DOI:10.3969/j.issn.10001565.2024.04.007
摘要:炎性小體是由凋亡相關(guān)斑點樣蛋白(apoptosis-associated speckle-like protein,ASC)、半胱天冬酶-1(caspase-1)和細胞中的模式識別受體(pattern recognition receptors,PRR)組成的一種多聚蛋白復合物.炎性小體在腫瘤的發(fā)生過程中具有重要作用,包括對腫瘤生物學行為、細胞焦亡及免疫的調(diào)控,靶向炎性小體可為腫瘤的治療及預(yù)后改善提供新的思路.膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)中惡性程度高、預(yù)后差的腫瘤,本文對炎性小體的組成、激活機制及其在膠質(zhì)瘤中的作用進行了綜述.
關(guān)鍵詞:炎性小體;膠質(zhì)瘤;細胞焦亡;免疫;IL-1β
中圖分類號:R739.4文獻標志碼:A文章編號:10001565(2024)04039009
Research development of inflammasome in glioma
TAN Yanli1,2, LI Xiang3, LI Zirui1, YU Jia1
(1.School of Basic Medical Sciences,Hebei University, Baoding 071000,China;
2.Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma,Baoding 071000,China;
3. School of Clinical Medicine,Hebei University, Baoding 071000,China)
Abstract: Inflammasome is composed of apoptosis-associated speckle-like protein (ASC), caspase-1 and pattern recognition receptors (PRR). Inflammasome plays an important role in the process of tumorigenesis, including the regulation of tumor biological behavior, pyroptosis and immunity. Targeting inflammasome may provide new ideas for tumor treatment and prognosis improvement. Gliomas are highly malignant brain tumors with poor prognosis in the central nervous system. This article reviews the composition, activation mechanism and the role of inflammasome in gliomas.
Key words: inflammasome; glioma; pyroptosis; immunotherapy; IL-1β
膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)最常見的惡性腫瘤,盡管臨床綜合治療有一定療效,但療效不理想,預(yù)后差.膠質(zhì)母細胞瘤(glioblastoma,GBM)是世界衛(wèi)生組織標準的4級膠質(zhì)瘤,惡性程度高,GBM的中位生存時間僅為12~16個月[1]. 先天性免疫系統(tǒng)是宿主防御的第一道防線,也是機體抵抗腫瘤的第一道屏障,其免疫應(yīng)答依賴于模式識別受體靶向識別內(nèi)源性病原體.炎性小體在腫瘤微環(huán)境中的積累有利于腫瘤細胞增殖、侵襲和轉(zhuǎn)移,促進了腫瘤的發(fā)生發(fā)展.炎性小體的組裝是經(jīng)典途徑導致細胞焦亡的關(guān)鍵因素.細胞焦亡是一種程序性死亡方式,按照以往的認知既可抑制腫瘤細胞生長,又可以促進顱內(nèi)腫瘤免疫微環(huán)境中形成合適的生存條件,刺激腫瘤的生長,但與細胞焦亡相關(guān)因子刺激和抑制腫瘤發(fā)展的雙重作用機制還需進一步研究[2].研究證實,炎性小體與腫瘤的發(fā)生與進展密切相關(guān),近年來,越來越多關(guān)于炎性小體與膠質(zhì)瘤的研究被報道.本文
收稿日期:20240304;修回日期:20240318
基金項目:國家自然科學基金資助項目(82172660);國家級大學生創(chuàng)新創(chuàng)業(yè)訓練計劃項目(202310075012);河北省高等學??茖W技術(shù)研究項目(ZD2021308)
第一作者:檀艷麗(1973—),女,河北大學教授,博士生導師,主要從事腫瘤分子病理學研究.E-mail:tanyanli5536@126.com
就炎性小體在膠質(zhì)瘤中的作用及機制進行綜述,并探討其作為腫瘤潛在治療靶點的應(yīng)用價值.
1炎性小體概述
炎性小體由 Tschopp研究組在2002年首次提出,最初被命名為caspase活化復合物[3],由凋亡相關(guān)斑點樣蛋白 (apoptosis-asociated speckle-like protein,ASC)、半胱天冬酶-1(caspase-1)與感受器蛋白共同組成.炎性小體與多種生理和病理過程有關(guān) ,如抗菌防御、腫瘤免疫等.炎性小體分為經(jīng)典炎性小體和非經(jīng)典炎性小體2類.非經(jīng)典炎性小體是由人類pro-caspase-4/5與脂多糖(lipopolysacharide,LPS)構(gòu)成的大分子蛋白復合物[4].經(jīng)典炎性小體是由銜接蛋白ASC、pro-caspase-1 和感受器蛋白通過熱蛋白結(jié)構(gòu)域 (pyrindomain,PYD)或半胱天冬酶募集結(jié)構(gòu)域 (caspase recruitment domain,CARD)結(jié)合在一起,形成的一種多聚體蛋白復合物.目前非經(jīng)典炎性小體研究較少,本文主要關(guān)注經(jīng)典炎性小體.
經(jīng)典各型炎性小體的結(jié)構(gòu)與組裝即有共同特征也存在不同特點. 經(jīng)典炎性小體組成的共同點是感受器蛋白大多富含亮氨酸的重復序列,且中央有核苷酸結(jié)合結(jié)構(gòu)域,而不同點是組裝炎性小體的結(jié)構(gòu)域 PYD 和 CARD 的差別.NLRP1組裝炎性小體的結(jié)構(gòu)域為PYD和CARD,NLRP3、NLRP6、NLRP12組裝炎性小體的結(jié)構(gòu)域僅為PYD,此類炎性小體則需要 ASC銜接. NLRC4炎性小體有 CARD 結(jié)構(gòu)域但無 PYD 結(jié)構(gòu)域,不需要ASC接頭募集即可激活[5] .明確各種炎性小體的結(jié)構(gòu)與組裝對于研究炎性小體的激活尤為關(guān)鍵.
經(jīng)典炎性小體按照感受器蛋白的不同分為NLR (nucleotide-binding domain and leucine-rich repeat-containing)家族和PYHIN(pyrin and HIN domain-containing protein)家族[6].NLR蛋白家族成員均含有核苷酸結(jié)合寡聚化結(jié)構(gòu)域,多數(shù)成員有1個N末端介導蛋白-蛋白相互作用的結(jié)構(gòu)域和1個C末端富含亮氨酸的串聯(lián)重復序列結(jié)構(gòu)域,根據(jù)N末端結(jié)構(gòu)域PYD或CARD的不同,該家族進一步分為NLRP或NLRC受體[7].PYHIN 家族構(gòu)成的炎性小體成員相對研究較少,主要成員有IFI16、AIM2[8],其特點是除了N末端PYD結(jié)構(gòu)域,C末端還有一段HIN-200 結(jié)構(gòu)域.AIM2受體最近被確認為細胞質(zhì)雙鏈DNA感應(yīng)蛋白[9],能通過使 caspase-1活化從而連接 ASC組裝成AIM2炎性小體.
2炎性小體的激活機制
經(jīng)典炎性小體的活化首先是激活炎性小體受體分子.具有模式識別受體的免疫細胞通過識別損傷相關(guān)分子模式(damage associated molecular pattern,DAMP)和病原相關(guān)分子模式(pathogen-associated molecular pattern,PAMP)[10],導致炎性小體復合物的組裝和寡聚化.隨后形成寡聚物并招募銜接蛋白ASC,之后ASC募集無活性的caspase-1前體,使其裂解和活化,無活性的前IL-1β和原IL-18被活化的caspase-1剪切為成熟的形式并釋放[11-13],同時活性caspase-1繼續(xù)剪切g(shù)asdermin D(GSDMD)蛋白為GSDMD-N,游離的GSDMD-N在膜中聚集成孔并誘導焦亡[14].非經(jīng)典炎性小體的激活途徑是由caspase-4/5/11直接感知細胞內(nèi) LPS,隨后組裝形成大分子復合物,caspase-4/5/11通過剪切 GSDMD,從而實現(xiàn)細胞焦亡.
目前研究最為廣泛的NLRP3炎性小體的激活模式主要有:
1)離子作用模式
離子作用包括K+外排、Cl-外排和Ca2+信號傳導. K+外排通過K+通道TWIK2進行,是激活NLRP3炎性小體的必要步驟[15],另外有研究指出CATH-2作為第2個信號激活LPS進而激活巨噬細胞中的NLRP3炎性小體,導致ASC寡聚化以及caspase-1活化,最終導致IL-1β成熟和分泌,這種激活過程由K+外排介導[16].
Murakami等[17]研究發(fā)現(xiàn),過量或持續(xù)的Ca2+攝取導致線粒體損傷,線粒體活性氧(mtROS)產(chǎn)生增加,線粒體通透性發(fā)生變化,最終線粒體破裂,將mtROS和線粒體DNA(mtDNA)釋放到細胞質(zhì)中,證實NLRP3炎性小體被Ca2+動員導致線粒體損傷而激活.腸上皮細胞中的機械門控陽離子通道PIEZO1引起Ca2+內(nèi)流,致使線粒體功能異常,進而NLRP3炎性小體被激活,腸道炎癥發(fā)生[18].
在炎性小體的激活機制中Cl-的作用也被關(guān)注.PIM-1激酶抑制能夠阻斷巨噬細胞線粒體ROS/Cl-外排信號傳導方式,從而抑制NLRP3炎性小體活化[19].Green等[20]的進一步研究發(fā)現(xiàn),依賴NLRP3的ASC寡聚化是依賴Cl-外排的、動態(tài)的和可逆的.
2)細胞器作用模式
ROS氧化線粒體,并導致線粒體DNA釋放,釋放的線粒體DNA可以繼續(xù)作為DAMP促進NLRP3炎性小體活化[21].An等[22]首次證明IQ基序中的GTP酶激活蛋白1(IQ motif-containing GTPase-activating protein 1,IQGAP1)促進ROS的產(chǎn)生,導致線粒體DNA釋放到細胞質(zhì)中,同時DNA傳感器cGAS-STING被啟動,促進NLRP3炎性小體的產(chǎn)生,從而誘導內(nèi)皮細胞焦亡形成動脈粥樣硬化.
Yang等[23]指出,醌型多溴二苯醚代謝物可引起線粒體功能障礙和ROS釋放,介導溶酶體損傷和K+ 外排,通過經(jīng)典和非經(jīng)典途徑觸發(fā)炎性小體激活.阿匹莫德(apilimod) 作為一種溶酶體干擾物,以溶酶體依賴的方式觸發(fā)NLRP3炎性小體激活[24].另外,Neuwirt等[25]研究發(fā)現(xiàn),酪氨酸激酶抑制劑伊馬替尼引起溶酶體腫脹和損傷,伴有K+ 外排,進而激活了NLRP3炎性小體.因此細胞器的功能障礙在炎性小體激活中發(fā)揮了重要作用.
3)ROS作用模式
許多物質(zhì)被證明可以作用于ROS對NLRP3炎性小體的激活.例如正己烷代謝的毒性產(chǎn)物3,2-己二酮通過線粒體自噬依賴性ROS的產(chǎn)生觸發(fā)NLRP3炎性小體的激活[26].有研究指出諾卡酮可以通過抑制ROS觸發(fā)的NLRP3激活來減輕哮喘氣道炎癥,并且可能是治療哮喘的潛在藥物[27].高糖在海馬小膠質(zhì)細胞中,通過增強細胞內(nèi)ROS的積累激活NLRP3炎性小體[28],并且許多微生物可以通過產(chǎn)生ROS來調(diào)節(jié)NLRP3炎性小體[29].綜上,ROS在NLRP3炎性小體的激活機制中起到重要作用,靶向ROS的調(diào)控對于疾病的預(yù)防、治療、轉(zhuǎn)歸可能具有積極作用.
近年來越來越多的炎性小體激活機制被研究,NLRC4炎性小體由多種Ⅲ型和Ⅳ型分泌系統(tǒng)的細菌病原體激活[30-31];NLRP1炎性小體會被銅綠假單胞菌和白喉棒狀桿菌外毒素活化[32];NLRP6炎性小體主要在腸道上皮中發(fā)揮作用,腸道微生物群紊亂時會被激活[33];NLRP7炎性小體主要在分枝桿菌感染時被激活[34],總之進一步研究多種類型炎性小體的激活機制為疾病的治療提供新的思路和靶點.
3炎性小體在膠質(zhì)瘤中的表達
炎性小體與腫瘤的生長、侵襲轉(zhuǎn)移和耐藥性等密切相關(guān).近期有研究證實:NLRP3、NLRC4和NLRP7可促進肺癌的發(fā)生發(fā)展[35];在口腔鱗狀細胞癌中NLRP3炎性小體激活促進了口腔癌的轉(zhuǎn)移[36];NLRP3與腫瘤的耐藥性也有關(guān),沉默NLRP3炎性小體可以抑制卵巢癌對順鉑的耐藥性[37].
NLRP3炎性小體被證實主要表達在上皮細胞、單核細胞、粒細胞和樹突狀細胞等[8].NLRP3炎性小體在正常腦組織中表達較少, 主要位于小膠質(zhì)細胞中[38],而在膠質(zhì)瘤中表達顯著增加[39].基于TCGA 和GTEx數(shù)據(jù)庫,發(fā)現(xiàn)膠質(zhì)母細胞瘤組織中NOD1、NOD2、NLRC4、NLRC5和NLRX1的mRNA 表達水平顯著高于正常腦組織[40].NLRC4在膠質(zhì)瘤中顯著高于正常腦組織[41].NLRC5主要表達于構(gòu)成血腦屏障的細胞,包括內(nèi)皮細胞、星形膠質(zhì)細胞、周細胞[42]. Vijayan等[43]發(fā)現(xiàn)NLRC5作為MHC I類基因的轉(zhuǎn)錄調(diào)節(jié)因子被觀察到在細胞核的定位.因此明確炎性小體的表達定位有重要意義.
炎性小體可以作為膠質(zhì)瘤分級的標志物.樊明德等[39]做了NLRP3在膠質(zhì)瘤中的免疫組化,結(jié)果顯示高級別比低級別膠質(zhì)瘤NLRP3陽性表達增多,并且在高級別膠質(zhì)瘤中構(gòu)成炎性小體的其他蛋白NLRP3、ASC、IL-1β 和caspase-1的表達水平均升高[44],說明NLRP3的表達與腦膠質(zhì)瘤惡性程度呈正相關(guān).另外,Han等[40]研究發(fā)現(xiàn)膠質(zhì)母細胞瘤樣本中NOD5蛋白的表達顯著高于世界衛(wèi)生組織1~3級膠質(zhì)瘤樣本.NOD1的表達水平與膠質(zhì)瘤分級呈正相關(guān).
炎性小體NLRC4、NLRC5等可以作為膠質(zhì)瘤預(yù)后的標志物.NLRC4炎性小體在膠質(zhì)瘤中的作用于2019年首次被描述.Lim等[41]應(yīng)用TCGA數(shù)據(jù)比較了NLRP3和NLRC4的表達水平與生存期的關(guān)系,Kaplan-Meier生存曲線顯示:NLRC4低表達的膠質(zhì)瘤患者總生存期高于高表達NLRC4的膠質(zhì)瘤患者,而NLRP3的表達與總生存期無顯著相關(guān)性.證實NLRC4炎性小體的上調(diào)是膠質(zhì)瘤患者預(yù)后差的原因之一.NLRC5是一種干擾素(IFN)相關(guān)基因,已被證明與膠質(zhì)母細胞瘤患者的總生存期有關(guān)[45].Han等[40]研究發(fā)現(xiàn)NOD1是膠質(zhì)母細胞瘤患者的獨立預(yù)后標志物,并且發(fā)現(xiàn)NOD1高表達預(yù)示著人類膠質(zhì)瘤患者的預(yù)后不良.
4炎性小體在膠質(zhì)瘤中的功能
4.1炎性小體調(diào)控膠質(zhì)瘤的生物學行為
研究證實炎性小體調(diào)控膠質(zhì)瘤的生物學行為.殷小鳳等[46]發(fā)現(xiàn)NLRP3具有抑制膠質(zhì)瘤細胞凋亡、促進其增殖、遷移與侵襲的作用,并且NLPR3炎性小體可增加血腦屏障(BBB)損傷,引起腦水腫和出血,促進神經(jīng)元死亡[47].NLRP3沉默抑制膠質(zhì)瘤細胞的生長和侵襲,是通過IL-1β的降低和NF-κB的抑制完成的[48].NLRP3沉默和NF-κB阻斷均可抑制IL-1β升高的膠質(zhì)瘤細胞增殖和侵襲能力[49],已經(jīng)證實NLRP3通過IL-1β/ NF-κB信號通路影響膠質(zhì)瘤的進展.應(yīng)用NF-κB選擇性抑制劑BAY 11-7821對膠質(zhì)瘤細胞進行處理[50],下調(diào)了NLRP3蛋白和IL-1β、IL-18的水平,促進了膠質(zhì)瘤細胞的凋亡和自噬.抑制NF-κB激活自噬,導致自噬細胞死亡,抑制膠質(zhì)瘤細胞增殖、遷移和侵襲.
下調(diào)NLRC5轉(zhuǎn)錄激活,Wnt信號通路的作用被抑制,膠質(zhì)瘤細胞的增殖、遷移和侵襲能力減弱[51].NLRP6是預(yù)防結(jié)腸炎相關(guān)腫瘤發(fā)生的重要保護因子.Wang等[52]發(fā)現(xiàn)NLRP6作為胃癌的負調(diào)節(jié)因子起作用,NLRP6通過阻止細胞從G1期到S期的轉(zhuǎn)變,在體外和體內(nèi)顯著抑制胃癌細胞增殖.在膠質(zhì)瘤中有研究表明,SP1轉(zhuǎn)錄激活NLRP6炎性小體,并誘導膠質(zhì)瘤細胞的惡性發(fā)展、免疫逃避和放射抗性[53].SP1和NLRP6可以作為控制膠質(zhì)瘤的候選靶點.
4.2炎性小體通過焦亡途徑調(diào)控膠質(zhì)瘤生長
細胞焦亡(pyroptosis)是一種炎癥和程序性細胞死亡模式,依賴caspase-1發(fā)揮作用,并伴有大量促炎因子的釋放,焦亡激活免疫反應(yīng)可以影響腫瘤的發(fā)生與發(fā)展,表現(xiàn)細胞持續(xù)膨脹直至外膜完全破裂,排出細胞內(nèi)容物[54],導致細胞因子的釋放和炎癥反應(yīng)級聯(lián)的激活,這是一種重要的自然免疫反應(yīng),對抵抗感染至關(guān)重要.在膠質(zhì)瘤中NLRP3炎性小體激活誘導的細胞焦亡既可以促進腫瘤的生長,又可以通過藥物的作用抑制腫瘤的增殖[55],但這種雙重作用機制還有待進一步深入研究.
NLRP3炎性小體可以通過焦亡途徑調(diào)控腫瘤生長[56].HIF-1α過表達促進膠質(zhì)瘤細胞焦亡,并且HIF-1α過表達后TNF-α、IL-10和IL-1β表達水平均明顯升高,證實HIF-1α過表達可以激活NLRP3-caspase-1-GSDMD的細胞焦亡途徑[57].Feng等[58]開發(fā)了與焦亡相關(guān)的lncRNA標記,用于膠質(zhì)瘤個體總生存期(overall survival,OS)預(yù)測,COX10-AS1在膠質(zhì)瘤患者中與預(yù)后不良相關(guān),敲除COX10-AS1通過NLRP3和caspase-1促進膠質(zhì)瘤細胞焦亡.
Yang等[59]研究發(fā)現(xiàn)NLRP3炎性小體通過藥物的作用也可抑制膠質(zhì)瘤的惡性進展.杜洋等[60]證實海星皂苷面包海星3(culcita novaeguineae-3,CN-3)通過激活NLRP3/GSDMD經(jīng)典焦亡信號通路導致膠質(zhì)瘤細胞焦亡,抑制膠質(zhì)瘤細胞的生長.與上一種情況不同的是,Wu等[61]對異補骨脂查耳酮(isobavachalcone,IBC)的研究發(fā)現(xiàn),IBC以劑量依賴性方式下調(diào)了NF-κB、NLRP3炎性小體相關(guān)蛋白(NLRP3、ASC、半胱天冬酶-18和GSDMD)和下游焦亡效應(yīng)子(IL-18和IL-1β),通過緩解膠質(zhì)瘤中NLRP3炎性小體誘導細胞焦亡了抑制腫瘤生長的.
4.3炎性小體在膠質(zhì)瘤中的免疫調(diào)控
腫瘤免疫微環(huán)境與炎性小體的調(diào)控在膠質(zhì)瘤治療中有重要意義.NOD1表達與CD8+ T淋巴細胞浸潤呈負相關(guān),并與樹突狀細胞(dendritic cell,DC)和CD4+ T細胞浸潤呈正相關(guān)[40].在膠質(zhì)瘤中,炎性小體可以作用于腫瘤相關(guān)巨噬細胞(tumour-associated macrophages,TAM)發(fā)揮作用.Liang等[62]在膠質(zhì)母細胞瘤中發(fā)現(xiàn)NLRP3表達較高的患者有較高的TAM 浸潤,當癌細胞與TAM共培養(yǎng)時,發(fā)現(xiàn)NLRP3、caspase-1和IL-1β的表達顯著上調(diào),并且炎性小體抑制與PD-L1阻斷聯(lián)合處理有效抑制了TAM浸潤及其M2亞型極化.高遷移率族蛋白l(high-mobility group box 1,HMGBl)通過激活炎性小體促使巨噬細胞的M1樣表型極化. RAGE在TAMs中充當HMGB1的受體,應(yīng)用NLRP3抑制劑CY-09培養(yǎng)THP1細胞, 通過RAGE-NFκB-NLRP3炎性小體途徑,HMGB1增強了TAMs的M1樣極化[63].
NLRP3炎性小體促進腫瘤免疫抑制微環(huán)境的形成.Kim等[64]研究發(fā)現(xiàn),在肺癌NR1D1缺陷的腫瘤微環(huán)境中,NLRP3炎性小體的激活在肺癌的發(fā)展和上皮間質(zhì)轉(zhuǎn)換中起非常關(guān)鍵的作用. NLRP3促進腫瘤CD4+T細胞亞群的分化[65],刺激髓源性抑制細胞和TAM 的浸潤[66].IL-1β 是NLRP3炎性小體活化的代表性標志物[67], NLRP3炎性小體激活后促使caspase-1活化,產(chǎn)生具有生物活性的IL-1β且釋放到細胞外. IL-1β通過促進內(nèi)皮前體細胞的成熟和管狀結(jié)構(gòu)的形成以及血管內(nèi)皮生長因子(VEGF)來誘導血管生成[68] .IL-1β在膠質(zhì)瘤中可能是抑制NLRP3炎性小體激活的靶點之一.開發(fā)IL-1β 中和抗體與IL-1β結(jié)合蛋白的靶向化合物對于膠質(zhì)瘤的治療有一定作用.
5基于炎性小體的治療策略
炎性小體受體蛋白、caspase-1和促炎細胞因子的藥理學抑制可能有助于膠質(zhì)瘤的治療.Liu等[69]研究表明,GSDMD蛋白的表達在替莫唑胺(TMZ)處理的膠質(zhì)瘤細胞中明顯升高.敲低GSDMD表達顯著降低了焦亡,降低了IL-1β和LDH的表達.具有高GSDMD表達的膠質(zhì)瘤細胞可能對化療藥物的敏感性增加,耐藥性降低.基于炎性小體激活機制中的GSDMD進行靶點研究,對于膠質(zhì)瘤的化療耐藥有潛在價值.
抑制caspase-1、IL-18、IL-1β 以及NLRP3蛋白的合成是目前基于炎性小體的常見的抗腫瘤治療策略.Tong等[70]發(fā)現(xiàn)小檗堿可能作為一種有效的抗腫瘤藥物用于膠質(zhì)瘤治療,其治療顯著減少了膠質(zhì)瘤中IL-18和IL-1β 的產(chǎn)生并降低腫瘤細胞遷移速率,且通過ERK1/2信號傳導通路抑制caspase-1,促進了細胞死亡.有研究[71]發(fā)現(xiàn),β-羥基丁酸降低了具有生物活性的IL-1β 和活化的caspase-1的水平,抑制NF-κB、STAT3信號通路,通過抑制NLRP3炎性小體活化來抑制膠質(zhì)瘤的遷移.通過篩選已知靶化合物庫,研究者確定化合物WP1066是一種被NLRP3炎性小體激動劑誘導的巨噬細胞死亡的抑制劑, WP1066通過抑制IL-1β 的釋放誘導了人類膠質(zhì)瘤A172和T98G細胞的死亡.機制上證明了WP1066誘導的巨噬細胞死亡不依賴于其對JAK-STAT3信號傳導的影響[72]. 因此,NLRP3炎性小體是控制IL-1β產(chǎn)生的一個有潛力的藥物靶點.另外,文獻[73]報道,硒化咪唑并[1,2-a]吡啶衍生物IP-Se-06對p38 MAPK和p-p38表現(xiàn)出顯著的抑制作用,從而抑制膠質(zhì)母細胞瘤細胞中的炎性小體復合蛋白(NLRP3和胱天蛋白酶-1),并通過抑制Akt/mTOR/HIF-1α和ERK1/2信號通路顯示出抗增殖作用. 因此,炎性小體可能是治療膠質(zhì)母細胞瘤潛在的治療靶點.
近期基于炎性小體NLR家族成員CIITA在膠質(zhì)母細胞瘤中免疫治療策略被報道. Celesti等[74]證實GL261-CIITA細胞是一種有效的抗膠質(zhì)母細胞瘤疫苗.由于CIITA驅(qū)動了MHC II類表達和隨后獲得的針對腫瘤特異性CD4+Th細胞的替代抗原呈遞功能, GL261-CIITA細胞在體內(nèi)刺激抗腫瘤免疫反應(yīng).通過在右腦半球注射GL261-CIITA細胞接種的小鼠強烈排斥在對側(cè)腦半球注射的親本GL261腫瘤生長,這不僅表明接種疫苗后獲得了抗腫瘤免疫記憶,而且表明免疫T細胞有能力在大腦內(nèi)遷移,克服血腦屏障.這種新型疫苗免疫治療策略在膠質(zhì)瘤的臨床治療中具有潛在應(yīng)用的可行性.
6小結(jié)與展望
炎性小體與膠質(zhì)瘤的發(fā)生、發(fā)展有密切關(guān)系.迄今為止,通過研究已經(jīng)逐步了解到炎性小體的構(gòu)成、激活機制及對膠質(zhì)瘤生物學行為的影響.已證實炎性小體與膠質(zhì)瘤惡性程度有關(guān),可以促進膠質(zhì)瘤細胞增殖、侵襲、焦亡等.關(guān)于炎性小體在膠質(zhì)瘤中的研究還有許多未知的問題亟待解決,如在機制研究方面,炎性小體誘導的細胞焦亡的雙重作用機制尚需深入闡明. 未來研發(fā)炎性小體及其相關(guān)通路的抑制劑或激動劑,研發(fā)靶向炎性小體的抗腫瘤藥物,改善臨床膠質(zhì)瘤患者的預(yù)后, 必將推動膠質(zhì)瘤轉(zhuǎn)化醫(yī)學研究及發(fā)展.
參考文獻:
[1]YI K K, ZHAN Q, WANG Q X, et al. PTRF/cavin-1 remodels phospholipid metabolism to promote tumor proliferation and suppress immune responses in glioblastoma by stabilizing cPLA2[J]. Neuro-oncology, 2021, 23(3): 387-399. DOI: 10.1093/neuonc/noaa255.
[2]ZHANG R, SONG Q, LIN X,et al. GSDMA at the crossroads between pyroptosis and tumor immune evasion in glioma[J].Biochem Biophys Res Commun,2023,686:149181. DOI:10.1016/j.bbrc.2023.149181.
[3]MARTINON F, BURNS K, TSCHOPP J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2): 417-426. DOI: 10.1016/s1097-2765(02)00599-3.
[4]LIU S W, SONG W J, MA G K, et al. Pyroptosis and its role in cancer[J]. World J Clin Cases, 2023, 11(11): 2386-2395. DOI: 10.12998/wjcc.v11.i11.2386.
[5]SUNDARAM B, KANNEGANTI T D. Advances in understanding activation and function of the NLRC4 inflammasome[J]. Int J Mol Sci, 2021, 22(3): 1048. DOI: 10.3390/ijms22031048.
[6]王文連,林欣,胡俊鋒.炎性小體在肺部疾病中的作用[J].中國呼吸與危重監(jiān)護雜志, 2019,18(4): 404-408. DOI: 10.7507/1671-6205.201805056.
[7]王變麗,王天怡,張露丹,等.炎性小體及細胞焦亡在腸道穩(wěn)態(tài)中的研究進展[J]. 中國免疫學雜志, 2023, 39(6): 1337-1341. DOI: 10.3969/j.issn.1000-484X.2023.06.046.
[8]耿晉,朱永杰,耿蘊琦,等.炎性小體及其與結(jié)直腸癌關(guān)系的研究進展[J].軍事醫(yī)學, 2018, 42(6): 471-475. DOI:10.7644/j.issn.1674-9960.2018.06.016.
[9]CHEW Z H, CUI J Z, SACHAPHIBULKIJ K, et al. Macrophage IL-1β contributes to tumorigenesis through paracrine AIM2 inflammasome activation in the tumor microenvironment[J]. Front Immunol, 2023, 14: 1211730. DOI: 10.3389/fimmu.2023.1211730.
[10]BURDETTE B E, ESPARZA A N, ZHU H,et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021;11(9):2768-2782. DOI:10.1016/j.apsb.2021.02.006
[11]CHRISTGEN S, PLACE D E, KANNEGANTI T D. Toward targeting inflammasomes: insights into their regulation and activation[J]. Cell Res, 2020, 30(4): 315-327. DOI: 10.1038/s41422-020-0295-8.
[12]ROSS C, CHAN A H, VON PEIN J B, et al. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes[J]. Annu Rev Immunol, 2022, 40: 249-269. DOI: 10.1146/annurev-immunol-101220-030653.
[13]CHAUHAN D, VANDE WALLE L, LAMKANFI M. Therapeutic modulation of inflammasome pathways[J]. Immunol Rev, 2020, 297(1): 123-138. DOI: 10.1111/imr.12908.
[14]SHI J J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665. DOI: 10.1038/nature15514.
[15]TAPIA-ABELLN A, ANGOSTO-BAZARRA D, ALARCN-VILA C, et al. Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation[J]. Sci Adv, 2021, 7(38): eabf4468. DOI: 10.1126/sciadv.abf4468.
[16]PENG L C, TIAN H L, LU Y, et al. Chicken cathelicidin-2 promotes NLRP3 inflammasome activation in macrophages[J]. Vet Res, 2022, 53(1): 69. DOI: 10.1186/s13567-022-01083-4.
[17]MURAKAMI T, OCKINGER J, YU J J, et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome[J]. Proc Natl Acad Sci USA, 2012, 109(28): 11282-11287. DOI: 10.1073/pnas.1117765109.
[18]LIU Q Y, WANG D D, YANG X D, et al. The mechanosensitive ion channel PIEZO1 in intestinal epithelial cells mediates inflammation through the NOD-like receptor 3 pathway in Crohn’s disease[J]. Inflamm Bowel Dis, 2023, 29(1): 103-115. DOI: 10.1093/ibd/izac152.
[19]ZHANG Z, XIE S J, QIAN J, et al. Targeting macrophagic PIM-1 alleviates osteoarthritis by inhibiting NLRP3 inflammasome activation via suppressing mitochondrial ROS/Cl- efflux signaling pathway[J]. J Transl Med, 2023, 21(1): 452. DOI: 10.1186/s12967-023-04313-1.
[20]GREEN J P, YU S, MARTN-SNCHEZ F, et al. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming[J]. Proc Natl Acad Sci USA, 2018, 115(40): E9371-E9380. DOI: 10.1073/pnas.1812744115.
[21]CHEN F, FENG L, ZHENG Y L, et al. 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) induces mitochondrial dysfunction and related liver injury via eliciting miR-34a-5p-mediated mitophagy impairment[J]. Environ Pollut, 2020, 258: 113693. DOI: 10.1016/j.envpol.2019.113693.
[22]AN C, SUN F, LIU C, et al. IQGAP1 promotes mitochondrial damage and activation of the mtDNA sensor cGAS-STING pathway to induce endothelial cell pyroptosis leading to atherosclerosis[J]. Int Immunopharmacol, 2023, 123: 110795. DOI: 10.1016/j.intimp.2023.110795.
[23]YANG B W, WANG Y T, FANG C Y, et al. Polybrominated diphenyl ether quinone exposure leads to ROS-driven lysosomal damage, mitochondrial dysfunction and NLRP3 inflammasome activation[J]. Environ Pollut, 2022, 311: 119846. DOI: 10.1016/j.envpol.2022.119846.
[24]HOU Y T, HE H B, MA M, et al. Apilimod activates the NLRP3 inflammasome through lysosome-mediated mitochondrial damage[J]. Front Immunol, 2023, 14: 1128700. DOI: 10.3389/fimmu.2023.1128700.
[25]NEUWIRT E, MAGNANI G, C′IKOVI T, et al. Tyrosine kinase inhibitors can activate the NLRP3 inflammasome in myeloid cells through lysosomal damage and cell lysis[J]. Sci Signal, 2023, 16(768): eabh1083. DOI: 10.1126/scisignal.abh1083.
[26]WANG W Q, CHANG R, WANG Y, et al. Mitophagy-dependent mitochondrial ROS mediates 2, 5-hexanedione-induced NLRP3 inflammasome activation in BV2 microglia[J]. Neurotoxicology, 2023, 99: 50-58. DOI: 10.1016/j.neuro.2023.09.008.
[27]GAI Y, BAI C, ZHANG W, et al. Nootkatone attenuates airway inflammation in asthmatic mice through repressing ROS-induced NLRP3 inflammasome activation[J]. Biochem Cell Biol, 2023, 101(6): 513-522. DOI: 10.1139/bcb-2023-0009.
[28]SU W J, LI J M, ZHANG T, et al. Microglial NLRP3 inflammasome activation mediates diabetes-induced depression-like behavior via triggering neuroinflammation[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 126: 110796. DOI: 10.1016/j.pnpbp.2023.110796.
[29]ROSA C P, BELO T C A, SANTOS N C M, et al. Reactive oxygen species trigger inflammasome activation after intracellular microbial interaction[J]. Life Sci, 2023, 331: 122076. DOI: 10.1016/j.lfs.2023.122076.
[30]TURTON K, PARKS H J, ZARODKIEWICZ P, et al. The Achromobacter type 3 secretion system drives pyroptosis and immunopathology via independent activation of NLRC4 and NLRP3 inflammasomes[J]. Cell Rep, 2023, 42(8): 113012. DOI: 10.1016/j.celrep.2023.113012.
[31]KOIZUMI Y, TOMA C, HIGA N, et al. Inflammasome activation via intracellular NLRs triggered by bacterial infection[J]. Cell Microbiol, 2012, 14(2): 149-154. DOI: 10.1111/j.1462-5822.2011.01707.x.
[32]TIBBLE R, YONEMITSU M A, MITCHELL P S. Stalled but not forgotten: bacterial exotoxins inhibit translation to activate NLRP1[J]. J Exp Med, 2023, 220(10): e20231160. DOI: 10.1084/jem.20231160.
[33]ZHENG D P, KERN L, ELINAV E. The NLRP6 inflammasome[J]. Immunology, 2021, 162(3): 281-289. DOI: 10.1111/imm.13293.
[34]ZHOU Y, SHAH S Z, YANG L F, et al. Virulent mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages[J]. PLoS One, 2016, 11(4): e0152853. DOI: 10.1371/journal.pone.0152853.
[35]JING X, YUN Y H, JI X, et al. Pyroptosis and inflammasome-related genes- NLRP3, NLRC4 and NLRP7 polymorphisms were associated with risk of lung cancer[J]. Pharmgenomics Pers Med, 2023, 16: 795-804. DOI: 10.2147/PGPM.S424326.
[36]CASILI G, SCUDERI S A, LANZA M, et al. Therapeutic potential of BAY-117082, a selective NLRP3 inflammasome inhibitor, on metastatic evolution in human oral squamous cell carcinoma (OSCC)[J]. Cancers, 2023, 15(10): 2796. DOI: 10.3390/cancers15102796.
[37]LI W J, ZHAO X B, ZHANG R J, et al. Silencing of NLRP3 sensitizes chemoresistant ovarian cancer cells to cisplatin[J]. Mediators Inflamm, 2023, 2023: 7700673. DOI: 10.1155/2023/7700673.
[38]LIU H D, LI W, CHEN Z R, et al. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model[J]. Neurochem Res, 2013, 38(10): 2072-2083. DOI: 10.1007/s11064-013-1115-z.
[39]樊明德,張源,苗保旺,等.Nod樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3在人腦膠質(zhì)瘤中的表達[J].山東大學學報(醫(yī)學版), 2013, 51(4): 51-54. DOI: 10.6040/j.issn.1671-7554.2013.04.012.
[40]HAN S Y, ZHANG Z M, MA W B, et al. Nucleotide-binding oligomerization domain (NOD)-like receptor subfamily C (NLRC) as a prognostic biomarker for glioblastoma multiforme linked to tumor microenvironment: a bioinformatics, immunohistochemistry, and machine learning-based study[J]. J Inflamm Res, 2023, 16: 523-537. DOI: 10.2147/JIR.S397305.
[41]LIM J, KIM M J, PARK Y, et al. Upregulation of the NLRC4 inflammasome contributes to poor prognosis in glioma patients[J]. Sci Rep, 2019, 9(1): 7895. DOI: 10.1038/s41598-019-44261-9.
[42]ZHANG L, JIAO C, LIU L J, et al. NLRC5: a potential target for central nervous system disorders[J]. Front Immunol, 2021, 12: 704989. DOI: 10.3389/fimmu.2021.704989.
[43]VIJAYAN S, SIDIQ T, YOUSUF S, et al. Class I transactivator, NLRC5: a central player in the MHC class I pathway and cancer immune surveillance[J]. Immunogenetics, 2019,71(3):273-282.DOI:10.1007/s00251-019-01106-z.
[44]YIN X F, ZHANG Q, CHEN Z Y, et al. NLRP3 in human glioma is correlated with increased WHO grade, and regulates cellular proliferation, apoptosis and metastasis via epithelial-mesenchymal transition and the PTEN/AKT signaling pathway[J]. Int J Oncol, 2018, 53(3): 973-986. DOI: 10.3892/ijo.2018.4480.
[45]ZHU C, ZOU C Y, GUAN G F, et al. Development and validation of an interferon signature predicting prognosis and treatment response for glioblastoma[J]. Oncoimmunology, 2019, 8(9): e1621677. DOI: 10.1080/2162402X.2019.1621677.
[46]殷小鳳.NLRP3在人膠質(zhì)瘤中的表達及其對膠質(zhì)瘤細胞生物學行為的作用研究[D].廣州:南方醫(yī)科大學, 2017
[47]BELLUT M, PAPP L, BIEBER M, et al. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke[J]. Cell Death Dis, 2021, 13(1): 20. DOI: 10.1038/s41419-021-04379-z.
[48]XUE L, LU B, GAO B, et al. NLRP3 promotes glioma cell proliferation and invasion via the interleukin-1β/NF-κB p65 signals[J].Oncol Res,2019;27(5):557-564. DOI:10.3727/096504018X15264647024196.
[49]XUE L P, LU B, GAO B B, et al. NLRP3 promotes glioma cell proliferation and invasion via the interleukin-1β/NF-κB p65 signals[J]. Oncol Res, 2019, 27(5): 557-564. DOI: 10.3727/096504018X15264647024196.
[50]XIE K, ZHOU D M, FANG C, et al. Inhibition of NF-κB activation by BAY 11-7821 suppresses the proliferation and inflammation of glioma cells through inducing autophagy[J]. Transl Cancer Res TCR, 2022, 11(2): 403-413. DOI: 10.21037/tcr-21-2914.
[51]ZONG Z Q, SONG Y C, XUE Y X, et al. Knockdown of LncRNA SCAMP1 suppressed malignant biological behaviours of glioma cells via modulating miR-499a-5p/LMX1A/NLRC5 pathway[J]. J Cell Mol Med, 2019, 23(8): 5048-5062. DOI: 10.1111/jcmm.14362.
[52]WANG H B, XU G X, HUANG Z J, et al. LRP6 targeting suppresses gastric tumorigenesis via P14ARF-Mdm2-p53-dependent cellular senescence[J]. Oncotarget, 2017, 8(67): 111597-111607. DOI: 10.18632/oncotarget.22876.
[53]YU Y H, CAO F, XIONG Y Q, et al. SP1 transcriptionally activates NLRP6 inflammasome and induces immune evasion and radioresistance in glioma cells[J]. Int Immunopharmacol, 2021, 98: 107858. DOI: 10.1016/j.intimp.2021.107858.
[54]WAN S C, ZHANG G H, LIU R C, et al. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment[J]. Cell Commun Signal, 2023, 21(1): 115. DOI: 10.1186/s12964-023-01108-1.
[55]TANG N, ZHU Y, YU J. Xihuang pill facilitates glioma cell pyroptosis via the POU4F1/STAT3 axis[J]. Funct Integr Genomics,2023;23(4):334. DOI:10.1007/s10142-023-01263-1.
[56]ZHAO X, CHEN C, HAN W, et al. EEBR induces Caspase-1-dependent pyroptosis through the NF-κB/NLRP3 signalling cascade in non-small cell lung cancer[J].J Cell Mol Med,2024;28(3):e18094. DOI:10.1111/jcmm.18094.
[57]陳健,郭志娟,裴美娟,等.HIF-1α對人腦膠質(zhì)瘤SHG44細胞惡性度的影響及其機制[J].武警醫(yī)學, 2022, 33(6): 484-488. DOI: 10.3969/j.issn.1004-3594.2022.06.007.
[58]FENG X Q, CHEN Y H, LIU X Y, et al. Construction and verification of a novel pyroptosis-related lncRNA signature associated with immune landscape in gliomas[J]. J Oncol, 2022, 2022: 7043431. DOI: 10.1155/2022/7043431.
[59]YANG S, XIE C, GUO T, et al. Simvastatin inhibits tumor growth and migration by mediating caspase-1-dependent pyroptosis in glioblastoma multiforme[J].World Neurosurg,2022;165:e12-e21. DOI:10.1016/j.wneu.2022.03.089
[60]杜洋,邱鵬程,王媛媛,等.海星皂苷CN-3激活NLRP3/Caspase-1/GSDMD信號通路誘導膠質(zhì)瘤細胞焦亡的作用[J].環(huán)球中醫(yī)藥, 2022, 15(11): 2022-2029. DOI: 10.3969/j.issn.1674-1749.2022.11.006.
[61]WU Y S, CHANG J, GE J J, et al. Isobavachalcone’s alleviation of pyroptosis contributes to enhanced apoptosis in glioblastoma: possible involvement of NLRP3[J]. Mol Neurobiol, 2022, 59(11): 6934-6955. DOI: 10.1007/s12035-022-03010-2.
[62]LIANG Q Y, WU J Q, ZHAO X, et al. Establishment of tumor inflammasome clusters with distinct immunogenomic landscape aids immunotherapy[J]. Theranostics, 2021, 11(20): 9884-9903. DOI: 10.7150/thno.63202.
[63]LI Z, FU W J, CHEN X Q, et al. Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization[J]. J Exp Clin Cancer Res, 2022, 41(1): 74. DOI: 10.1186/s13046-022-02291-8.
[64]KIM S M, JEON Y, JANG J Y, et al. NR1D1 deficiency in the tumor microenvironment promotes lung tumor development by activating the NLRP3 inflammasome[J]. Cell Death Discov, 2023, 9(1): 278. DOI: 10.1038/s41420-023-01554-3.
[65]DALEY D, MANI V R, MOHAN N, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma[J].J Exp Med, 2017;214(6):1711-1724. DOI:10.1084/jem.20161707.
[66]TENGESDAL I W, MENON D R, OSBORNE D G, et al. Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion[J]. Proc Natl Acad Sci USA, 2021;118(10):e2000915118. DOI:10.1073/pnas.2000915118.
[67]CHEN Z, GIOTTI B, KALUZOVA M, et al. A paracrine circuit of IL-1β/IL-1R1 between myeloid and tumor cells drives genotype-dependent glioblastoma progression[J].J Clin Invest, 2023;133(22):e163802. DOI:10.1172/JCI163802.
[68]GELFO V, ROMANIELLO D, MAZZESCHI M, et al. Roles of IL-1 in cancer: from tumor progression to resistance to targeted therapies[J].Int J Mol Sci, 2020;21(17):6009. DOI:10.3390/ijms21176009.
[69]LIU J H, GAO L, ZHU X N, et al. Gasdermin D is a novel prognostic biomarker and relates to TMZ response in glioblastoma[J]. Cancers, 2021, 13(22): 5620. DOI: 10.3390/cancers13225620.
[70]TONG L, XIE C C, WEI Y F, et al. Antitumor effects of berberine on gliomas via inactivation of caspase-1-mediated IL-1β and IL-18 release[J]. Front Oncol, 2019, 9: 364. DOI: 10.3389/fonc.2019.00364.
[71]SHANG S, WANG L L, ZHANG Y L, et al. The beta-hydroxybutyrate suppresses the migration of glioma cells by inhibition of NLRP3 inflammasome[J]. Cell Mol Neurobiol, 2018, 38(8): 1479-1489. DOI: 10.1007/s10571-018-0617-2.
[72]HONDA S, SADATOMI D, YAMAMURA Y, et al. WP1066 suppresses macrophage cell death induced by inflammasome agonists independently of its inhibitory effect on STAT3[J]. Cancer Sci, 2017, 108(3): 520-527. DOI: 10.1111/cas.13154.
[73]DOS SANTOS DC, RAFIQUE J, SABA S, et al. IP-Se-06, a selenylated imidazo[1, 2- a]pyridine, modulates intracellular redox state and causes akt/mTOR/HIF-1 α and MAPK signaling inhibition, promoting antiproliferative effect and apoptosis in glioblastoma cells[J]. Oxid Med Cell Longev, 2022, 2022: 3710449. DOI: 10.1155/2022/3710449.
[74]CELESTI F, GATTA A, SHALLAK M, et al. Protective anti-tumor vaccination against glioblastoma expressing the MHC class II transactivator CIITA[J]. Front Immunol, 2023, 14: 1133177. DOI: 10.3389/fimmu.2023.1133177.
(責任編輯:趙藏賞)