,Cao Da,LI Haoxian,XUE Hui,CHEN Lina,ZHANG Fuhong,ZHAO Diguang.Comparative proteomics analysis of fruit skin color in pomegranate (Punica granatum L.)[C]//The Research Progress of Pomegranate (Ⅱ). Beijing:China Forestry Publishing House,2014:141-149.

      [5] ZHANG X H,ZHAO Y J,REN Y,WANG Y Y,YUAN Z H. Fruit breeding in regard to color and seed hardness:a genomic view from pomegranate[J]. Agronomy,2020,10(7):991.

      [6] 招雪晴,苑兆和. 2個石榴品種果皮花色苷合成相關(guān)基因表達分析[J]. 西北植物學(xué)報,2018,38(5):823-829.

      ZHAO Xueqing,YUAN Zhaohe. Expression profiles of anthocyanin biosynthetic genes in two cultivars of Punica granatum L.[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(5):823-829.

      [7] 馮立娟,尹燕雷,苑兆和,招雪晴,陶吉寒,侯樂峰. 不同發(fā)育期石榴果實果汁中花青苷含量及品質(zhì)指標的變化[J]. 中國農(nóng)學(xué)通報,2010,26(3):179-183.

      FENG Lijuan,YIN Yanlei,YUAN Zhaohe,ZHAO Xueqing,TAO Jihan,HOU Lefeng. Change of anthocyanin content and quality index in pomegranate fruits during different developmental period[J]. Chinese Agricultural Science Bulletin,2010,26(3):179-183.

      [8] YUAN L,NIU H H,YUN Y R,TIAN J,LAO F,LIAO X J,GAO Z Q,REN D B,ZHOU L Y. Analysis of coloration characteristics of Tunisian soft-seed pomegranate arils based on transcriptome and metabolome[J]. Food Chemistry,2022,370:131270.

      [9] ALAM M A,ISLAM P,SUBHAN N,RAHMAN M M,KHAN F,BURROWS G E,NAHAR L,SARKER S D. Potential health benefits of anthocyanins in oxidative stress related disorders[J]. Phytochemistry Reviews,2021,20(4):705-749.

      [10] 胡悅,胡青霞,譚彬,陳延惠,簡在海,史江莉,萬然. 紅皮石榴著色機制與花青苷合成研究進展[J]. 分子植物育種,2019,17(8):2692-2700.

      HU Yue,HU Qingxia,TAN Bin,CHEN Yanhui,JIAN Zaihai,SHI Jiangli,WAN Ran. Research progress on coloring mechanism and anthocyanin biosynthesis of red-skinned pomegranate[J]. Molecular Plant Breeding,2019,17(8):2692-2700.

      [11] 王沙. 石榴花瓣花青苷生理指標及其生物合成相關(guān)基因表達分析[D]. 南京:南京林業(yè)大學(xué),2022.

      WANG Sha. Analysis of physiological indicators and biosynthesis-related gene expression of anthocyanins in pomegranate petals[D]. Nanjing:Nanjing Forestry University,2022.

      [12] LI Q L,TAN W,ZHAO L,LUO H,ZHOU Z D,ZHANG Y W,BI R X,ZHAO L N. A comprehensive evaluation of 45 pomegranate (Punica granatum L.) cultivars based on principal component analysis and cluster analysis[J]. International Journal of Fruit Science,2023,23(1):135-150.

      [13] SHAHKOOMAHALLY S,KHADIVI A,BRECHT J K,SARKHOSH A. Chemical and physical attributes of fruit juice and peel of pomegranate genotypes grown in Florida,USA[J]. Food Chemistry,2021,342:128302.

      [14] ATTANAYAKE R,RAJAPAKSHA R,WEERAKKODY P,BANDARANAYAKE P C G. The effect of maturity status on biochemical composition,antioxidant activity,and anthocyanin biosynthesis gene expression in a pomegranate (Punica granatum L.) cultivar with red flowers,yellow peel,and pinkish arils[J]. Journal of Plant Growth Regulation,2019,38(3):992-1006.

      [15] HAREL-BEJA R,TIAN L,F(xiàn)REILICH S,HABASHI R,BOROCHOV-NEORI H,LAHAV T,TRAININ T,DORON-FAIGENBOIM A,OPHIR R,BAR-YAAKOV I,AMIR R,HOLLAND D. Gene expression and metabolite profiling analyses of developing pomegranate fruit peel reveal interactions between anthocyanin and punicalagin production[J]. Tree Genetics & Genomes,2019,15(2):22.

      [16] 王沙,張心慧,趙玉潔,李變變,招雪晴,沈雨,董建梅,苑兆和. 石榴花青苷合成相關(guān)基因PgMYB111的克隆與功能分析[J]. 園藝學(xué)報,2022,49(9):1883-1894.

      WANG Sha,ZHANG Xinhui,ZHAO Yujie,LI Bianbian,ZHAO Xueqing,SHEN Yu,DONG Jianmei,YUAN Zhaohe. Cloning and functional analysis of PgMYB111 related to anthocyanin synthesis in pomegranate[J]. Acta Horticulturae Sinica,2022,49(9):1883-1894.

      [17] 史江莉,仝瑞冉,王森,姚佳男,韋愛娜,王颯,王苗苗,萬然,焦健,張春玲,張珍,鄭先波. 低溫氣調(diào)貯藏對‘突尼斯軟籽石榴果實品質(zhì)的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報,2022,56(5):779-787.

      SHI Jiangli,TONG Ruiran,WANG Sen,YAO Jianan,WEI Aina,WANG Sa,WANG Miaomiao,WAN Ran,JIAO Jian,ZHANG Chunling,ZHANG Zhen,ZHENG Xianbo. Effect of cold controlled atmosphere storage on fruit quality of ‘Tunisia soft-seed pomegranate[J]. Journal of Henan Agricultural University,2022,56(5):779-787.

      [18] 袁蕾. 基于代謝組和轉(zhuǎn)錄組學(xué)分析突尼斯軟籽石榴品質(zhì)調(diào)控機制[D]. 昆明:昆明理工大學(xué),2022.

      YUAN Lei. Analysis of the quality control mechanism of Tunisian Soft Seed pomegranate based on metabolomics and transcriptomics[D]. Kunming:Kunming University of Science and Technology,2022.

      [19] GUO X L,LI H T,LI D W,ZHANG L T,WU Y J,CHEN Y H. Determination and comparison of pigment contents in leaves of Punica granatum L. hybrids with different leaf colors[J]. Agricultural Science & Technology,2013,14(2):243-247.

      [20] 萬然,史江莉,胡悅,胡青霞,簡在海,陳延惠. ‘突尼斯軟籽石榴自交一代顏色性狀分離及形成基礎(chǔ)研究[C]//曹尚銀,李好先. 中國石榴研究進展(三). 北京:中國林業(yè)出版社,2018:225-236.

      WAN Ran,SHI Jiangli,HU Yue,HU Qingxia,JIAN Zaihai,CHEN Yanhui. Reseaches on color segregation and formation in generation individuals of first self-crossing from ‘Tunisiruanzi pomegranate[C]//CAO Shangyin,LI Haoxian. The Research Progress of Pomegranate (Ⅲ). Beijing:China Forestry Publishing House,2018:225-236.

      [21] 高磊,李慧,鄭煥,陶建敏. 果樹中花色苷的生物合成及其調(diào)控機制研究進展[J]. 江蘇農(nóng)業(yè)學(xué)報,2022,38(1):258-267.

      GAO Lei,LI Hui,ZHENG Huan,TAO Jianmin. Advances in biosynthesis and regulation mechanism of anthocyanins in fruit trees[J]. Jiangsu Journal of Agricultural Sciences,2022,38(1):258-267.

      [22] 招雪晴,楊靜,沈雨,苑兆和. 石榴PgUGT基因表達特性與重組表達分析[J]. 西北植物學(xué)報,2022,42(3):390-397.

      ZHAO Xueqing,YANG Jing,SHEN Yu,YUAN Zhaohe. Expression profiles and recombinant expression of PgUGT in pomegranate[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(3):390-397.

      [23] 招雪晴,沈雨,苑兆和. 石榴UFGT基因克隆與表達特征[C]// 李好先,曹尚銀. 中國石榴研究進展(四). 北京:中國林業(yè)出版社,2022:227-236.

      HAO Xueqing,SHEN Yu,YUAN Zhaohe. Cloning and expression analysis of pomegranate UFGT gene[C]//LI Haoxian,CAO Shangyin. The Research Progress of Pomegranate (Ⅳ). Beijing:China Forestry Publishing House,2022:227-236.

      [24] 招雪晴,苑兆和. 石榴果色合成相關(guān)基因CHS和CHI的表達特性分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),2019,38(5):2175-2182.

      ZHAO Xueqing,YUAN Zhaohe. Expression profiles of fruit color related genes CHS and CHI in Punica granatum L.[J]. Genomics and Applied Biology,2019,38(5):2175-2182.

      [25] ATTANAYAKE R,EESWARAN R,RAJAPAKSHA R,WEERAKKODY P,BANDARANAYAKE P C G. Biochemical composition and expression of anthocyanin biosynthetic genes of a yellow peeled and pinkish ariled pomegranate (Punica granatum L.) cultivar are differentially regulated in response to agro-climatic conditions[J]. Journal of Agricultural and Food Chemistry,2018,66(33):8761-8771.

      [26] YUAN Z H,F(xiàn)ANG Y M,ZHANG T K,F(xiàn)EI Z J,HAN F M,LIU C Y,LIU M,XIAO W,ZHANG W J,WU S,ZHANG M W,JU Y H,XU H L,DAI H,LIU Y J,CHEN Y H,WANG L L,ZHOU J Q,GUAN D,YAN M,XIA Y H,HUANG X B,LIU D Y,WEI H M,ZHENG H K. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology[J]. Plant Biotechnology Journal,2018,16(7):1363-1374.

      [27] 景宗慧,尹夢嬌,王前,鮑錁,周佩娜,劉潺潺,吳啟南. 芡葉類黃酮-3-羥化酶(F3H)基因表達分析及功能驗證[J]. 中國中藥雜志,2021,46(18):4712-4720.

      JING Zonghui,YIN Mengjiao,WANG Qian,BAO Ke,ZHOU Peina,LIU Chanchan,WU Qinan. Expression profiling and functional verification of flavonoid 3-hydroxylase gene from leaves of Euryale ferox[J]. China Journal of Chinese Materia Medica,2021,46(18):4712-4720.

      [28] 侯杰,佟玲,崔國新,許志茹,李玉花. 植物類黃酮3-羥化酶(F3H)基因的研究進展[J].植物生理學(xué)報,2011,47(7):641-647.

      HOU Jie,TONG Ling,CUI Guoxin,XU Zhiru,LI Yuhua. Research advances of plant flavonoid 3-hydroxylase (F3H) gene[J]. Plant Physiology Journal,2011,47(7):641-647.

      [29] NITARSKA D,BOEHM R,DEBENER T,LUCACIU R C,HALBWIRTH H. First genome edited poinsettias:Targeted mutagenesis of flavonoid 3-hydroxylase using CRISPR/Cas9 results in a colour shift[J]. Plant Cell,Tissue and Organ Culture,2021,147(1):49-60.

      [30] JEONG S T,GOTO-YAMAMOTO N,HASHIZUME K,ESAKA M. Expression of the flavonoid 3-hydroxylase and flavonoid 3,5-hydroxylase genes and flavonoid composition in grape (Vitis vinifera)[J]. Plant Science,2006,170(1):61-69.

      [31] WEISSENSTEINER J,MOLITOR C,MARINOVIC S,F(xiàn)?HRER L,HASSAN S W,HUTABARAT O S,SPORNBERGER A,STICH K,HAUSJELL J,SPADIUT O,HASELMAIR-GOSCH C,HALBWIRTH H. Molecular and enzymatic characterization of flavonoid 3-hydroxylase of Malus × domestica[J]. Plants,2021,10(9):1956.

      [32] JIN Y,LIAO M Y,LI N,MA X Q,ZHANG H M,HAN J,LI D Z,YANG J F,LU X P,LONG G Y,DENG Z N,SHENG L. Weighted gene coexpression correlation network analysis reveals the potential molecular regulatory mechanism of citrate and anthocyanin accumulation between postharvest ‘Bingtangcheng and ‘Tarocco blood orange fruit[J]. BMC Plant Biology,2023,23(1):296.

      [33] 胡悅. 石榴花青苷合成相關(guān)基因的克隆和PgF3H基因功能分析[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2019.

      HU Yue. Cloning of the genes related to the synthesis of pomegranate anthocyanin and functional analysis of PgF3H gene[D]. Zhengzhou:Henan Agricultural University,2019.

      [34] PARK S,CHOI M J,LEE J Y,KIM J K,HA S H,LIM S H. Molecular and biochemical analysis of two rice flavonoid 3'-hydroxylase to evaluate their roles in flavonoid biosynthesis in rice grain[J]. International Journal of Molecular Sciences,2016,17(9):1549.

      [35] JUNG Y J,LEE H J,KIM J H,KIM D H,KIM H K,CHO Y G,BAE S,KANG K K. CRISPR/Cas9-targeted mutagenesis of F3H,DFR and LDOX,genes related to anthocyanin biosynthesis in black rice (Oryza sativa L.)[J]. Plant Biotechnology Reports,2019,13(5):521-531.

      [36] TANAKA Y,BRUGLIERA F. Flower colour and cytochromes P450[J]. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences,2013,368(1612):20120432.

      [37] JI X H,WANG Y T,ZHANG R,WU S J,AN M M,LI M,WANG C Z,CHEN X L,ZHANG Y M,CHEN X S. Effect of auxin,cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana)[J]. Plant Cell,Tissue and Organ Culture,2015,120(1):325-337.

      [38] HIRATSUKA S,ONODERA H,KAWAI Y,KUBO T,ITOH H,WADA R. ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro[J]. Scientia Horticulturae,2001,90(1/2):121-130.

      [39] LI B J,GRIERSON D,SHI Y N,CHEN K S. Roles of abscisic acid in regulating ripening and quality of strawberry,a model non-climacteric fruit[J]. Horticulture Research,2022,9:uhac089.

      [40] WANG Z H,YANG X M,WANG C Z,F(xiàn)ENG L J,YIN Y L,LI J L. PgMYB1 positively regulates anthocyanin accumulation by activating PgGSTF6 in pomegranate[J]. International Journal of Molecular Sciences,2023,24(7):6366.

      [41] YI D B,ZHANG H N,LAI B,LIU L Q,PAN X L,MA Z L,WANG Y C,XIE J H,SHI S Y,WEI Y Z. Integrative analysis of the coloring mechanism of red Longan pericarp through metabolome and transcriptome analyses[J]. Journal of Agricultural and Food Chemistry,2021,69(6):1806-1815.

      [42] PENG Y Y,WANG K L,COONEY J M,WANG T C,ESPLEY R V,ALLAN A C. Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species) [J]. Horticulture Research,2019,6:3.

      [43] TODA K,AKASAKA M,DUBOUZET E G,KAWASAKI S,TAKAHASHI R. Structure of flavonoid 3-hydroxylase gene for pubescence color in soybean[J]. Crop Science,2005,45(6):2212-2217.

      收稿日期:2024-01-16 接受日期:2024-03-18

      基金項目:兵團重點領(lǐng)域科技攻關(guān)計劃項目(2021AB015);河南省科技攻關(guān)項目(222102110479)

      作者簡介:陳延惠,女,教授,主要從事果樹遺傳育種與栽培生理研究。Tel:0371-56552762,E-mail:Chenyanhui188@henau.edu.cn。#為共同第一作者。

      *通信作者 Author for correspondence. E-mail:wanxayl@henau.edu.cn;E-mail:hortdept@henau.edu.cn

      猜你喜歡
      石榴籽粒顏色
      籽粒莧的飼用價值和高產(chǎn)栽培技術(shù)
      籽粒莧的特性和種植技術(shù)
      石榴紅了
      石榴籽
      草原歌聲(2021年1期)2021-07-16 06:58:06
      緊緊抱在一起的“石榴籽”
      少先隊活動(2021年1期)2021-03-29 05:27:06
      玉米機械脫粒籽粒含水量與破碎率的相關(guān)研究
      石榴
      商麥1619 籽粒灌漿的特性
      認識顏色
      特殊顏色的水
      汾阳市| 丹凤县| 汪清县| 永仁县| 伊川县| 定远县| 宜城市| 东莞市| 大邑县| 南丹县| 福贡县| 长白| 建阳市| 稻城县| 临泽县| 广饶县| 白银市| 济阳县| 策勒县| 民丰县| 缙云县| 丽水市| 阳新县| 合肥市| 江川县| 蚌埠市| 象山县| 册亨县| 金门县| 阳城县| 湛江市| 出国| 化州市| 江城| 衢州市| 来凤县| 于田县| 巴里| 内丘县| 株洲市| 饶平县|