• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      微RNA在支架內(nèi)再狹窄中的作用與機制

      2024-10-08 00:00:00劉行健王金航張博倫劉潤東王川
      中國醫(yī)學(xué)創(chuàng)新 2024年27期

      【摘要】 經(jīng)皮冠狀動脈介入治療(PCI)是冠狀動脈粥樣硬化的常用治療手段。支架內(nèi)再狹窄(ISR)是植入支架后較為高發(fā)的并發(fā)癥。微RNA(microRNA,miRNA)可以作為再狹窄診斷和治療的生物標(biāo)志物和靶標(biāo),預(yù)防或減少再狹窄的發(fā)生。本文綜述了ISR的病理生理機制,介紹了幾種miRNA在ISR的功能和調(diào)節(jié)過程,闡釋了其在調(diào)控血管平滑肌細胞(VSMC)和內(nèi)皮細胞(EC)的表型、增殖和遷移中的作用。為針對miRNA的ISR的治療和預(yù)防策略提出臨床參考,從而指導(dǎo)治療方案。

      【關(guān)鍵詞】 微RNA 支架內(nèi)再狹窄 內(nèi)皮細胞 血管平滑肌細胞 經(jīng)皮冠狀動脈介入治療

      The Role and Mechanisms of microRNA in In-stent Restenosis/LIU Xingjian, WANG Jinhang, ZHANG Bolun, LIU Rundong, WANG Chuan. //Medical Innovation of China, 2024, 21(27): -188

      [Abstract] Percutaneous coronary intervention (PCI) is a common treatment for coronary atherosclerosis. In-stent restenosis (ISR) is a relatively frequent complication following stent implantation. MicroRNA (miRNA) can serve as biomarkers and targets for the diagnosis and treatment of restenosis, potentially preventing or reducing its occurrence. This article reviews the pathophysiological mechanisms of ISR, presents the functions and regulatory processes of several miRNA in ISR, and elucidates their roles in regulating the phenotypes, proliferation, and migration of vascular smooth muscle cells (VSMC) and endothelial cells (EC). This article offers clinical insights into miRNA targeted therapeutic and preventive strategies for ISR, thereby guiding treatment protocols.

      [Key words] microRNA In-stent restenosis Endothelial cell Vascular smooth muscle cell Percutaneous coronary intervention

      First-author's address: Capital Medical University Yanjing Medical College, Beijing 101300, China

      doi:10.3969/j.issn.1674-4985.2024.27.042

      ①首都醫(yī)科大學(xué)燕京醫(yī)學(xué)院 北京 101300

      ②首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院 北京 100069

      ③中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)院心內(nèi)科 北京 100730

      通信作者:王川

      心血管疾病(cardiovascular disease,CVD)每年導(dǎo)致全球約1 790萬人死亡,占全球死亡總數(shù)的近三分之一[1-2]。其中冠狀動脈粥樣硬化性心臟?。╟oronary atherosclerotic heart disease,CAD)最常見。因其高發(fā)病率及高死亡率成為公共衛(wèi)生的重大挑戰(zhàn)[3]。臨床上常用的CAD治療方法包括藥物治療、冠狀動脈旁路移植術(shù)(coronary artery bypass grafting,CABG)和經(jīng)皮冠狀動脈介入治療(percutaneous coronary intervention,PCI)[4]。PCI術(shù)因其創(chuàng)傷小、恢復(fù)快的優(yōu)點,已成為治療CAD最常見的手段[3]。在行PCI術(shù)植入支架后,可能發(fā)生支架內(nèi)再狹窄(in-stent restenosis,ISR)。其根據(jù)研究方式和支架類型的不同發(fā)生率為5%~10%[5]。球囊擴張和支架植入引起的局部血管損傷會破壞血管生理穩(wěn)態(tài),使ISR患者再次出現(xiàn)不穩(wěn)定型心絞痛和心肌梗死(myocardial infarction,MI)等臨床癥狀[6]。

      非編碼RNA(noncoding RNA,ncRNA)在基因組中被轉(zhuǎn)錄,但不能被進一步翻譯成蛋白質(zhì),在ISR的發(fā)展形成過程中具有重要意義[7]。ISR發(fā)生時,微RNA(microRNA,miRNA)對血管平滑肌細胞(vascular smooth muscle cells,VSMC)和內(nèi)皮細胞(endothelial cell,EC)的作用具有較高生物學(xué)意義[8]。如miR-22、miR-124和miR-34a等miRNA可以通過靶向特定信號分子和轉(zhuǎn)錄因子,抑制VSMC的過度增殖和遷移,從而減輕ISR的發(fā)展[7]。同時,miRNA也可在EC中促進支架再內(nèi)皮化,調(diào)控炎癥反應(yīng),維持血管內(nèi)環(huán)境的穩(wěn)定[8]。

      目前,對于ISR的研究主要集中在解析病理生理機制和優(yōu)化預(yù)防治療策略兩方面[8]。海內(nèi)外學(xué)者研究表明ncRNA在基因表達調(diào)控中有關(guān)鍵作用,可作為治療和預(yù)防ISR的潛在靶點[9]。由于miRNA能夠被釋放到血液中[10],故可檢測血液循環(huán)中miRNA作為臨床診斷和預(yù)后的生物標(biāo)志物[8]。本文旨在綜述miRNA在ISR中的分子機制,探討其作為潛在的生物標(biāo)志物及治療靶點的可能性。

      1 ISR的病理機制

      ISR是PCI術(shù)后的主要并發(fā)癥之一,表現(xiàn)為已植入支架的血管再次狹窄超過50%。ISR的病理生理機制復(fù)雜,涉及多種細胞和分子機制,可分為早期、中期和晚期三個階段[8]。在早期階段,球囊擴張和支架植入會直接對血管壁造成機械性損傷,導(dǎo)致EC的破壞,稱為內(nèi)皮剝脫。這種損傷觸發(fā)局部炎癥反應(yīng),激活血小板,釋放生長因子和促炎細胞因子。這些生物活性分子的釋放為VSMC活化和增殖創(chuàng)造條件,是ISR發(fā)展的基礎(chǔ)[11]。VSMC的活化和增殖會引起血管內(nèi)膜增生(neointimal hyperplasia,NIH)。NIH是由血管內(nèi)皮損傷引發(fā)的增生過程,該過程可引發(fā)炎癥反應(yīng),使VSMC激活,試圖修復(fù)損傷,最終導(dǎo)致ISR。VSMC在ISR的中期和晚期階段均起主導(dǎo)作用。VSMC的表型轉(zhuǎn)換指其由分化、收縮、靜止?fàn)顟B(tài)轉(zhuǎn)變?yōu)榉置?、合成狀態(tài)的過程。該過程導(dǎo)致VSMC從血管中層遷移到新內(nèi)膜,并伴隨細胞增殖和遷移,細胞外基質(zhì)(extracellular matrix,ECM)蛋白的合成和沉積,最終可以導(dǎo)致血管逐漸狹窄。腫瘤壞死因子-α(TNF-α)和白細胞介素-1β(IL-1β)等炎癥因子,單核細胞趨化蛋白-1(MCP-1)等趨化因子和血小板衍生生長因子(platelet-derived growth factor,PDGF)等生長因子在這一過程中起著關(guān)鍵作用[12-14]。這些因子不僅促進VSMC的活化和表型轉(zhuǎn)換,還可以通過抑制如α-平滑肌肌動蛋白(α-SMA)、平滑肌特異性SM22α啟動子和平滑肌肌球蛋白重鏈(SM-myosin heavy chain,SMMHC)等平滑肌細胞特異性標(biāo)志物的表達,促進炎癥和ECM的合成,重啟細胞周期,加速細胞遷移[15]。

      EC在損傷后也會導(dǎo)致ISR的發(fā)生。內(nèi)皮剝脫后,內(nèi)皮層的喪失使位于中層的靜息VSMC暴露于促炎細胞因子、生長因子和趨化蛋白,這些因子刺激VSMC遷移和增殖。EC通過釋放一氧化氮(NO)直接抑制VSMC的表型轉(zhuǎn)換,通過激活細胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)途徑,抑制RhoA活性,誘導(dǎo)細胞周期抑制蛋白p21Waf1/Cip1的水平上調(diào),從而阻斷細胞周期G1/S期的過渡。當(dāng)內(nèi)皮層受損時,該過程被打斷,重啟VSMC表型的轉(zhuǎn)換[16]。這些過程共同促進了ISR的發(fā)展,成為當(dāng)前治療策略的重點靶向?qū)ο蟆?/p>

      2 miRNA的基本功能

      主要的ncRNA類型包括miRNA、長非編碼RNA(long non-coding RNA,lncRNA)和環(huán)狀RNA(circular RNA ,circRNA),它們通過不同的機制參與細胞的各種生物過程[17]。miRNA是長度為18~22核苷酸的單鏈RNA分子,通過與靶mRNA的3'非翻譯區(qū)(3'-untranslated region,3'-UTR)結(jié)合,抑制其翻譯或促進其降解,從而調(diào)節(jié)蛋白質(zhì)的合成[18]。miRNA通過與Argonaute(Argonaute,Ago)蛋白復(fù)合體形成的miRNA誘導(dǎo)的沉默復(fù)合體(miRNA-induced silencing complex,miRISC),進而影響相關(guān)基因的翻譯,同時在細胞中發(fā)揮基因調(diào)控作用[19]。

      多項研究已經(jīng)將miRNA作為對CVD具有高診斷和預(yù)后能力的強循環(huán)生物標(biāo)志物[10-13],如ISR,AF和感染性心肌炎[20-22]等。其中,miR-22、miR-34a和miR-126等miRNA在ISR中展示了較為重要的功能。在ISR進程中,這些ncRNA通過調(diào)控VSMC和EC的表型轉(zhuǎn)換、增殖和遷移等關(guān)鍵過程,影響ISR的發(fā)生和進展,從而減少ISR的發(fā)生率[23]。

      3 miRNA在ISR中的作用

      在ISR的病理生理中,大量miRNA通過誘導(dǎo)表觀遺傳修飾和調(diào)節(jié)mRNA表達水平,影響特定血管細胞功能和NIH的信號通路。VSMC特異性收縮標(biāo)志基因和對于細胞增殖、遷移和凋亡起重要作用的基因在啟動子區(qū)域存在CAr G盒(CAr Gbox)[24],該片段是許多其他信號通路的匯合點,受血清應(yīng)答因子(SRF)及其肌肉特異性共激活因子心肌素(Myocd)等關(guān)鍵轉(zhuǎn)錄因子控制[8]。Myocd與SRF結(jié)合形成SRF-Myocd三元復(fù)合體,該復(fù)合體結(jié)合到收縮特異性基因的啟動子區(qū)域,促進合成型、收縮型VSMC表型的轉(zhuǎn)錄和表達[25]。由于VSMC的可塑性,其表型在ISR過程中可以從收縮型轉(zhuǎn)變?yōu)楹铣尚停@一變化依賴于額外的共抑制因子、共激活因子和環(huán)境因素之間的相互平衡。在該過程中,miRNA通過Krüppel樣因子4(Krüppel-like factor 4,KLF4)和組蛋白去乙?;?(histone deacetylase 2,HDAC2),調(diào)控VSMC表型轉(zhuǎn)換。KLF4阻止SRF與特異性基因啟動子結(jié)合,推動合成型VSMC表型,而HDAC2通過阻斷SRF訪問CAr G位點來抑制轉(zhuǎn)錄。此外,PDGF也可破壞SRF-Myocd復(fù)合體,阻斷特異性基因表達。miRNA在EC的再內(nèi)皮化中也發(fā)揮作用,具有抑制ISR的潛力[26]。

      3.1 miR-22在ISR中的應(yīng)用

      miR-22是ISR治療中的一個重要的靶點,是VSMC收縮表型的重要調(diào)節(jié)因子。其在ISR過程中受PDGF影響有所下調(diào),而在轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)的作用下通過p53依賴的方式再次上調(diào)。miR-22主要通過甲基CpG結(jié)合蛋白2(MECP2)、組蛋白去乙?;?(HDAC4)和親嗜性病毒整合位點1(EVI1)等靶標(biāo)影響ISR期間成熟VSMC的表型轉(zhuǎn)換、增殖和遷移[27]。MECP2是一種強轉(zhuǎn)錄調(diào)節(jié)因子,可根據(jù)其結(jié)合分子的不同,起到抑制或激活作用,是miR-22最初能夠識別的靶標(biāo)之一[28]。miR-22過度表達導(dǎo)致MECP2下調(diào),因此阻止了基因啟動子區(qū)域的H3K9三甲基化(H3K9me3),從而允許了收縮特異性基因的表達[28]。通過miR-22抑制HDAC4可以增加SRF-Myocd在CAr G位點的染色質(zhì)可及性,并通過p21和p27依賴的方式促進G1/S期停滯[29]。EVI1通常結(jié)合SM22α、αSMA、SRF和Myocd的啟動子區(qū)域,并通過H3K9me3富集抑制轉(zhuǎn)錄。miR-22的上調(diào)抑制了MECP2、EVI1和HDAC4表達,防止了合成型VSMC的轉(zhuǎn)換。Yang等[27]的研究顯示局部異位的miR-22能夠使合成型VSMC恢復(fù)為收縮型,抑制NIH。綜上,miR-22通過調(diào)節(jié)MECP2、HDAC4和EVI1等靶標(biāo),影響VSMC的表型轉(zhuǎn)換、增殖和遷移,是治療ISR的重要靶點[30]。

      3.2 miR-34a在ISR中的作用

      在ISR的病理生理過程中,miR-34a表達下調(diào),并與Notch1的3'UTR相結(jié)合,促進VSMC向收縮型的轉(zhuǎn)變[31]。與miR-22類似,PDGF下調(diào)miR-34a,且TGF-β上調(diào)miR-34a,在VSMC的增殖和遷移中起作用,并通過上調(diào)沉默信息調(diào)節(jié)因子1(SirT1)影響干細胞分化。實驗表明,miR-34a降低了VSMC的增殖和遷移能力,但對凋亡無影響[32]。轉(zhuǎn)染了miR-34a的人主動脈平滑肌細胞(human aortic smooth muscle cell,HASMC)也顯示了相同的結(jié)果[31]。Notch1主要在EC中表達[32],Li等[33]的研究表明Notch1也存在于血管損傷后的VSMC中,并可以通過激活CHF1/Hey2通路促進NIH,增加生長因子的敏感性,并通過Rho GTPase Rac1介導(dǎo)增殖。miR-34a的表達抑制Notch1信號傳導(dǎo),通過抑制VSMC的增殖和遷移阻止新內(nèi)膜形成,但不影響凋亡。此外,miR-34a的作用依賴于細胞環(huán)境,顯示其在EC中可以抑制SirT1以維持細胞衰老狀態(tài),阻止在動脈粥樣硬化和高血壓等其他CVD中血管損傷后再內(nèi)皮化所需的增殖和遷移[34]。以上研究表明,miR-34a通過調(diào)控Notch1信號通路和影響Sirtuin-1的表達,可有效抑制VSMC的增殖和遷移,阻止新內(nèi)膜的形成。

      3.3 miR-126在ISR中的作用

      EC可以對損傷后血管細胞穩(wěn)態(tài)進行調(diào)控。其調(diào)控機制之一包括在凋亡和炎癥激活后釋放內(nèi)皮微粒(endothelial microparticle,EMP)。EMP是針對EC和VSMC的生物活性分子。其含有多種miRNA,miR-126的表達量最高,在EC修復(fù)、動脈粥樣硬化和再內(nèi)皮化中發(fā)揮重要作用。在EC中,miR-126的攝取促進了細胞的增殖和遷移,激活Ras/MAPK途徑,推動細胞周期的進展和增殖[35]。miR-126也通過CXCL12/CXCR4依賴方式抑制動脈粥樣硬化斑塊的形成[36]。此外,miR-126對VSMC具有相反的效應(yīng),其攝取阻止了VSMC的增殖并通過抑制低密度脂蛋白受體相關(guān)蛋白6(low density lipoprotein receptor related protein 6,LRP6),抑制形成新內(nèi)膜,從而影響了β-catenin和p21的表達[37]。以上研究揭示了miR-126的雙重作用模式,既抑制VSMC的增殖和NIH,同時促進再內(nèi)皮化預(yù)防支架內(nèi)血栓的形成。

      4 總結(jié)與展望

      本文綜述了miRNA在ISR的分子機制,闡釋了其在調(diào)控VSMC和EC的表型、增殖和遷移中的作用。miRNA一方面抑制VSMC的過度增殖和遷移,從而減輕NIH和血管狹窄;另一方面促進EC的再內(nèi)皮化,幫助恢復(fù)血管的功能,增加結(jié)構(gòu)穩(wěn)定性。未來的研究可以更進一步探索這些miRNA和其他ncRNA的功能及其在ISR中的作用機制,通過操控特定過程減少內(nèi)皮愈合功能障礙和支架血栓的形成,提高患者治療效果。

      參考文獻

      [1] TIMMIS A,VARDAS P,TOWNSEND N,et al.European society of cardiology: cardiovascular disease statistics 2021[J].Eur Heart J,2022,43(8):716-799.

      [2]北京高血壓防治協(xié)會,北京糖尿病防治協(xié)會,北京慢性病防治與健康教育研究會,等.基層心血管病綜合管理實踐指南2020[J/OL].中國醫(yī)學(xué)前沿雜志:電子版,2020,12(8):前插1,1-73,https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjQwNzA0EhF6Z3l4cXl6ejIwMjAwODAwMRoIbDQyM3BwaTc%3D.

      [3] ENGELEN S E,ROBINSON A J B,ZURKE Y,et al.

      Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed?[J].Nature Reviews Cardiology, 2022,19(8):522-542.

      [4]王金航,劉潤東,劉行健,等.冠狀動脈粥樣斑塊幾何構(gòu)型對粥樣病變發(fā)展的影響[J].北京生物醫(yī)學(xué)工程,2023,42(4):390-397.

      [5] ALRAIES M C,DARMOCH F,TUMMALA R,et al.Diagnosis and management challenges of in-stent restenosis in coronary arteries[J].World Journal of Cardiology,2017,9(8):640-651.

      [6] SHLOFMITZ E,CASE B C,CHEN Y,et al.Waksman in-stent restenosis classification:a mechanism-based approach to the treatment of restenosis[J].Ardiovascular Revascularization Medicine,2021,33:62-67.

      [7] LUO Y,HITZ B C,GABDANK I,et al.New developments on the encyclopedia of DNA elements(ENCODE)data portal[J].Nucleic Acids Research,2020,48(D1):D882-D889.

      [8] EFOVI D,XIAO Q.Noncoding RNAs in vascular cell biology and restenosis[J].Biology,2023,12(1):24.

      [9] VARELA N,LANAS F,SALAZAR L A,et al.The current state of micrornas as restenosis biomarkers[J].Front Genet,2019,10:1247.

      [10] JI R,CHENG Y,YUE J,et al.MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation[J].Circulation Research,2007,100(11):1579-1588.

      [11] BUCCHERI D,PIRAINO D,ANDOLINA G,et al.Understanding and managing in-stent restenosis:a review of clinical data,from pathogenesis to treatment[J/OL].J Thorac Dis,2016,8(10):E1150-E1162.https://pubmed.ncbi.nlm.nih.gov/27867580/.

      [12] FAROOQ V,GOGAS B D,SERRUYS P W.Restenosis[J].Circulation:Cardiovascular Interventions,2011,4(2):195-205.

      [13] MAKAREWICZ-WUJEC M,HENZEL J,K?PKA C,et al.

      Usefulness of MCP-1 chemokine in the monitoring of patients with coronary artery disease subjected to intensive dietary intervention: a pilot study[J].Nutrients,2021,13(9):3047.

      [14] SHI N,CHEN S Y.Mechanisms simultaneously regulate smooth muscle proliferation and differentiation[J].J Biomed Res,2014,28(1):40.

      [15] CHAPPELL J,HARMAN J L,NARASIMHAN V M,et al.

      Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models[J].Circulation Research,2016,119(12):1313-1323.

      [16] ZUCKERBRAUN B S,STOYANOVSKY D A,SENGUPTA R,

      et al.Nitric oxide-induced inhibition of smooth muscle cell proliferation involvesS-nitrosation and inactivation of RhoA[J].American Journal of Physiology-Cell Physiology,2007,292(2):C824-C831.

      [17] ENCODE Project Consortium.An integrated encyclopedia of DNA elements in the human genome[J].Nature,2012,489(7414):57-74.

      [18] SAINI H K,GRIFFITHS-JONES S,ENRIGHT A J.Genomic analysis of human microRNA transcripts[J].Proceedings of the National Academy of Sciences-PNAS,2007,104(45):17719-17724.

      [19] ROSA S D,CURCIO A,INDOLFI C.Emerging role of MicroRNAs in cardiovascular diseases[J].Circulation Journal,2014,78(3):567-575.

      [20] HE M,GONG Y,SHI J,et al.Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis[J/OL].PLoS ONE,2014,9(11):e112043.https://pubmed.ncbi.nlm.nih.gov/25427155/.

      [21] YANG B,LU Y,WANG Z.Control of cardiac excitability by microRNAs[J].Cardiovascular Research,2008,79(4):571-580.

      [22] LUO P,HE T,JIANG R,et al.MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes[J].Mol Med Rep,2015,12(1):1163-1168.

      [23] MAGUIRE E M,XIAO Q.Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia[J].The FEBS Journal,2020,287(24):5260-5283.

      [24] MIANO J M.Myocardin in biology and disease[J].Journal of Biomedical Research,2015,29(1):3-19.

      [25] WANG Z,QIN G,ZHAO T C.HDAC4:mechanism of regulation and biological functions[J].Epigenomics,2014,6(1):139-150.

      [26] ZHENG B,HAN M,WEN J K.Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells[J].IUBMB Life,2010,62(2):132-139.

      [27] YANG F,CHEN Q,HE S,et al.miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation[J].Circulation,2018,137(17):1824-1841.

      [28] ZHAO H,WEN G,HUANG Y,et al.MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2[J].Arteriosclerosis, Thrombosis, and Vascular Biology,2015,35(4):918-929.

      [29] FINDEISEN H M,GIZARD F,ZHAO Y,et al.Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2011,31(4):851-860.

      [30] WANG J,QIAN H,CHEN S,et al.miR-22 eluting cardiovascular stent based on a self-healable spongy coating inhibits in-stent restenosis[J].Bioactive Materials,2021,6(12):4686-4696.

      [31] CHEN Q,YANG F,GUO M,et al.miRNA-34a reduces neointima formation through inhibiting smooth muscle cell proliferation and migration[J].J Mol Cell Cardiol,2015,89(Pt A):75-86.

      [32] YU X,ZHANG L,WEN G,et al.Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells[J].Cell Death and Differentiation,2015,22(7):1170-1180.

      [33] LI Y,TAKESHITA K,LIU P,et al.Smooth muscle notch1 mediates neointimal formation after vascular injury[J].Circulation,2009,119(20):2686-2692.

      [34] HUA C C,LIU X M,LIANG L R,et al.Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases[J].Front Cardiovasc Med,2021,8:784044.

      [35] JANSEN F,YANG X,HOELSCHER M,et al.Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles[J].Circulation,2013,128(18):2026-2038.

      [36] ZERNECKE A,BIDZHEKOV K,NOELS H,et al.Delivery of MicroRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J].Science Signaling,2009,2(100):ra81.

      [37] TSAOUSI A,WILLIAMS H,LYON C A,et al.Wnt4/β-catenin signaling induces VSMC proliferation and is associated with intimal thickening[J].Circulation Research,2011,108(4):427-436.

      (收稿日期:2024-07-23) (本文編輯:白雅茹)

      余干县| 林州市| 沂南县| 手机| 凉山| 东阳市| 墨竹工卡县| 顺平县| 赤壁市| 福建省| 佛山市| 玛纳斯县| 博白县| 泽库县| 桦南县| 钟山县| 玉树县| 镇原县| 克什克腾旗| 商丘市| 广安市| 始兴县| 南城县| 衡山县| 志丹县| 镇安县| 扎囊县| 谢通门县| 临桂县| 河源市| 资阳市| 北海市| 华宁县| 洛扎县| 溆浦县| 招远市| 通州区| 射洪县| 贵州省| 上犹县| 塔河县|