姚令 王?!↑S露 安星宇 陳文 王莉爽 薛原 吳石平
摘? ? 要:【目的】篩選出一組可精準(zhǔn)快速地對(duì)丁香假單胞菌獼猴桃致病變種(Pseudomonas syringae pv. actinidiae,Psa)進(jìn)行分型的引物組合?!痉椒ā酷槍?duì)前期文獻(xiàn)已報(bào)道的34對(duì)引物,采用PCR技術(shù)驗(yàn)證該34對(duì)引物對(duì)中國(guó)Psa菌株的擴(kuò)增效率及準(zhǔn)確性;利用模擬PCR獲取菌株串聯(lián)重復(fù)(TR)數(shù);以辛普森指數(shù)(Simpsons index,SI)作為篩選引物組合的標(biāo)準(zhǔn),基于R軟件平臺(tái),篩選最優(yōu)引物組合?!窘Y(jié)果】34對(duì)引物對(duì)中國(guó)Psa擴(kuò)增效果均良好,其中TR14與TR11II、TR19與Psa-01引物序列相同;TR8與Psa-08、TR39II與Psa-10、GM-1834與TR10I、GM-1553與TR64II、TR19Psa-01與TR19II擴(kuò)增同一TR;Psa-09擴(kuò)增產(chǎn)物串聯(lián)重復(fù)單元長(zhǎng)度不唯一,TR2II擴(kuò)增產(chǎn)物側(cè)翼變異較大,不能通過(guò)電泳確定串聯(lián)重復(fù)數(shù);最終確定SI值與全部引物組合相同的最低引物數(shù)量為9對(duì),使用該9對(duì)引物的組合可將Psa已知的5種生物型準(zhǔn)確分開(kāi)?!窘Y(jié)論】TR23/Psa-04、Psa-03、Psa-05、Psa-06、TR10IGM-1834、TR30I、TR1II、Psa-10TR39II、TR64IIGM-1553等9對(duì)引物可代表當(dāng)前文獻(xiàn)報(bào)道的34對(duì)引物,進(jìn)行Psa分型研究,探索獼猴桃潰瘍病的傳播和流行規(guī)律,為病害防控策略的制定提供科學(xué)依據(jù)。
關(guān)鍵詞:丁香假單胞菌獼猴桃致病變種;多位點(diǎn)串聯(lián)重復(fù)序列分析;群體遺傳結(jié)構(gòu);引物;篩選
中圖分類(lèi)號(hào):S663.4;S436.634 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)06-1188-11
Screening and validation of MLVA typing primers for the Pseudomonas syringae pv. actinidiae
YAO Ling1, WANG Hai2, HUANG Lu1, AN Xingyu1, CHEN Wen1, WANG Lishuang1, XUE Yuan3, WU Shiping1*
(1Institute of Plant Protection, Guizhou Academy of Agricultural Sciences/Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountains Ministry of Agriculture and Rural Affairs, Guiyang 550006, Guizhou, China; 2Institute of Agricultural Science and Technology Information, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China; 3Anshun Branch of Guizhou Tobacco Company, Anshun 561000, Guizhou, China)
Abstract: 【Objective】 Kiwifruit canker caused by Pseudomonas syringae pv. actinidiae (Psa), is one of the most threatening diseases in the kiwifruit industry. Studying the population genetic structure of Psa can provide theoretical reference for scientific prevention and control of this disease. The multiple-locus variable-number tandem-repeats analysis (MLVA) has been reported to study the population genetic structure of Psa. At present, there are problems with inconsistent and excessive primers in the analysis of the genetic structure of Psa population using MLVA technology. Using too many primers will make MLVA typing technology lose its advantages like convenience and low cost. In order to screen primer combinations suitable for studying the population genetic structure of Psa, 34 pairs of primers reported were analyzed. 【Methods】 To verify the amplification efficiency of primers on Chinese Psa, we used 34 pairs of primers to amplify 10 strains of Psa isolated and preserved in our laboratory. We downloaded the whole genome data of 127 Psa strains from Genbank for primer screening. We then used 34 pairs of primers on the genome sequences of these 127 Psa strains to perform Simulated PCR to obtain TR data. Calculate MLGs and SI using “popper” package to evaluate the typing ability of each primer with Simpson index (SI) as the standard for screening primer combinations, develop a program code using R to calculate the SI of typing results for different primer combinations, and use the df2genind() function of the “poppr” package to convert the simulated PCR result data into genind format. Primer combination SI calculation was performed by using the diversity_stats [mlg.table()] function, starting from the SI of the typing results of 2 pairs of primer combinations, and then calculating 3 pairs of primer combinations until the SI of the calculated primer combination was equal to the SI of all primers. This primer combination was the optimal primer combination. Use the genotype_curve() function of the “poppr” package to statistically analyze the multi locus genotypes (MLGs) of Psa for all primer combinations; and using the entire genome sequences of 20 and 10 Psa strains, a UPGMA clustering tree was constructed using the bruvo.boot() function based on the selected primer combinations to verify the typing effect of the selected primer combinations. 【Results】 34 pairs of primers had good amplification efficiency for Psa in China. By analyzing the results of simulated PCR data, it was found that TR14 and TR11II, TR19 and Psa-01 had the same sequence. TR8 and Psa-08, TR39II and Psa-10, GM-1834 and TR10I, GM-1553 and TR64II, TR19Psa-01 and TR19II amplified the same TR. The TR unit length of Psa-09 amplification product was not unique and the lateral variation of TR2II amplification product was large, which was not determining TRs by electrophoresis. By calculating the MLGs of each primer typing result, it was found that 34 pairs of primer MLGs were between 2-20. Among them, TR10Ⅰ, GM-1834, TR39Ⅱ, and Psa-10 had the highest MLGs of 20, while TR15I, TR17 and TR22 had the lowest MLGs of 2; By calculating the SI of each primer typing result, it was found that the SI values of 34 pairs of primers ranged from 0.015 4 to 0.896 8, with TR10Ⅰ, GM-1834 having the highest SI value of 0.896 8 and TR15I having the lowest SI value of 0.015 4. Through the program developed by R, it was found that the SI value of different primer combination typing results using all primer combinations was 0.984 7. The combination of two pairs of primers with the highest SI was Psa03 and GM-1834TR10I, with an SI value of 0.973 6, which did not reach the SI value of all primers. The combination of three pairs of primers with the highest SI was Psa03, GM-1834TR10I, and TR39IIPsa10, with an SI value of 0.980 3, which still did not reach the SI value of all primers. The primer combinations with the same SI values as all primers were TR23/Psa-04, Psa-03, Psa-05, Psa-06, TR10IGM-1834, TR3II, TR1II, Psa-10TR39II and TR64IIGM-1553, among which TR23 and Psa04 can be replaced with each other, and you can choose one of them. The MLGs of the 9 primers typing results were equal to the MLGs of all primer typing results, UPGMA cluster tree analysis found that 9 pairs of primer combinations can accurately separate the 5 biovar of Psa, and some differences within the biovar 3 can be seen. 【Conclusion】 The above results indicated that using a combination of these 9 primers for typing analysis had the same effect as using all primers. After verification, the combination of 9 pairs of primers can accurately separate the 5 biovars of Psa. The combination of 9 pairs of primers including TR23/Psa-04, Psa-03, Psa-05, Psa-06, TR10IGM-1834, TR3II, TR1II, Psa-10TR39II and TR64IIGM-1553, can be used to study the population genetic structure of Psa, explore the transmission and prevalence patterns of kiwifruit canker disease, and provide scientific basis for the formulation of disease prevention and control strategies.
Key words: Pseudomonas syringae pv. actinidiae; Multiple loci variable number of tandem repeats analysis; Population genetic structure; Primer; Screen
丁香假單胞菌獼猴桃致病變種(Pseudomonas syringae pv. actinidiae,Psa)引起的獼猴桃細(xì)菌性潰瘍病嚴(yán)重影響獼猴桃產(chǎn)業(yè)發(fā)展[1],該病害發(fā)生前期隱蔽性強(qiáng),不易發(fā)現(xiàn),且傳播迅速、感染植株死亡率高,防治極其困難[2-3]。全國(guó)各獼猴桃產(chǎn)區(qū)均受到獼猴桃潰瘍病的危害,受害嚴(yán)重園區(qū)發(fā)病率超過(guò)80%,甚至全園發(fā)病導(dǎo)致毀園[4-6]。近年來(lái),各國(guó)研究者通過(guò)指紋圖譜、多位點(diǎn)序列分析和全基因組序列分析等方法將Psa分為5種不同的生物型(biovar),分別為biovar 1、2、3、5和6。其中biovar 1最早在日本發(fā)現(xiàn),意大利也曾有零星發(fā)現(xiàn);biovar 5和6僅在日本發(fā)現(xiàn);biovar 2僅在韓國(guó)發(fā)現(xiàn);biovar 3為全球流行群體,其群體遺傳結(jié)構(gòu)十分復(fù)雜[7],中國(guó)截至目前所分離到的Psa均屬于biovar 3。對(duì)Psa群體結(jié)構(gòu)和分布特征開(kāi)展系統(tǒng)分析有助于認(rèn)識(shí)獼猴桃潰瘍病的傳播和流行趨勢(shì),為病害防控策略的制定提供科學(xué)依據(jù)[8-10]。
多位點(diǎn)可變數(shù)目串聯(lián)重復(fù)序列分析(multiple loci variable number of tandem repeats analysis,MLVA)廣泛應(yīng)用于醫(yī)學(xué)病原細(xì)菌及植物病原細(xì)菌群體遺傳結(jié)構(gòu)研究,具有成本低、分辨率高、數(shù)據(jù)易于整合、通量高等優(yōu)點(diǎn)[11],Osanloo等[12]采用ERIC-PCR分型方法和MLVA分型方法對(duì)鮑曼不動(dòng)桿菌開(kāi)展分型研究,使用rep-PCR分型方法將伊朗100株鮑曼不動(dòng)桿菌分為4個(gè)類(lèi)群,MLVA分型方法則分為9個(gè)類(lèi)群,表明MLVA技術(shù)分辨率較ERIC-PCR更高;Siarkou等[13]采用MLST分型和MLVA分型方法對(duì)流產(chǎn)衣原體進(jìn)行了分型研究,發(fā)現(xiàn)MLST將流產(chǎn)衣原體分為6個(gè)類(lèi)群,MLVA技術(shù)則分為7個(gè)類(lèi)群,表明MLVA分型技術(shù)的分辨率高于MLST。已有研究者采用此方法對(duì)Psa群體遺傳結(jié)構(gòu)進(jìn)行了研究,Ciarroni等[14]設(shè)計(jì)了13對(duì)MLVA引物,對(duì)142株P(guān)sa進(jìn)行群體遺傳結(jié)構(gòu)研究,發(fā)現(xiàn)來(lái)自中國(guó)、日本、新西蘭和法國(guó)等不同國(guó)家或地區(qū)的142株P(guān)sa可分為10個(gè)不同的亞群,并發(fā)現(xiàn)中國(guó)的Psa菌株具有廣泛的遺傳多樣性;Cunty等[15]設(shè)計(jì)了11對(duì)MLVA引物對(duì)340株P(guān)sa的群體遺傳結(jié)構(gòu)進(jìn)行了分析,發(fā)現(xiàn)中國(guó)Psa具有豐富的遺傳多樣性;趙志博等[16]設(shè)計(jì)了10對(duì)MLVA引物用以建立中國(guó)Psa群體遺傳結(jié)構(gòu)分型技術(shù),并應(yīng)用于來(lái)自貴州修文縣7個(gè)代表性果園62株P(guān)sa群體結(jié)構(gòu)研究中,發(fā)現(xiàn)62株P(guān)sa可分為3個(gè)不同的亞群。至此,MLVA引物數(shù)量多達(dá)34對(duì)。使用過(guò)多MLVA引物會(huì)使該技術(shù)失去低成本和便捷的優(yōu)勢(shì)。筆者在本研究中對(duì)已報(bào)道的MLVA引物進(jìn)行篩選和分析,力求減少引物的使用而不降低分型效果,篩選出可以精準(zhǔn)快速地進(jìn)行Psa分型的引物組合。該引物組合可用于Psa群體遺傳結(jié)構(gòu)研究,探索Psa的傳播和流行規(guī)律,為獼猴桃潰瘍病防控策略的制定提供科學(xué)依據(jù)。
1 材料和方法
1.1 MLVA引物PCR擴(kuò)增效率驗(yàn)證
1.1.1 MLVA引物 MLVA引物如表1所示。
1.1.2 供試菌株 挑選10株具有代表性的Psa菌株驗(yàn)證34對(duì)引物對(duì)中國(guó)菌株的擴(kuò)增效率(表2)。
1.1.3 PCR、電泳條件 PCR條件:95 ℃ 3 min,95 ℃ 30 s,退火溫度30 s,72 ℃ 1.5 min,35個(gè)循環(huán),72 ℃ 5 min,最后保持12 ℃(表1);毛細(xì)管電泳采用安捷倫科技有限公司生產(chǎn)的毛細(xì)管電泳儀,試劑采用DNF900試劑盒;毛細(xì)管電泳程序設(shè)置:5.0 kV 30 s,5.0 kV 10 s注入Marker,5.0 kV 10 s注入樣品及Ladder,最后5.0 kV運(yùn)行80 min。
1.2 模擬PCR篩選MLVA引物
以Genbank中下載127株P(guān)sa全基因組序列為模板,表1所列引物對(duì)為引物,使用SPCR 3.0進(jìn)行模擬PCR,模擬PCR參數(shù)為:Up Threshold:0.8;Down Threshold:0.8;Pa Threshold:0.8;Max Product:500 bp;Min Product:35 bp(其中Psa-09 Max Product設(shè)置為1000 bp)[26]。
1.3 數(shù)據(jù)分析
1.3.1 串聯(lián)重復(fù)數(shù)(TRs)計(jì)算 將模擬PCR擴(kuò)增結(jié)果的長(zhǎng)度信息導(dǎo)入Excel中,整理后按照下列公式進(jìn)行串聯(lián)重復(fù)數(shù)(tandem repeats,TRs)的計(jì)算,統(tǒng)計(jì)引物的擴(kuò)增情況。
[串聯(lián)重復(fù)數(shù)=序列長(zhǎng)度-側(cè)翼長(zhǎng)度重復(fù)單元長(zhǎng)度]。
1.3.2 引物組合篩選 以辛普森指數(shù)(Simpsons index,SI)作為篩選引物組合的標(biāo)準(zhǔn),計(jì)算所有引物組合的SI,并根據(jù)SI的大小篩選引物組合[27]?;赗 version 4.0.2開(kāi)發(fā)程序進(jìn)行引物組合的篩選,采用poppr軟件包的df2genind()函數(shù)將模擬PCR結(jié)果矩陣轉(zhuǎn)化為genind格式,利用diversity_stats [mlg.table()]函數(shù)進(jìn)行引物組合SI的計(jì)算,從2對(duì)引物組合的SI開(kāi)始計(jì)算,然后計(jì)算3對(duì)引物組合的SI,直到所計(jì)算引物組合的SI等于全部引物組合下的SI,該引物組合即為最優(yōu)引物組合[28]。
1.3.3 引物組合效果驗(yàn)證 采用poppr軟件包的genotype_curve()函數(shù)對(duì)所有的引物組合下Psa的多位點(diǎn)基因型數(shù)(Multilocus genotypes,MLGs)進(jìn)行統(tǒng)計(jì);以10株P(guān)sa的TR數(shù)據(jù)結(jié)合Genbank下載20株P(guān)sa全基因組序列(表2),采用bruvo.boot()函數(shù)基于篩選獲得的引物組合構(gòu)建UPGMA聚類(lèi)樹(shù),驗(yàn)證所篩選引物組合的分型效果[29]。
2 結(jié)果與分析
2.1 PCR擴(kuò)增效果驗(yàn)證
除TR10I、TR14I、TR15I、TR30I等4對(duì)引物外,Psa-10(見(jiàn)圖1左)、TR2、TR5等30對(duì)引物對(duì)供試的10個(gè)Psa菌株均能擴(kuò)增出清晰明亮的單一條帶,進(jìn)一步分析發(fā)現(xiàn),TR10I(見(jiàn)圖1右)、TR14I、TR15I、TR30I等4對(duì)引物的下游引物采用反向互補(bǔ)序列后可擴(kuò)增出單一清晰條帶。結(jié)果表明34對(duì)引物均對(duì)供試Psa菌株表現(xiàn)良好擴(kuò)增效果,詳細(xì)結(jié)果見(jiàn)表3。
2.2 模擬PCR
模擬PCR結(jié)果如表3所示,TR2等10對(duì)引物能將127株P(guān)sa完全擴(kuò)增成功,GM-1834等22對(duì)引物擴(kuò)增的菌株數(shù)大于105株,Psa-09和TR23引物擴(kuò)增的菌株數(shù)最少,分別為59株和98株。
通過(guò)對(duì)模擬PCR擴(kuò)增的序列文件分析,TR8與Psa-08、TR39II與Psa-10、GM-1834與TR10I、GM1553與TR64II、TR19Psa-01與TR19II擴(kuò)增同一TR;Psa-09 TR長(zhǎng)度不固定,TR2II側(cè)翼長(zhǎng)度變異較大,不能通過(guò)電泳準(zhǔn)確推斷TR數(shù)。將序列相同的引物、擴(kuò)增同一TR的引物僅保留1對(duì),不能通過(guò)電泳判斷TRs的引物被剔除,剩余25對(duì)引物進(jìn)行后續(xù)的分析。
25對(duì)引物擴(kuò)增的產(chǎn)物長(zhǎng)度、多位點(diǎn)基因型數(shù)(MLGs)、辛普森指數(shù)(SI)結(jié)果各不相同。從MLGs來(lái)看TR10I、GM-1834、Psa-10和TR39II等4對(duì)引物擴(kuò)增的MLGs最多,為20個(gè);TR15I、TR17和TR22等3對(duì)引物擴(kuò)增的MLGs最少,為2個(gè);從SI來(lái)看,TR39IIPsa-10、TR10I、GM-1834和Psa-03等4對(duì)引物擴(kuò)增基因型的SI較高,分別為0.896 8、0.878 9、0.878 9和0.735 3;TR15I、TR30I、GM-4076和TR3II等4對(duì)引物擴(kuò)增基因型的SI較低,均小于0.3。25對(duì)引物中,GM-254擴(kuò)增的MLGs較多,為9,其SI為0.356 2,均勻度較低;TR17和TR22擴(kuò)增的MLGs較少,為2,SI為0.478 1,均勻度較高(表4)。
2.3 引物組合篩選
使用R進(jìn)行25對(duì)引物所有組合的查找及SI值的計(jì)算結(jié)果表明:選擇25對(duì)引物時(shí),其組合僅有1個(gè),SI值為0.984 7;選擇9對(duì)引物時(shí),引物組合有2 042 975個(gè),其SI值最大的前3個(gè)組合的SI值分別為0.984 7、0.984 7和0.984 5,最大SI值與25對(duì)引物的SI值相同。選擇9對(duì)以上引物組合時(shí),其最大SI值也達(dá)到了0.984 7,最大SI值未隨引物增加而增加(表5、圖2)。從MLGs來(lái)看,使用2對(duì)引物組合時(shí)最大MLGs為65,使用9對(duì)引物組合最大MLGs與25對(duì)引物的MLGs相同,均為99。
以上結(jié)果表明,使用TR23/Psa-04、Psa-03、Psa-05、Psa-06、TR10IGM-1834、TR30Ⅰ、TR1II、Psa-10TR39II、TR64IIGM-1553等9對(duì)引物的組合可以達(dá)到25對(duì)引物的效果,其中TR23和Psa-04可以相互替換,任選其一使用即可。
2.4 引物組合分型效果驗(yàn)證
獲得的9對(duì)引物組合可將Psa的5種生物型(biovar)準(zhǔn)確分開(kāi);10株代表性Psa均為biovar 3,其中GZCC7520447和GZCC7520448來(lái)自烏當(dāng)區(qū)偏坡鄉(xiāng),獨(dú)立聚為一支;GZCC7520193和GZCC7520192均來(lái)自修文縣六桶鄉(xiāng),以相近的遺傳距離聚在一起;GZCC7520186和GZCC7520161均來(lái)自修文縣,以相近的遺傳距離聚在一起;biovar 3菌株間存在一定差異(圖3)。上述結(jié)果表明,所獲得的9對(duì)引物組合可用于Psa群體遺傳結(jié)構(gòu)研究。
3 討 論
各國(guó)學(xué)者采用MLVA技術(shù)開(kāi)展Psa群體遺傳結(jié)構(gòu)研究共設(shè)計(jì)了34對(duì)MLVA引物[14-16],34對(duì)引物中,有些是相同序列(TR14=TR11Ⅱ、TR19=Psa-01);有些是擴(kuò)增同一TR(TR8與Psa-08、TR39Ⅱ與Psa-10、GM1834與TR10Ⅰ、GM1553與TR64Ⅱ、TR19Psa-01與TR19II);有些序列(TR10I、TR14I、TR15I、TR30I)不能直接被引用,Mazzaglia等[30]的研究中也提到了該不足。有必要針對(duì)該34對(duì)引物開(kāi)展系統(tǒng)的分析和篩選,以獲得一組可以直接使用、快速精準(zhǔn)地對(duì)Psa進(jìn)行分型分析的引物組合。
筆者在本研究中在不降低分辨率的前提下進(jìn)行MLVA引物組合的篩選,將34對(duì)引物減少到只需9對(duì)(TR23/Psa-04、Psa-03、Psa-05、Psa-06、TR10IGM-1834、TR30I、TR1II、Psa-10TR39II、TR64IIGM-1553),大大降低了研究的時(shí)間和資源成本。該9對(duì)引物的組合經(jīng)驗(yàn)證可準(zhǔn)確、快速地對(duì)Psa進(jìn)行分型分析,進(jìn)行Psa群體遺傳結(jié)構(gòu)研究,探索Psa傳播和流行規(guī)律,為獼猴桃潰瘍病防控策略的制定提供科學(xué)依據(jù)。
筆者在本研究中需查找引物的所有組合并計(jì)算SI值,計(jì)算量達(dá)百萬(wàn)級(jí)以上。Optimal Combination Finder (OCF)是一個(gè)專(zhuān)門(mén)用來(lái)找出引物所有可能的組合,并進(jìn)行引物所有可能組合的SI計(jì)算的程序[18]。但由于其操作比較復(fù)雜,非開(kāi)發(fā)者很難自行利用該程序進(jìn)行引物組合的查找和SI的計(jì)算,因此筆者基于R開(kāi)發(fā)了一段計(jì)算程序,進(jìn)行所有可能引物組合的查找和SI的計(jì)算,它是利用R編寫(xiě)并依托于poppr軟件包使用。R語(yǔ)言平臺(tái)使用方式簡(jiǎn)單快捷,可多線程運(yùn)行,提高計(jì)算速度,直接采用poppr軟件包計(jì)算SI值則大大簡(jiǎn)化了計(jì)算步驟,如筆者在本研究中所有引物組合的SI值的計(jì)算僅需幾個(gè)小時(shí)便可以完成,這極大地提高了引物組合篩選的效率。該計(jì)算程序可以應(yīng)用于其他微生物MLVA引物的篩選。
筆者在本研究中所引用的34對(duì)引物對(duì)127株P(guān)sa菌株的全基因組擴(kuò)增信息中,存在部分引物擴(kuò)增不出條帶的情況,但整體來(lái)說(shuō),供試引物對(duì)大多數(shù)菌株能擴(kuò)增出條帶,僅Psa-09和TR23引物能擴(kuò)增出條帶的菌株數(shù)量較少。不能擴(kuò)增出條帶的原因可能是:(1)菌株序列中本身不存在此位點(diǎn);(2)GenBank中下載的127株P(guān)sa全基因組序列中有118株未組裝,未組裝的Psa菌株的全基因組信息由幾十到幾百條序列組成,如果序列截?cái)嗟奈恢脛偤檬俏稽c(diǎn)所在,模擬PCR便無(wú)法擴(kuò)增。無(wú)法準(zhǔn)確判斷擴(kuò)增不出條帶的原因,若將缺失信息的菌株舍棄,樣本量將會(huì)大大減少,不利于引物組合的篩選。其他的研究者在面對(duì)缺失信息時(shí),一般是使用字符將其標(biāo)記出來(lái),如:Ikawaty等[31]使用“999”表示PCR無(wú)擴(kuò)增信息;Concei??o等[32]使用“99”表示未獲得PCR擴(kuò)增信息;Ciarroni等[14]使用“-1”來(lái)表示擴(kuò)增信息的缺失。筆者在本研究中將缺失信息統(tǒng)一使用“0”表示,一方面便于SI的計(jì)算,另一方面也使所有菌株都參與到了引物組合的篩選中,獲得了適用于Psa群體遺傳結(jié)構(gòu)研究的引物組合。
參考文獻(xiàn) References:
[1] TAKIKAWA Y,SERIZAWA S,ICHIKAWA T,TSUYUMU S,GOTO M. Pseudomonas syringae pv. actinidiae pv. nov.:The causal bacterium of canker of kiwifruit in Japan[J]. Japanese Journal of Phytopathology,1989,55(4):437-444.
[2] SAWADA H,F(xiàn)UJIKAWA T. Genetic diversity of Pseudomonas syringae pv. actinidiae,pathogen of kiwifruit bacterial canker[J]. Plant Pathology,2019,68(7):1235-1248.
[3] 張迪,高小寧,趙志博,秦虎強(qiáng),黃麗麗. 不同獼猴桃品種對(duì)潰瘍病的抗性差異及其機(jī)制研究[J]. 果樹(shù)學(xué)報(bào),2019,36(11):1549-1557.
ZHANG Di,GAO Xiaoning,ZHAO Zhibo,QIN Huqiang,HUANG Lili. Differences in resistance to Pseudomonas syringae pv. actinidiae and acting mechanism of different kiwifruit varieties[J]. Journal of Fruit Science,2019,36(11):1549-1557.
[4] 虞江,李渺,張文娟,馮雙,盧永仲,徐志華,張善淇,龔子雄,何鵬,魏嫻. 貴州省貴陽(yáng)市修文縣獼猴桃潰瘍病發(fā)生現(xiàn)狀調(diào)查[J]. 貴州農(nóng)機(jī)化,2022(1):41-43.
YU Jiang,LI Miao,ZHANG Wenjuan,F(xiàn)ENG Shuang,LU Yongzhong,XU Zhihua,ZHANG Shanqi,GONG Zixiong,HE Peng,WEI Xian. Investigation on the current situation of kiwifruit canker disease in Xiuwen County,Guiyang City,Guizhou Province[J]. Guizhou Agricultural Mechaniation,2022(1):41-43.
[5] 馬利. 四川獼猴桃潰瘍病發(fā)生區(qū)劃和綜合防控技術(shù)研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2018.
MA Li. Occurrence regionalization and integrated management of kiwifruit canker caused by Pseudomonas syringae pv. actinidiae in Sichuan[D]. Yaan:Sichuan Agricultural University,2018.
[6] 王茹琳,劉原,李慶,沈沾紅,陸興利,趙金鵬,王閆利,王明田. 氣候變化情景下四川省獼猴桃潰瘍病菌潛在地理分布模擬[J]. 植物保護(hù),2020,46(2):38-47.
WANG Rulin,LIU Yuan,LI Qing,SHEN Zhanhong,LU Xingli,ZHAO Jinpeng,WANG Yanli,WANG Mingtian. Analysis of geographical distribution of Pseudomonas syringae pv. actinidiae in Sichuan under climate change[J]. Plant Protection,2020,46(2):38-47.
[7] FUJIKAWA T,SAWADA H. Draft genome sequences of nine Japanese strains of the kiwifruit bacterial canker pathogen Pseudomonas syringae pv. actinidiae biovar 3[J]. Microbiology Resource Announcements,2020,9(45):e01007-e01020.
[8] 朱海云,馬瑜,柯楊,李勃. 陜西省獼猴桃潰瘍病病原菌分離鑒定及分型研究[J]. 微生物學(xué)雜志,2023,43(4):74-83.
ZHU Haiyun,MA Yu,KE Yang,LI Bo. Isolation,identification and typing the pathogen of Chinese gooseberry or kiwifruit (Actinidia chinensis) canker in Shaanxi Province[J]. Journal of Microbiology,2023,43(4):74-83.
[9] HE R,LIU P,JIA B,XUE S Z,WANG X J,HU J Y,AL SHOFFE Y,GALLIPOLI L,MAZZAGLIA A,BALESTRA G M,ZHU L W. Genetic diversity of Pseudomonas syringae pv. actinidiae strains from different geographic regions in China[J]. Phytopathology,2019,109(3):347-357.
[10] 代玉立,蘭成忠,甘林,劉曉菲,龔國(guó)淑,楊秀娟. 中國(guó)4省獼猴桃細(xì)菌性潰瘍病菌的生物型檢測(cè)和遺傳多樣性分析[J]. 植物保護(hù),2022,48(6):58-68.
DAI Yuli,LAN Chengzhong,GAN Lin,LIU Xiaofei,GONG Guoshu,YANG Xiujuan. Detection of Pseudomonas syringae pv. actinidiae biovars from four provinces in China and genetic diversity analysis[J]. Plant Protection,2022,48(6):58-68.
[11] VAN BELKUM A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA)[J]. FEMS Immunology & Medical Microbiology,2007,49(1):22-27.
[12] OSANLOO L,ZEIGHAMI H,HAGHI F,SHAPOURI R,SHOKRI R. Molecular typing of multidrug-resistant Acinetobacter baumannii isolates from clinical specimens by ERIC-PCR and MLVA[J]. Current Microbiology,2023,80(11):355.
[13] SIARKOU V I,VORIMORE F,VICARI N,MAGNINO S,RODOLAKIS A,PANNEKOEK Y,SACHSE K,LONGBOTTOM D,LAROUCAU K. Diversification and distribution of ruminant Chlamydia abortus clones assessed by MLST and MLVA[J]. PLoS One,2015,10(5):e0126433.
[14] CIARRONI S,GALLIPOLI L,TARATUFOLO M C,BUTLER M I,POULTER R T M,POURCEL C,VERGNAUD G,BALESTRA G M,MAZZAGLIA A. Development of a multiple loci variable number of tandem repeats analysis (MLVA) to unravel the intra-pathovar structure of Pseudomonas syringae pv. actinidiae populations worldwide[J]. PLoS One,2015,10(8):e0135310.
[15] CUNTY A,CESBRON S,POLIAKOFF F,JACQUES M A,MANCEAU C. Origin of the outbreak in France of Pseudomonas syringae pv. actinidiae biovar 3,the causal agent of bacterial canker of kiwifruit,revealed by a multilocus variable-number tandem-repeat analysis[J]. Applied and Environmental Microbiology,2015,81(19):6773-6789.
[16] 趙志博,杜淑鳳,李月,楊文,樊榮,王勇,龍友華. 獼猴桃潰瘍病菌biovar 3群體MLVA分型技術(shù)的建立與應(yīng)用[J]. 植物病理學(xué)報(bào),2019,49(4):445-455.
ZHAO Zhibo,DU Shufeng,LI Yue,YANG Wen,F(xiàn)AN Rong,WANG Yong,LONG Youhua. Establishment and application of MLVA typing for Pseudomonas syringae pv. actinidiae biovar 3 populations[J]. Acta Phytopathologica Sinica,2019,49(4):445-455.
[17] MCCANN H C,LI L,LIU Y F,LI D W,PAN H,ZHONG C H,RIKKERINK E H A,TEMPLETON M D,STRAUB C,COLOMBI E,RAINEY P B,HUANG H W. Origin and evolution of the kiwifruit canker pandemic[J]. Genome Biology and Evolution,2017,9(4):932-944.
[18] 趙志博. 獼猴桃細(xì)菌性潰瘍病菌群體結(jié)構(gòu)與致病機(jī)制研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.
ZHAO Zhibo. Population composition and pathogenic mechanism in Pseudomonas syringae pv. actinidiae[D]. Yangling:Northwest A & F University,2016.
[19] MAZZAGLIA A,STUDHOLME D J,TARATUFOLO M C,CAI R M,ALMEIDA N F,GOODMAN T,GUTTMAN D S,VINATZER B A,BALESTRA G M. Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage[J]. PLoS One,2012,7(5):e36518.
[20] SAWADA H,MIYOSHI T,IDE Y. Novel MLSA group (Psa5) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia chinensis) in Japan[J]. Japanese Journal of Phytopathology,2014,80(3):171-184.
[21] FUJIKAWA T,SAWADA H. Genome analysis of Pseudomonas syringae pv. actinidiae biovar 6,which produces the phytotoxins,phaseolotoxin and coronatine[J]. Scientific Reports,2019,9:3836.
[22] MARCELLETTI S,F(xiàn)ERRANTE P,PETRICCIONE M,F(xiàn)IRRAO G,SCORTICHINI M. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species[J]. PLoS One,2011,6(11):e27297.
[23] PAN X,ZHAO S Y,WANG Y Z,LI M Z,HE L Q,ZHUANG Q G. Complete genome sequencing of Pseudomonas syringae pv. actinidiae Biovar 3, P155, kiwifruit pathogen originating from China[J]. Bioscience Journal,2020,36(6):2220-2228.
[24] FUJIKAWA T,SAWADA H. Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5[J]. Scientific Reports,2016,6:21399.
[25] MCCANN H C,RIKKERINK E H A,BERTELS F,F(xiàn)IERS M,LU A,REES-GEORGE J,ANDERSEN M T,GLEAVE A P,HAUBOLD B,WOHLERS M W,GUTTMAN D S,WANG P W,STRAUB C,VANNESTE J L,RAINEY P B,TEMPLETON M D. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease[J]. PLoS Pathogens,2013,9(7):e1003503.
[26] CAO Y F,WANG L J,XU K X,KOU C H,ZHANG Y L,WEI G F,HE J J,WANG Y F,ZHAO L P. Information theory-based algorithm for in silico prediction of PCR products with whole genomic sequences as templates[J]. BMC Bioinformatics,2005,6:190.
[27] WANG X,HUANG B X,BLAIR B,EGLEZOS S,BATES J. Selection of optimal combinations of loci by the Optimal Combination Finder computer program from a group of variable number tandem repeat loci for use in Staphylococcus aureus food poisoning case investigations[J]. Journal of Medical Microbiology,2012,61(Pt 5):631-639.
[28] R Core Team. R: A language and environment for statisticalcomputing[CP]. R Foundation for Statistical Computing,Vienna,Austria. URL. 2020. https://www.R-project.org/.
[29] KAMVAR Z N,TABIMA J F,EVERHART S E,BROOKS J C,KRUEGER-HADFIELD S A. Package ‘poppr[CP]. 2020. https://grunwaldlab.github.io/poppr.
[30] MAZZAGLIA A,TURCO S,TARATUFOLO M C,TAT? M,RAHI Y J,GALLIPOLI L,BALESTRA G M. Improved MLVA typing reveals a highly articulated structure in Pseudomonas syringae pv. actinidiae populations[J]. Physiological and Molecular Plant Pathology,2021,114:101636.
[31] IKAWATY R,WILLEMS R J L,BOX A T A,VERHOEF J,F(xiàn)LUIT A C. Novel multiple-locus variable-number tandem-repeat analysis method for rapid molecular typing of human Staphylococcus aureus[J]. Journal of Clinical Microbiology,2008,46(9):3147-3151.
[32] CONCEI??O T,DE SOUSA M A,DE LENCASTRE H. Staphylococcal interspersed repeat unit typing of Staphylococcus aureus:Evaluation of a new multilocus variable-number tandem-repeat analysis typing method[J]. Journal of Clinical Microbiology,2009,47(5):1300-1308.
收稿日期:2023-10-19 接受日期:2023-11-09
基金項(xiàng)目:貴州省科技計(jì)劃項(xiàng)目(黔科合基礎(chǔ)[2019]1308號(hào))
作者簡(jiǎn)介:姚令,男,研究實(shí)習(xí)員,碩士,研究方向?yàn)橹参锊±韺W(xué)。E-mail:1158142736@qq.com
*通信作者 Author for correspondence. E-mail:gzusp@126.com