摘要:【目的】一維纖維材料因?yàn)榫哂写蟊缺砻娣e、高電導(dǎo)率、連續(xù)的電子傳輸路徑和優(yōu)異的結(jié)構(gòu)穩(wěn)定性,是一種理想的電極材料。纖維材料可以作為載體來(lái)耦合金屬催化劑,也可以直接用作催化活性物質(zhì);通過(guò)對(duì)纖維和催化劑形貌、結(jié)構(gòu)、以及復(fù)合方式的調(diào)控,可以滿足不同催化反應(yīng)的需求?!狙芯楷F(xiàn)狀】纖維基電催化材料主要包括用作催化活性的支撐性纖維和含有本征活性位點(diǎn)的電催化纖維;當(dāng)纖維作為催化活性物質(zhì)時(shí),主要有無(wú)機(jī)纖維、雜原子摻雜碳纖維和單原子錨定纖維等結(jié)構(gòu);當(dāng)纖維作為催化劑載體時(shí),金屬催化劑通過(guò)嵌入或負(fù)載等方式與纖維載體復(fù)合,進(jìn)而調(diào)控纖維基電催化劑的催化性能;不同的纖維基電催化劑可以滿足多種催化反應(yīng)的需求?!菊雇繛榱颂剿髡鎸?shí)反應(yīng)條件下活性物質(zhì)的結(jié)構(gòu)演變,原位實(shí)時(shí)表征技術(shù)和構(gòu)建自支撐電極將是纖維基電催化劑的未來(lái)發(fā)展方向。
關(guān)鍵詞:纖維;納米復(fù)合材料;結(jié)構(gòu)設(shè)計(jì);電催化
中圖分類號(hào):TB4;TQ340文獻(xiàn)標(biāo)志碼:A
引用格式:
楊建平,張方舟,陳俊.纖維基電催化材料的結(jié)構(gòu)設(shè)計(jì)及應(yīng)用[J].中國(guó)粉體技術(shù),2024,30(4):161-170.
YANG Jianping,ZHANGFangzhou,CHENJun.Structural design and application of fiber-based electrocatalytic materials[J].China Powder Science and Technology,2024,30(4):161-170.
化石燃料的快速消耗和相關(guān)的環(huán)境問(wèn)題引發(fā)了人們對(duì)高效能源轉(zhuǎn)換技術(shù)的關(guān)注。電催化材料在加速電化學(xué)反應(yīng)方面發(fā)揮著重要作用,包括析氫反應(yīng)(hydrogen evolution reaction,HER)、析氧反應(yīng)(oxygen evolution reaction,OER)、氧還原反應(yīng)(oxygen reduction reaction,ORR)、二氧化碳還原反應(yīng)(CO?reduction reaction,CO?RR)和氮還原反應(yīng)(nitrate reduction reaction,NRR)在內(nèi)的關(guān)鍵反應(yīng)都需要具有高活性、選擇性和耐久性優(yōu)異的電催化材料-5。近年來(lái),單原子、金屬及化合物(如氧化物、氮化物、硫化物、磷化物、合金等)已被廣泛用作高效電催化劑的電極材料。除了活性物質(zhì)的選擇外,對(duì)于高度依賴于化學(xué)和電子結(jié)構(gòu)的復(fù)雜多步或多產(chǎn)物電催化反應(yīng),催化劑的結(jié)構(gòu)調(diào)節(jié)也十分重要11-13。
纖維材料具有比表面積大、力學(xué)強(qiáng)度高、電導(dǎo)率大、化學(xué)成分可調(diào)和結(jié)構(gòu)穩(wěn)定等獨(dú)特特征,被認(rèn)為是一種理想的催化劑電極材料。纖維材料既可以作為活性物質(zhì)來(lái)催化電極反應(yīng),也可以充當(dāng)催化劑的負(fù)載模板15。當(dāng)纖維作為活性物質(zhì)時(shí),可以通過(guò)靜電紡絲制備具有催化活性的無(wú)機(jī)纖維(如TiO?CeO?纖維等)、雜原子(如N、B、S、P、0、F)摻雜碳纖維或者單原子錨定碳纖維16-171;當(dāng)纖維作為催化劑載體時(shí),活性金屬組分以不同的方式與纖維進(jìn)行復(fù)合,如嵌入、負(fù)載等18-20。纖維催化劑的催化性能與活性位點(diǎn)的本征活性與可用活性位點(diǎn)數(shù)有關(guān),前者主要基于增大纖維基質(zhì)的比表面積以暴露大量的催化活性位點(diǎn),例如將纖維的直徑減小到納米級(jí)和構(gòu)建中孔互聯(lián)框架;后者可以通過(guò)形態(tài)工程、尺寸控制、界面改性和催化活性材料的電子結(jié)構(gòu)操縱來(lái)實(shí)現(xiàn)。
近年來(lái),不同類型的纖維材料已經(jīng)廣泛應(yīng)用到各類催化反應(yīng)中。本文中討論纖維基電催化材料的結(jié)構(gòu)設(shè)計(jì)及合成方法,包括構(gòu)建具有活性位點(diǎn)的電催化纖維以及作為催化劑負(fù)載模板的載體纖維,并總結(jié)在電催化領(lǐng)域的最新應(yīng)用。分析纖維結(jié)構(gòu)和性能之間的關(guān)系,討論纖維基電催化材料面臨的挑戰(zhàn)和未來(lái)發(fā)展前景,探索有效的纖維結(jié)構(gòu)設(shè)計(jì)策略,以實(shí)現(xiàn)高效的電催化轉(zhuǎn)化與電合成反應(yīng),為開發(fā)高效且可商業(yè)化的纖維基電催化材料提供參考。
1" 纖維作為催化活性物質(zhì)
纖維直接作為催化活性物質(zhì)可以同時(shí)將納米材料特性(如導(dǎo)電性和催化活性)與一維結(jié)構(gòu)的優(yōu)勢(shì)(大比表面積、互連網(wǎng)絡(luò)和力學(xué)強(qiáng)度)相結(jié)合。設(shè)計(jì)含有本征活性位點(diǎn)的電催化纖維可以有效地避免電催化反應(yīng)中活性顆粒的遷移和溶解。當(dāng)纖維作為催化活性物質(zhì)時(shí),主要有無(wú)機(jī)纖維、雜原子摻雜碳纖維和單原子錨定纖維等結(jié)構(gòu)。
1.1無(wú)機(jī)纖維
具有內(nèi)在催化活性的無(wú)機(jī)纖維是一種良好的催化劑載體材料[21]。無(wú)機(jī)纖維通常是由無(wú)機(jī)前驅(qū)體與聚合物靜電紡絲來(lái)合成的,熱處理過(guò)程可去除聚合物,留下具有催化活性的無(wú)機(jī)纖維。Du等23制備了具有豐富氧空位的Fe?TiO?納米纖維用于將硝酸鹽和亞硝酸鹽還原為氨。合成Fe?TiO?納米纖維(FTO-E)的示意圖如圖1所示。通過(guò)該方法可得到直徑為300~400 nm的均勻和連續(xù)的纖維,具有微小納米顆粒的粗糙表面具有良好的結(jié)晶性,制備過(guò)程中使用的聚乙烯吡咯烷酮(PVP)促進(jìn)了Vos的引入,因?yàn)殡姾梢子趶腜VP的官能團(tuán)轉(zhuǎn)移到金屬離子絡(luò)合物,從而導(dǎo)致表面缺陷的形成。理論計(jì)算證實(shí),鐵原子是硝酸鹽吸附的活性位點(diǎn),反鍵態(tài)的形成有利于電荷轉(zhuǎn)移,從而促進(jìn)硝酸鹽或亞硝酸鹽到氨的轉(zhuǎn)化。
無(wú)機(jī)纖維的結(jié)構(gòu)會(huì)對(duì)活性位點(diǎn)的利用效率和傳質(zhì)產(chǎn)生顯著影響。與實(shí)心纖維相比,中空結(jié)構(gòu)的大比表面積確保了電解質(zhì)和電極表面的有效接觸,提供了豐富的可接近的活性位點(diǎn),從而促進(jìn)了電催化反應(yīng)進(jìn)行。通過(guò)同軸靜電紡絲技術(shù)來(lái)制備中空結(jié)構(gòu)也是一種提升活性位點(diǎn)利用率的有效方法。
1.2雜原子摻雜碳纖維
碳納米纖維具有大的比表面積,可以提供更多的反應(yīng)表面,有助于提高催化效率。此外,碳納米纖維優(yōu)異的導(dǎo)電性對(duì)于電子傳輸非常重要。雜原子摻雜碳纖維是一類新型的非金屬基電催化劑。摻雜劑和碳原子的不同電負(fù)性可以精細(xì)調(diào)諧電子結(jié)構(gòu),從而賦予纖維基體電催化活性[24-26]。研究表明,通過(guò)用更多的電負(fù)性原子(如氮)摻雜,在相鄰的碳原子上產(chǎn)生正電荷密度,有助于氧吸附和電荷轉(zhuǎn)移,從而增強(qiáng)ORR活性[27]。此外,摻雜負(fù)電性較低的原子如硼或磷,也可以促進(jìn)氧分子的吸附和還原。
Liu等通過(guò)在Ar氣氛下電紡聚酰亞胺(polyimide,PI)膜的高溫?zé)峤?,制備了具有大比表面積的柔性納米多孔碳納米纖維膜(NCNF)。NCNF的合成示意圖如圖2所示。所制備的NCNF-1000(在溫度為1000°℃時(shí)熱解)具有高度柔性和力學(xué)強(qiáng)度,這是由于碳化前后沿聚合物主鏈與氧、氮或氫原子相關(guān)的極性相互作用引起。得到NCNF-1000直徑約為300 nm,具有開孔網(wǎng)絡(luò)結(jié)構(gòu),纖維中C、N、O原子均勻分布。NCNF電極具有大比表面積的3D納米多孔碳網(wǎng)絡(luò)結(jié)構(gòu),可以提供短而快的電子(或離子)路徑和豐富的氣體擴(kuò)散通道,在用作液態(tài)鋅-空氣電池的空氣陰極時(shí)顯示出優(yōu)異的性能。
Gao等通過(guò)同軸靜電紡絲技術(shù)和熱解制備了N,P共摻雜的中空碳納米纖維膜(N,P-HCNF)。N,P-HCNF含有多孔網(wǎng)絡(luò)和具有大量邊緣和缺陷的石墨結(jié)構(gòu),C、N、O和P元素在N,P-HCNF中均勻分布。得益于豐富的活性位點(diǎn)、連續(xù)的導(dǎo)電途徑和傳質(zhì)通道等結(jié)構(gòu)特征,N,P-HCNF對(duì)ORR、OER和HER表現(xiàn)出優(yōu)異的三功能電催化活性,優(yōu)于許多其他無(wú)碳金屬材料。最近的研究還報(bào)道了多種雜原子摻雜的碳纖維催化劑,如N-P-F和N-S-F等。由于摻雜原子可組合的范圍廣泛,因此需要進(jìn)一步的理論和實(shí)驗(yàn)研究,來(lái)指導(dǎo)無(wú)金屬纖維催化劑的結(jié)構(gòu)設(shè)計(jì)。
1.3單原子錨定碳纖維
近年來(lái),單原子催化劑(SAC)在電催化領(lǐng)域引起了人們的極大關(guān)注。將金屬納米顆??s小為納米團(tuán)簇甚至單個(gè)原子,可以明顯提高對(duì)電化學(xué)反應(yīng)的催化活性和選擇性。金屬原子在SAC中的高度分散不僅有利于電催化反應(yīng),而且在大規(guī)模應(yīng)用中提高了原子利用率并降低了成本。單個(gè)原子和載體之間的相互作用以及SAC的不飽和配位環(huán)境可以提高電催化性能。由于纖維載體具有高導(dǎo)電性、比表面積大以及連續(xù)的電子傳輸路徑等優(yōu)勢(shì),金屬原子摻雜碳纖維的構(gòu)建為制備高效電催化劑提供了一條新的設(shè)計(jì)路線。
Yang等135通過(guò)靜電紡絲技術(shù)和熱解制備了含有高度暴露的Fe-N?(C)原子活性位點(diǎn)的獨(dú)立柔性CF膜(Fe-SNCFs-NH?),F(xiàn)e-SNCFs-NH?的合成示意圖如圖3所示。靜電紡絲將Fe-Zn-ZIFs嵌入到一維納米纖維中形成相互交織的3D碳膜前體,在碳化處理過(guò)程中Zn快速蒸發(fā),碳骨架中形成大量微孔,F(xiàn)e前體原位熱解并與相鄰的N原子配位生成Fe-N?(C)。進(jìn)一步對(duì)Fe-SNCFs進(jìn)行NH?處理,得到Fe-SNCFs-NH?具有比表面積大、豐富的微孔(中孔)和優(yōu)化的雜原子摻雜。得益于豐富的Fe-N?(C)活性位點(diǎn)和優(yōu)化的局部原子構(gòu)型,F(xiàn)e-SNCFs-NH?催化劑表現(xiàn)出優(yōu)異的ORR活性,優(yōu)于商業(yè)Pt-C和大多數(shù)報(bào)道的M-N(C)催化劑。
除了通過(guò)靜電紡絲來(lái)制備多孔納米纖維,還可以通過(guò)一些后處理方法在纖維表面錨定單原子。Qiao等通過(guò)熱解涂有沸石咪唑骨架(ZIF)的微孔碳纖維合成了原子分散的Fe-N-C電催化劑。采用表面具有豐富的氨基和羥基聚苯胺納米纖維作為載體,在纖維外生長(zhǎng)了Zn,F(xiàn)e-ZIF-8沸石咪唑骨架,在一定量的硫存在下碳化得到FeNC-S-Fe?C-Fe。實(shí)驗(yàn)證明Fe?C-Fe團(tuán)簇和含S的Fe-N-C基體之間的界面處形成的Fe—S鍵作為新型活性位點(diǎn),可以提高雙功能催化劑的氧反應(yīng)活性。密度泛函理論計(jì)算進(jìn)一步證實(shí),F(xiàn)e-N-C體系中原子分散的FeN位點(diǎn)、Fe?C簇和含S位點(diǎn)是反應(yīng)活性物質(zhì),它們的相互作用在催化活性中起著重要作用。
2纖維作為催化劑載體
纖維材料是負(fù)載金屬催化劑的理想模板,比表面積大有利于充分暴露催化劑的活性位點(diǎn),一維結(jié)構(gòu)可以提供連續(xù)的電子傳輸路徑。金屬催化劑與纖維載體之間的協(xié)同作用還可以進(jìn)一步改善催化劑的界面性質(zhì)。催化劑的活性不僅與金屬催化劑的組成、結(jié)構(gòu)和形態(tài)有關(guān),還取決于活性物質(zhì)與纖維載體的復(fù)合方式。金屬催化劑可以通過(guò)嵌入或負(fù)載等方式與纖維載體復(fù)合,進(jìn)而調(diào)控纖維基電催化劑的催化性能,活性物質(zhì)與纖維基體的復(fù)合方式如圖4所示。
2.1嵌入型結(jié)構(gòu)
制備嵌入型結(jié)構(gòu)簡(jiǎn)單且通用的方法是靜電紡絲。通過(guò)將聚合物與金屬鹽或者制備好的納米顆?;旌系玫骄鶆虻募徑z溶液,在一定電壓下進(jìn)行靜電紡絲得到一維纖維結(jié)構(gòu),經(jīng)過(guò)煅燒后,金屬顆粒嵌入在碳纖維的骨架中39。纖維材料作為載體,可以提高活性物質(zhì)的分散性并促進(jìn)快速的電荷轉(zhuǎn)移反應(yīng)。在纖維基質(zhì)中分散良好的納米顆粒能有效減小顆粒之間的界面電阻,增強(qiáng)催化劑的導(dǎo)電性。通過(guò)調(diào)節(jié)紡絲溶液的組成和相應(yīng)的靜電紡絲參數(shù),可以有效地調(diào)節(jié)活性材料的組成、比例和分布,復(fù)合纖維的形貌和結(jié)構(gòu)。
Li等40通過(guò)靜電紡絲策略合成嵌入N摻雜碳納米纖維中的CoFe?O?納米顆粒(CoFe?O?@N-CNFs)。通過(guò)PVP、N,N-二甲基甲酰胺、Co(NO?)?和Fe(NO?)?的混合溶液得到聚合物纖維膜。在隨后的煅燒過(guò)程中,PVP納米纖維碳化為N摻雜的碳納米纖維,Co-Fe硝酸鹽將轉(zhuǎn)化為尖晶石相CoFe?O?納米顆粒,得到的納米纖維具有光滑表面和均勻直徑,并且高度互連形成三維連續(xù)網(wǎng)絡(luò),CoFe?O?納米顆粒均勻地分散在納米纖維載體中而沒(méi)有發(fā)生團(tuán)聚。得益于CoFe?O?和N摻雜碳納米纖維的一維結(jié)構(gòu)特征和協(xié)同作用,合成的CoFe?O?@N-CNFs與單組分對(duì)應(yīng)物(純CoFe?O?和N-CNFs)、商業(yè)RuO?電催化劑相比,在濃度為0.1 mol/L的KOH介質(zhì)中表現(xiàn)出優(yōu)異的OER性能。CoFe?O?@N-CNFs的合成示意圖及掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)圖像如圖5所示。
靜電紡絲還是一種將納米顆粒組裝成一維結(jié)構(gòu)的簡(jiǎn)便方法[41-42]。Zhang等報(bào)道了高度分散的Co納米粒子錨定分級(jí)多孔N摻雜碳纖維(Co@N-HPCF),合成了以ZIF-8為晶種核、ZIF-67為外殼的核殼型MOFs,通過(guò)靜電紡絲將MOFs前體組裝成一維結(jié)構(gòu),通過(guò)一步高溫?zé)峤猥@得了一維分級(jí)多孔結(jié)構(gòu)催化劑。這種獨(dú)特的具有分級(jí)孔隙的一維結(jié)構(gòu)可以有效提高Co@N-C活性位點(diǎn)的利用率并促進(jìn)電子轉(zhuǎn)移。
2.2負(fù)載型結(jié)構(gòu)
纖維載體上金屬催化劑的可控生長(zhǎng)對(duì)于纖維的界面功能化至關(guān)重要。目前已經(jīng)開發(fā)了多種界面生長(zhǎng)方法將各種活性材料錨定在纖維表面,包括水熱-溶劑熱、浸漬生長(zhǎng)、電沉積、陽(yáng)離子交換和界面組裝等。催化劑的組成、形態(tài)、尺寸、孔隙率和晶體結(jié)構(gòu)可以通過(guò)改變合成條件來(lái)精確控制。
電沉積技術(shù)是一種在纖維表面可控沉積活性物質(zhì)的方法,沉積物的量和厚度可以通過(guò)改變電鍍參數(shù)(沉積時(shí)間、電壓和電解質(zhì)濃度等)來(lái)控制。Li等(47)通過(guò)兩步電沉積在碳布表面上沉積了具有雙異質(zhì)界面的多組分MoO?(Ni)-NiO,并應(yīng)用于電催化OER和HER反應(yīng)。將碳布浸入Ni(CH?C00)?溶液中,然后在電壓為-3.0 V下進(jìn)行時(shí)間為1h的電沉積過(guò)程,在基底上形成嵌入Ni納米顆粒的無(wú)定形NiO納米片,第2次電化學(xué)沉積后可以獲得MoO?,最終產(chǎn)生了一種新的多組分MoO?(Ni)-NiO雜化物。Xu等48通過(guò)電沉積法和水熱法在纖維表面生長(zhǎng)了具有光滑表面的良好排列的NiCo-MOF微棒陣列,通過(guò)碳化得到了由碳約束的NiCo合金納米顆粒構(gòu)建的3D多孔微棒陣列(NiCo-C PMRA)。在溫度為300℃的空氣中煅燒,可得NiCo@NiCo-C PMRA,具有與NiCo-C PMRA相似的排列良好的微棒陣。這種多孔結(jié)構(gòu)使得電催化劑具有比表面積大和高電催化活性位點(diǎn)暴露,可以促進(jìn)電解質(zhì)的快速滲透-擴(kuò)散和O?的自由擴(kuò)散。這些優(yōu)勢(shì)使得NiCo@NiCo-C PMRA具有優(yōu)異的OER電催化活性,如低過(guò)電位、小的塔菲爾斜率和高穩(wěn)定性。NiCo@NiCo-C PMR的合成示意圖及不同電極的線性掃描伏安法(linear sweepvoltammetry,LSV)曲線如圖6所示。
為了進(jìn)一步提升催化劑的催化活性,可以通過(guò)一些后處理方法(如摻雜、涂覆和碳化等)改善催化劑的界面性質(zhì)。Wang等(49)通過(guò)兩步法制備了負(fù)載在碳布上的CuNi?層狀雙氫氧化合物納米片前體,隨后在溫度為400℃下進(jìn)行2h的氨解過(guò)程得到了CuNi?-N電極。得益于高電導(dǎo)率、具有大表面積的互連多孔納米結(jié)構(gòu)、超親水電極表面、氮化鎳和氮化銅的協(xié)同催化作用、氫氧化物物種以及催化反應(yīng)過(guò)程中產(chǎn)生的無(wú)序結(jié)構(gòu),所制備的電極對(duì)HER表現(xiàn)出優(yōu)異的催化性能和良好的穩(wěn)定性。Bae等50報(bào)導(dǎo)了生長(zhǎng)在具有無(wú)縫導(dǎo)電碳?xì)さ奶祭w維織物上的Ni-Co基納米線組成的集成3D結(jié)構(gòu)。Ni-Co納米線周圍的導(dǎo)電碳?xì)げ粌H可以為電子傳輸提供連續(xù)路徑,而且有利于改善催化劑對(duì)水的可及性。這種3D結(jié)構(gòu)可以最大限度地利用有效活性位點(diǎn),并加速OER的緩慢動(dòng)力學(xué),從而產(chǎn)生高效和持久的電催化性能。
3展望
綜上所述,纖維材料既可以用作負(fù)載催化劑的支撐纖維,也可以直接用作含有固有活性位點(diǎn)的電催化纖維。在催化反應(yīng)中,催化活性和耐久性是衡量電極材料好壞的關(guān)鍵因素,催化活性通常取決于每個(gè)活性位點(diǎn)的固有活性,而耐久性則取決于活性物質(zhì)的界面性質(zhì)和結(jié)構(gòu)穩(wěn)定性。在纖維催化劑的設(shè)計(jì)過(guò)程中應(yīng)當(dāng)充分考慮這些因素。
1)在催化材料的結(jié)構(gòu)設(shè)計(jì)時(shí),構(gòu)建具有高孔隙率和大比表面積的連續(xù)纖維骨架有利于充分暴露活性位點(diǎn)。當(dāng)纖維作為催化劑載體時(shí),金屬催化劑錨定在纖維基質(zhì)上(內(nèi)),并依靠纖維的大比表面積來(lái)獲得分散活性位點(diǎn)。通過(guò)合理設(shè)計(jì)纖維基質(zhì)和金屬催化劑的組成、電子結(jié)構(gòu)和形態(tài)的復(fù)合結(jié)構(gòu),可以優(yōu)化不同的反應(yīng)過(guò)程。此外,還需要通過(guò)合理的界面設(shè)計(jì)抑制金屬催化劑的腐蝕和聚集,并確保電催化劑與纖維載體之間的良好接觸。
2)在電催化反應(yīng)過(guò)程中,不同活性物質(zhì)對(duì)電催化性能的貢獻(xiàn)尚未得到徹底研究,纖維電催化劑的真正活性位點(diǎn)和確切的催化機(jī)制尚不清楚。活性位點(diǎn)性質(zhì)的鑒定和識(shí)別是設(shè)計(jì)高效、多功能電催化劑的關(guān)鍵。密度泛函理論計(jì)算是識(shí)別活性位點(diǎn)和預(yù)測(cè)可能的反應(yīng)中間體的有力工具,為纖維電催化材料的結(jié)構(gòu)設(shè)計(jì)提供了指導(dǎo)。此外,探索原位實(shí)時(shí)表征技術(shù)(如原位紅外、拉曼、同步輻射和原子力顯微鏡),以了解真實(shí)反應(yīng)條件下活性物質(zhì)的結(jié)構(gòu)演變是非常重要的。
3)在實(shí)際應(yīng)用中,不同的催化反應(yīng)可能涉及不同的反應(yīng)中間體、機(jī)制和電子轉(zhuǎn)移數(shù),因此每種類型的電催化劑的設(shè)計(jì)都需要考慮真實(shí)的反應(yīng)條件。對(duì)于連續(xù)釋放氣體(如HER和OER)的催化反應(yīng),去除兩相界面的氣體產(chǎn)物以保持活性位點(diǎn)的穩(wěn)定性至關(guān)重要。構(gòu)建有利于氣體擴(kuò)散的三維分級(jí)多孔框架和優(yōu)化表面結(jié)構(gòu)是一種很有前途的方法。對(duì)活性位點(diǎn)周圍微環(huán)境極為敏感的反應(yīng),如CO?RR和NRR,通過(guò)合理的催化活性位點(diǎn)工程構(gòu)建自適應(yīng)催化劑具有重要意義。此外,對(duì)目標(biāo)產(chǎn)物的CO?RR和NRR選擇性需要抑制析氫過(guò)程。隨著研究的不斷深入,相信纖維基電催化劑將在未來(lái)的可再生能源市場(chǎng)中發(fā)揮不可或缺的作用。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Authors'Contributions)
楊建平、張方舟、陳俊進(jìn)行了文章撰寫和修改完善。所有作者均閱讀并同意了最終稿件的提交。
The manuscript was written and revised by YANG Jianping,ZHANGFangzhou,and CHEN Jun.Allauthorshave read the final version of the paper and consented to its submission.
參考文獻(xiàn)(References)
[1]LIw,ZHAOL,JIANGXL,etal.Confinement engineering of electrocatalyst surfaces and interfaces[J].Advanced Func-tional Materials,2022,32(46):2207727.
[2]CHU S,MAJUMDAR A.Opportunities and challenges for a sustainable energy future [J].Nature,2012,488(7411):294-303.
[3]LAO MM,LIP,JIANG Y Z,etal.From fundamentals and theories to heterostructured electrocatalyst design:an in-depthunderstanding of alkaline hydrogen evolution reaction[J].Nano Energy,2022,98:107231.
[4]WU Z Y,SONG YH,GUO H C,etal.Tandem catalysis in electrocatalytic nitrate reduction:unlocking efficiency andmechanism[J].Interdisciplinary Materials,2024,3(2):245-269.
[5]YU CQ,HUANGX,CHEN H,etal.Managing nitrogen to restore water quality in China[J].Nature,2019,567(7749):516-520.
[6]GENG SK,ZHENG Y,LISQ,etal.Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst[J].NatureEnergy,2021,6:904-912.
[7]LIUHT,GUANJY,YANG SX,etal.Metal-organic-framework-derived Co?P nanoparticle/multi-doped porous carbon asa trifunctional electrocatalyst[J].Advanced Materials,2020,32(36):2003649.
[8]ZANG Y,LU DQ,WANG K,etal.A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting[J].NatureCommunications,2023,14(1):1792.
[9]LUO HX,LISJ,WU Z Y,etal.Relay catalysis of Fe and Co with multi-active sites for specialized division of labor inelectrocatalytic nitrate reduction reaction[J].Advanced Functional Materials,2024:2403838.
[10]XU H,CHEN JL,ZHANG ZH,etal.In situ confinement of ultrasmall metal nanoparticles in short mesochannelsfordurable electrocatalytic nitrate reduction with high efficiency and selectivity [J].Advanced Materials,2023,35(2):e2207522.
[11]LIW,WANG D D,ZHANG YQ,etal.Defect engineering for fuel-cell electrocatalysts[J].Advanced Materials,2020,32(19):e1907879.
[12]LUOHX,LISJ,WUZY,etal.Modulating the active hydrogen adsorption on Fe-N interface for boosted electrocatalyticnitrate reduction with ultra-long stability[J].Advanced Materials,2023,35(46):e2304695.
[13]ZHANGH,WANG CQ,LUO HX,etal.Iron nanoparticles protected by chainmail-structured graphene for durable elec-trocatalytic nitrate reduction to nitrogen [J].AngewandteChemie (International Ed in English),2023,62(5):e202217071.
[14]ZHANGFZ,CHEN J,YANGJP.Fiber materials for electrocatalysis applications[J].Advanced Fiber Materials,2022,4(4):720-735.
[15]ZHANGFZ,CHEN J,WALLACE GG,etal.Engineering electrocatalytic fiber architectures[J].Progress in MaterialsScience,2023,133:101069.
[16]RONG X,WANG HJ,LU XL,etal.Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO?elec-troreduction[J].AngewandteChemie(International Ed in English),2020,59(5):1961-1965.
[17]zHOU KL,WANG ZL,HAN C B,etal.Platinum single-atom catalyst coupled with transition metal/metal oxide hetero-structure for accelerating alkaline hydrogen evolution reaction[J].Nature Communications,2021,12(1):3783.
[18]NIU YL,TENG X,GONG SQ,etal.A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as aself-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries [J].Journal of Materials Chemistry A,2020,8(27):13725-13734.
[19]HUA YL,SONG N,WU Z Y,etal.Cu-Fe synergistic active sites boost kinetics of electrochemical nitrate reduction[J].Advanced Functional Materials,2024,34(21):2314461.
[20]ZHANGF Z,LUOJM,CHEN JL,etal.Interfacial assembly of nanocrystals on nanofibers with strong interaction forelectrocatalytic nitrate reduction[J].AngewandteChemie International Edition,2023,62(38):2310383.
[21]DU Q,WUJB,YANG H.Pt@Nb-TiO?catalyst membranes fabricated by electrospinning and atomic layer deposition[J].ACS Catalysis,2014,4(1):144-151.
[22]ZOU R,WEN SP,ZHANGLQ,etal.Preparation of Rh-SiO?fiber catalyst with superior activity and reusability by elec-trospinning[J].RSC Advances,2015,5(121):99884-99891.
[23]DU HT,GUO HR,WANG KK,etal.Durable electrocatalytic reduction of nitrate to ammonia over defective pseudo-brookite Fe?TiO?nanofibers with abundant oxygen vacancies[J].AngewandteChemie (International Ed in English),2023,62(5):e202215782.
[24]PAUL R,DUF,DAI L M,et al.3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts forintegrated energy devices[J].Advanced Materials,2019,31(13):e1805598.
[25]MIAO SH,LIANG K,ZHU JJ,etal.Hetero-atom-doped carbon dots:Dopingstrategies,properties and applications[J].Nano Today,2020,33:100879.
[26]MATY,RAN JR,DAIS,etal.Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper:flexibleand reversible oxygen electrodes[J].AngewandteChemie(International Ed in English),2015,54(15):4646-4650.
[27]GONG KP,DUF,XIA ZH,etal.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygenreduction[J].Science,2009,323(5915):760-764.
[28]YANG LJ,JIANG SJ,ZHAO Y,etal.Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduc-tion reaction[J].AngewandteChemie(International Ed in English),2011,50(31):7132-7135.
[29]LIU Q,WANG YB,DAI L M,etal.Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic elec-trodes for flexible Zn-air batteries[J].Advanced Materials,2016,28(15):3000-3006.
[30]GAO Y,XIAO Z C,KONG D B,etal.N,P Co-doped hollow carbon nanofiber membranes with superior mass transferproperty for trifunctional metal-free electrocatalysis[J].Nano Energy,2019,64:103879.
[31]ZHANG QQ,GUAN J Q.Single-atom catalysts for electrocatalytic applications [J].Advanced Functional Materials,2020,30(31):2000768.
[32]SU x,YANG XF,HUANG YQ,etal.Single-atom catalysis toward efficient CO?conversion to CO and formate products[J].Accounts of Chemical Research,2019,52(3):656-664.
[33]PU ZH,AMIINUIS,CHENG R L,etal.Single-atom catalysts for electrochemical hydrogen evolution reaction:recentadvances and future perspectives[J].Nano-Micro Letters,2020,12(1):21.
[34]CUIT T,LI LX,YE C L,etal.Heterogeneous single atom environmental catalysis:fundamentals,applications,andopportunities[J].Advanced Functional Materials,2022,32(9):2108381.
[35]YANGLP,ZHANG X,YU LX,etal.Atomic Fe-N?C in flexible carbon fiber membrane as binder-free air cathode forZn-air batteries with stable cycling over 1000 H[J].Advanced Materials,2022,34(5):e2105410.
[36]QIAO Y Y,YUAN PF,HU Y F,etal.Sulfuration of an Fe-N-C catalyst containing Fe?C/Fe species to enhance thecatalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries[J].Advanced Materials,2018,30(46):1804504.
[37]TEO WE,RAMAKRISHNA S.A review on electrospinning design and nanofibre assemblies[J].Nanotechnology,2006,17(14):R89-R106.
[38]XUE JJ,WU T,DAIYQ,etal.Electrospinning and electrospunnanofibers:methods,materials,and applications[J].Chemical Reviews,2019,119(8):5298-5415.
[39]ZHANG YN,SHI WP,BO LL,etal.Electrospinning construction of heterostructuralCo?W?C/CoP nanoparticles embed-ded in N,P-doped hierarchically porous carbon fibers as excellent multifunctional electrocatalyst for Zn-air batteries andwater splitting[J].Chemical Engineering Journal,2022,431:134188.
[40]LITF,LV YJ,SUJH,etal.AnchoringCoFe?O?nanoparticles on N-doped carbon nanofibers for high-performance oxy-gen evolution reaction[J].Advanced Science,2017,4(11):1700226.
[41]XUE WD,ZHOU Qx,CUIX,etal.Metal-organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxy-gen reduction reaction[J].Nano Energy,2021,86:106073.
[42]HUANG PM,LI H D,HUANG XY,etal.Multiheteroatom-doped porous carbon catalyst for oxygen reduction reactionprepared using 3D network of ZIF-8/polymeric nanofiber as a facile-doping template[J].ACS Applied Materials amp;Inter-faces,2017,9(25):21083-21088.
[43]ZHANGYF,HE QF,CHEN ZH,etal.Hierarchically porous Co@N-doped carbon fiber assembled by MOF-derived hol-low polyhedrons enables effective electronic/mass transport:an advanced ID oxygen reduction catalyst for Zn-air battery[J].Journal of Energy Chemistry,2023,76:117-126.
[44]ZHANG JS,LIU Y,YU Z B,etal.Boosting the performance of the Fe-N-C catalyst for the oxygen reduction reaction byintroducing single-walled carbon nanohorns as branches on carbon fibers[J].Journal of Materials Chemistry A,2019,7(40):23182-23190.
[45]ZHAO YX,LAIQX,ZHU JJ,etal.Controllable construction of core-shell Polymer@Zeolitic imidazolate frameworksfiber derived heteroatom-doped carbon nanofiber network for efficient oxygen electrocatalysis[J].Small,2018,14(19):128-148.
[46]ZHANG YQ,XIA XH,CAO X,etal.Ultrafine metal nanoparticles/N-doped porous carbon hybrids coated on carbonfibers as flexible and binder-free water spliting catalysts[J].Advanced Energy Materials,2017,7(15):1700220.
[47]LIXP,WANG Y,WANGJJ,etal.Sequential electrodeposition of bifunctional catalytically active structures in MoO?INi-NiO composite electrocatalysts for selective hydrogen and oxygen evolution [J].Advanced Materials,2020,32(39):e2003414.
[48]XU H,SHI Z X,TONG Y X,etal.Porous microrod arays constructed by carbon-confined NiCo@NiCoO?core@shellnanoparticles as efficient electrocatalysts for oxygen evolution[J].Advanced Materials,2018,30(21):1705442.
[49]wANGZY,XUL,HUANGFZ,etal.Copper-nickel nitide nanosheets as fficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production[J].Advanced Energy Materials,2019,9(21):1900390.
[50]BAE SH,KIM JE,RANDRIAMAHAZAKA H,etal.Seamlessly conductive 3D nanoarchitecture of core-shell Ni-Conanowire network for highly efficient oxygen evolution[J].Advanced Energy Materials,2017,7(1):1601492.
Structural design and application of fiber-based electrocatalytic materials
YANG Jianping1,ZHANG Fangzhou1,CHEN Jun2
1.College of Materials Science and Engineering,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,DonghuaUniversity,Shanghai 201620,China;
2.ARC Centre of Excellence for ElectromaterialsScience,Australian Institute of Innovative Materials,University of Wollongong,NSW 2522,Australia
Abstract
Significance One-dimensional fiber materials have emerged as promising advanced electrode materials due to their excellentmechanicalstrength,large surface area,high electrical conductivity,tunable composition/morphology,and structural stability.Recently,significant research interest has focused on constructing fiber electrocatalysts with abundant accessible active sitesand efficient mass diffusion capabilities for effective electrochemical energy conversion and electrocatalysis reactions.Fibermaterials can serve both as carriers for coupling metal catalysts and as direct catalytic active substances.By regulating the mor-phology,structure,and composite mode of fibers and catalysts,catalytic reactions can be optimized.
Progress This article provides a detailed summary of the structural design of fiber-based electrocatalysts,includingelectrocata-lytic fibers with intrinsic active sites and supportive fibers for catalyst loading.The precise control of these architectures to meetthe requirements of specific electrocatalytic reactions is critically discussed.It discusses the applications of different fiber-basedelectrocatalysts across various catalytic reactions.Specifically,the paper reviews different fibrous structures such as inorganicfibers,heteroatom-doped carbon fibers,single-atom anchored carbon fibers,embeddedstructures,and loaded structures,exploring the relationship between structure and catalytic performance.One-dimensional fiber is a versatile and powerful mate-rial,and a deep understanding of its components and structural properties is pivotal in guiding the selection and advancement offiberelectrocalysts for electrocatalysis applications.
Conclusions and Prospects Despite these advancements,some challenges and critical issues remain in developing efficientfiber-based electrocatalysts.In terms of structural design,when fibers are directly used as electrocatalytic active substances,the intrinsic activity of active sites can be improved by adjusting the composition of inorganic fibers or the local coordination con-figuration of carbon fibers.Constructing a continuous fiber skeleton with high porosity and a large surface area is beneficial forfully exposing active sites.When fibers serve as catalyst carriers,metal catalysts are anchored on or within the fiber matrix,rely-ing on the high surface area of the fibers to obtain dispersed active sites.By properly designing the composition,electronicstruc-ture,and morphology of the fiber matrix and metal catalysts,as well as their composite structures,it is feasible to optimize dif-ferent reaction processes.Inaddition,it is necessary to mitigate the corrosion and aggregation of metal catalysts through reason-able interface design and to ensure intimate contact between the electrocatalyst and the fiber support.
The contributions of different active substances to the electrocatalytic performance under real reaction conditions has not beenthoroughlystudied.The true active sites and exact catalytic mechanisms of fiber electrocatalysts remain unclear.Identifyingtheproperties of active sites is crucial for designing efficient and multifunctional electrocatalysts.Density functional theory(DFT)is a powerful method for identifying active sites and predicting possible reaction intermediates,providing guidance for the struc-tural design of fiber electrocatalysts.Furthermore,it is important to explore in-situ real-time characterization techniques such asFTIR,Raman,synchrotronradiation,and atomic force microscopy to understand the structural evolution of active substancesunder real reaction conditions.Constructing integrated electrodes with high mechanical strength,high catalyst loading,andstrongly coupled interfaces is desirable for achieving efficient and stable electrocatalysis.Nevertheless,due to the absence ofpolymerbinder,forming a strong connection between the active material and fiber substrate to prevent shedding remains a pre-dominant challenge in fabricating integrated electrodes.As research progresses,fiber-based electrocatalysts are expected toplay an indispensable role in the future market of renewable energy.
Keywords:fiber;nanocomposites;structuraldesign;electrocatalysis
(責(zé)任編輯:武秀娟)