• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      馬纓杜鵑bHLH轉錄因子家族的鑒定與表達分析

      2024-10-17 00:00:00王洪飛歐靜王孝敬可珂范豫周玉梅范馨悅
      廣西植物 2024年9期

      摘 要: 水分虧缺是制約馬纓杜鵑(Rhododendron delavayi)園林應用的關鍵因子,bHLH轉錄因子在植物生長發(fā)育和脅迫響應過程中發(fā)揮重要調控作用。該文以馬纓杜鵑基因組文件和轉錄表達數(shù)據(jù)為材料,運用生物信息學方法鑒定馬纓杜鵑bHLH轉錄因子(RdbHLH)家族成員,并分析了基因結構、保守基序、系統(tǒng)發(fā)育、蛋白理化性質、順式作用元件、蛋白互作網絡及表達模式等特征。結果表明:(1)共鑒定出116個RdbHLH基因,不同蛋白氨基酸數(shù)目和分子量大小差異較大,總體為弱酸性親水蛋白,主要在細胞核行使功能。(2)RdbHLH共劃分為17個亞家族,各亞家族基因基序結構保守,但在不同亞家族間差異較大,絕大多數(shù)RdbHLH蛋白同時含有Motif 1和Motif 2,啟動子區(qū)域含大量與植物生長發(fā)育、激素響應、光響應和脅迫響應相關的順式作用元件。(3)馬纓杜鵑響應干旱脅迫主要通過激發(fā)信號傳導通路與滲透調節(jié)和黃酮類化合物合成系統(tǒng),以緩解脅迫損傷;干旱脅迫影響了36個RdbHLH基因的表達,強烈誘導了12個RdbHLH基因的表達,其中RdbHLH49和RdbHLH95可能在植株抗干旱脅迫過程中發(fā)揮重要調控作用。研究結果為進一步研究RdbHLH基因的生物學功能提供了理論依據(jù),也為培育馬纓杜鵑優(yōu)良園藝品種提供了靶向基因資源。

      關鍵詞: 馬纓杜鵑, bHLH, 生物信息學, 干旱脅迫, 表達模式

      中圖分類號: Q943

      文獻標識碼: A

      文章編號: 1000-3142(2024)09-1649-20

      Identification and expression analysis of bHLH transcription

      factors family in Rhododendron delavayi

      Abstract: Water deficiency is a critical factor that restricts the utilization of Rhododendron delavayi in landscaping. bHLH transcription factors are pivotal regulators of plant growth, development, and stress responses. This study aimed to identify members of the R. delavayi bHLH transcription factor (RdbHLH) family by utilizing the R. delavayi genome file and transcriptome data. Through bioinformatics methods, we analyzed various aspects, including gene structure, conserved motifs, phylogenetic relationships, protein physicochemical properties, cis-acting elements, protein interaction networks, and expression patterns. The results were as follows: (1) A total of 116 RdbHLH genes were identified, exhibiting significant variations in terms of amino acid composition and molecular weight of proteins. These genes were primarily weakly acidic hydrophilic proteins that function predominantly within the cell nucleus. (2) The RdbHLH family was categorized into 17 subfamilies, where motif structures were conserved within each subfamily but displayed noticeable differences between different subfamilies. Most RdbHLH proteins contained both Motif 1 and Motif 2 at the same time. The promoter region of these genes contained a substantial number of cis-acting elements associated with plant growth and development, hormone response, light response, and stress response. (3) R. delavayi responded to drought stress by activating signal transduction pathways and regulating osmotic pressure and flavonoid biosynthesis systems, leading to stress damage mitigation. Drought stress exerted an impact on the expression of 36 RdbHLH genes, with 12 genes displaying robust induction. Notably, RdbHLH49 and RdbHLH95 might play pivotal regulatory roles in enhancing plant resistance to drought stress. These research findings provide a theoretical basis for further investigations into the biological functions of RdbHLH genes and establish target gene resources for the breeding of superior horticultural varieties of R. delavayi.

      Key words: Rhododendron delavayi, bHLH, bioinformatics, drought stress, expression patterns

      植物在生長發(fā)育過程中會進化出一系列防御策略以適應逆境脅迫,轉錄調控是植物生長發(fā)育和環(huán)境適應的基礎,轉錄因子是調控下游靶基因時空表達的重要蛋白(Wu et al., 2022)。在應激網絡信號通路中,轉錄因子通過結合順式作用元件來抑制或激活某些基因的表達,參與調控植物生長發(fā)育和脅迫響應(Strader et al., 2022)。bHLH轉錄因子家族是植物中最重要、規(guī)模最大的轉錄因子家族之一,廣泛存在于幾乎所有的真核生物,在轉錄水平上調控多種生物學過程(Zhang et al., 2020),bHLH因具有高度保守的堿性基本區(qū)域(basic region)和α螺旋1-環(huán)-α螺旋2(α helix1-loop-α helix 2, HLH)兩個亞功能區(qū)而得名(Zhang CH et al., 2018; Zhang TT et al., 2018; Pires & Dolan, 2010),其結構域長為50~60個氨基酸。堿性基本區(qū)位于結構域N端,長為10~20個氨基酸,作為DNA結合區(qū)可識別靶基因啟動子序列中的E-Box(5′-CANNTG-3′)并與之特異性結合(Feller et al., 2011);HLH區(qū)位于結構域C端,長為40~50個氨基酸,由兩個含保守疏水殘基的α-螺旋組成且由一個可變長度的環(huán)隔開,α-螺旋之間的相互作用可形成同源或異源二聚體,與靶[JP2]基因啟動子不同區(qū)域結合以調控基因轉錄(Lang & Liu, 2020)。植物bHLH家族一般被劃分為15~25個亞家族,某些特殊物種可達32個(Bano et al., 2021)。隨著測序技術的發(fā)展,bHLH轉錄因子家族在眾多模式植物和農業(yè)作物中被鑒定和分析,如擬南芥(Arabidopsis thaliana)(Hao et al., 2021)、花生(Arachis hypogaea)(Li et al., 2021)、黃瓜(Cucumis sativus)(Li et al., 2020)和茶樹(Camellia sinensis)(Liu et al., 2021)等?,F(xiàn)有研究表明bHLH轉錄因子參與調控光形態(tài)發(fā)生(Akmakjian et al., 2021)、花果發(fā)育和花青素積累(Zhao et al., 2019)以及逆境脅迫響應(Sun et al., 2019)等生物學過程。

      馬纓杜鵑是杜鵑花科杜鵑花屬常綠杜鵑亞屬的多年生高山木本花卉,樹姿蒼勁優(yōu)美、花大色艷且花期長,具有較高的觀賞價值、藥用價值和園林應用前景(Sun et al., 2021),但馬纓杜鵑對生境要求較為苛刻,人工引種需在溫室條件下才能生長良好,水分虧缺是制約其園林應用的關鍵限制因子(Cai et al., 2019; Wang et al., 2020)。已有研究表明,bHLH轉錄因子在脅迫相關調控網絡和信號通路中發(fā)揮重要作用(Li et al., 2019),但目前對杜鵑花科植物bHLH轉錄因子家族的系統(tǒng)分析鮮有報道。

      本研究以馬纓杜鵑基因組文件和轉錄表達數(shù)據(jù)為基礎,運用生物信息學方法,對RdbHLH家族成員進行了系統(tǒng)鑒定和分析,擬探討以下問題:(1)RdbHLH家族成員及蛋白理化性質等基本信息;(2)系統(tǒng)發(fā)育分類、基因結構、保守基序及順式作用元件等特征;(3)蛋白互作網絡、轉錄表達模式及三維結構等特征和功能預測。以期為進一步研究RdbHLH轉錄因子在抗干旱脅迫過程中的生物學功能提供理論依據(jù)。

      1 材料與方法

      1.1 材料

      從杜鵑花植物基因組數(shù)據(jù)庫(http://bioinfor.kib.ac.cn/RPGD/index.html)獲取馬纓杜鵑基因組序列、CDS序列、蛋白序列、GFF注釋文件及不同干旱處理下的轉錄表達數(shù)據(jù);模式植物擬南芥AtbHLH數(shù)據(jù)來自TAIR數(shù)據(jù)庫(https://www.arabidopsis.org/)。

      1.2 RdbHLH家族成員的鑒定、蛋白理化性質及定位預測分析

      從Pfam數(shù)據(jù)庫(http://pfam.xfam.org/)下載bHLH基因的隱馬爾科夫模型文件(PF00010),運用HMMER軟件進行第一次結構域搜索,取前1/3基因的保守結構域序列構建馬纓杜鵑特異性隱馬爾科夫模型,進行第二次結構域搜索,以0.001的E value篩選得到候選基因,為驗證候選基因是否都具有bHLH結構域,將對應的蛋白序列提交至Pfam和SMART(http://smart. embl.de/)數(shù)據(jù)庫進行確認(Zhang et al., 2022)。運用ProtParam工具(https://web.expasy.org/protparam/)分析RdbHLH的蛋白理化性質,包括氨基酸數(shù)目、蛋白分子量、等電點、不穩(wěn)定指數(shù)、脂肪指數(shù)和親水性;運用PSORT工具(https://www.genscript.com/wolfpsort.html)進行RdbHLH蛋白亞細胞定位預測。

      1.3 RdbHLH蛋白多序列比對、系統(tǒng)發(fā)育和分類分析

      選取所有RdbHLH和部分AtbHLH的氨基酸全長序列,運用MEGA 11軟件中的ClustalW程序進行多序列比對,采用鄰接法(neighbor-joining,NJ)構建系統(tǒng)發(fā)育樹,Bootstrap重復檢驗1 000次以評估樹中節(jié)點統(tǒng)計的可靠性。利用ChiPlot工具(https://www.chiplot.online/)繪制系統(tǒng)發(fā)育樹,并參照AtbHLH家族基因的分類系統(tǒng)(Heim et al., 2003)對RdbHLH家族成員進行亞組和亞家族分類。

      1.4 RdbHLH家族基因結構、保守結構域和Motif分析

      運用MEME工具(http://meme-suite.org/)分析RdbHLH蛋白的Motif,Motif搜索數(shù)量為15,長度范圍為6~100;基于GFF注釋文件提取RdbHLH基因的外顯子和內含子位置信息;將蛋白序列上傳至NCBI搜索保守結構域,下載hitdate結果文件,利用TBtools軟件的Gene structure view程序結合系統(tǒng)發(fā)育樹對上述結果進行可視化;基于第二次結構域搜索結果提取RdbHLH對應的保守結構域序列,運用ClustalW程序進行多序列比對,最后用WebLogo工具(https://weblogo.berkeley.edu/ logo.cgi)和geneDoc軟件分析保守結構域。

      1.5 RdbHLH基因啟動子順式作用元件分析

      截取RdbHLH基因起始密碼子上游2 000 bp的啟動子DNA序列,提交至Plant CARE在線工具(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)檢索順式作用元件,并對元件種類、數(shù)量及功能進行統(tǒng)計分析。

      1.6 RdbHLH家族基因在不同干旱脅迫處理下的表達分析

      通過對轉錄表達數(shù)據(jù)的分析,計算基因表達水平并歸一化為FPKM(Fragments Per Kilobase of transcript per Million mapped reads)值,得到4組不同處理下實驗植株RdbHLH基因的相對表達量,實驗處理方式為正常灌溉(CK)、停灌5 d(D5)、停灌9 d(D9)和停灌10 d后立即澆水灌溉6 h(REC)?;趌imma R程序進行差異表達分析,與對照相比,表達差異顯著的標準為|log2(Fold Change)|>1且P(padj)<0.05,使用Tbtools軟件對差異基因表達數(shù)據(jù)進行標準化處理,F(xiàn)PKM值按照log2(FPKM value+1)進行轉換以表示基因相對表達水平(Zhang et al., 2020),繪制差異RdbHLH基因在不同干旱脅迫處理下的表達熱圖。

      1.7 RdbHLH蛋白三維結構預測

      基于轉錄表達分析,將響應干旱脅迫的RdbHLH蛋白序列與PDB數(shù)據(jù)庫(https://saves.mbi.ucla.edu/)進行PSI-blast同源比對,搜索得到特定RdbHLH匹配的蛋白三維結構模板文件,運用Swiss-model在線工具(https://swissmodel.expasy.org/)以同源建模的方式構建RdbHLH蛋白三維結構模型,將模型文件提交至第三方軟件SAVES(https://saves.mbi.ucla.edu/)進行評估確認。

      1.8 RdbHLH蛋白互作網絡分析

      運用OrthoVenn2在線工具(https://orthovenn2.bioinfotoolkits.net/home)將馬纓杜鵑所有基因的蛋白序列與擬南芥進行同源比對,經篩選得到RdbHLH和擬南芥基因間的同源關系對,利用STRING數(shù)據(jù)庫(https://string-db.org/)分析同源關系對中擬南芥基因間的互作網絡關系,映射得到RdbHLH基因間的互作關系(交互得分≥0.65)。

      2 結果與分析

      2.1 RdbHLH轉錄因子家族成員的鑒定、理化性質及定位分析

      本研究共鑒定了116個RdbHLH轉錄因子家族成員,將其重新命名為RdbHLH1-RdbHLH116,已鑒定的RdbHLH詳細信息見表1。與前人研究相比,RdbHLH家族基因數(shù)量較少,前人在桃樹(Prunus persica)(Zhang CH et al., 2018)、紅梅(P. mume)(Wu et al., 2022)、黃瓜(Li et al., 2020)、苦蕎麥(Fagopyrum tataricum)(Sun et al., 2020)、馬鈴薯(Solanum tuberosum)(Wang et al., 2018)、玉米(Zea mays)(Zhang TT et al., 2018)和白菜(Brassica rapa)(Song et al., 2014)中分別鑒定出95、100、142、164、190、208、230個bHLH基因,不同物種間bHLH家族基因數(shù)量差異較大。

      蛋白理化性質及亞細胞定位分析結果(表1)顯示: RdbHLH蛋白序列長度為94~1 024個氨基酸,84.48%的蛋白序列由200~600個氨基酸構成;蛋白分子量為10 552.83~113 904.83 Da,81.03%的蛋白分子量在20 000~60 000 Da之間;蛋白等電點大小為4.87~9.93,平均值為6.69,65.52%的RdbHLH蛋白等電點小于7,呈弱酸性;不穩(wěn)定指數(shù)大于40的RdbHLH蛋白數(shù)量為111個(95.69%);蛋白脂肪指數(shù)為47.70~102.50,大于60的蛋白數(shù)量占比90%以上;所有蛋白平均疏水指數(shù)均為負值,平均為-0.54;除各有3個RdbHLH基因定位到細胞質和線粒體,1個定位到細胞外區(qū)域外,其余RdbHLH基因(93.97%)定位于細胞核。

      2.2 RdbHLH的系統(tǒng)發(fā)育研究和分類

      目前,對模式植物擬南芥AtbHLH基因的研究較為明晰,本研究選取了131個AtbHLH基因作為分類參照,參與構建RdbHLH轉錄因子家族的系統(tǒng)發(fā)育進化樹。根據(jù)系統(tǒng)發(fā)育樹的拓撲結構和AtbHLH亞家族的分類,對RdbHLH亞家族成員進行分類。

      如表2和圖1所示,系統(tǒng)發(fā)育進化樹共劃分為30個亞組和21個亞家族,116個RdbHLH家族成員分布在21個亞家族中的17個亞家族中,分別為Ⅰa、Ⅰb1、Ⅰb2、Ⅱ、Ⅲa+b+c+d+e+f、Ⅳa、Ⅳb2+c、Ⅳd、Ⅴa+b、Ⅶa+b、Ⅷa、Ⅷb+c、Ⅸ、Ⅹ-a、Ⅺ、Ⅻ和ⅩⅢ,RdbHLH111和RdbHLH84不能明確歸屬為AtbHLH的任何一組,故將其歸類為ⅩⅢ亞家族,其中Ⅲa+b+c+d+e+f亞家族包含20個RdbHLH家族成員,為數(shù)量最多的亞家族,而Ⅳb1、Ⅹ-b、Ⅹ-c和Ⅵ亞家族無RdbHLH家族成員分布。在植物中,同一亞家族成員進化距離越近,其結構、參與途徑和生物學過程就可能越相似(Zhang CH et al., 2018),根據(jù)系統(tǒng)發(fā)育關系和AtbHLH功能可推測RdbHLH的功能,如XI、X和Ⅷc亞家族成員可能參與調節(jié)根的生長發(fā)育,Ⅻ、Va+b、X、Ⅲa+b+c+d+e+f、Ⅳd、Ⅰa和ⅠⅩ亞家族大多數(shù)成員可能參與調控植物生長(細胞伸長、花發(fā)育、器官形態(tài)建成)和非生物脅迫(干旱、寒冷、鹽)反應(Salih et al., 2021)。

      2.3 RdbHLH基因結構、保守結構域和Motif分析

      基因結構分析結果(圖2:c)顯示:不同亞家族的RdbHLH基因結構差異較大,長度為467 bp(RdbHLH82)~11 869 bp(RdbHLH33)不等;內含子和外顯子數(shù)量也存在較大差異,內含子數(shù)量為0~13個,12個基因(10.34%)無內含子,分布在Ⅲ-1、Ⅷ-1和Ⅹ亞家族中,15個RdbHLH基因(12.93%)有1個內含子,分布在Ⅰ-1、Ⅰ-3、Ⅲ-1、Ⅴb和Ⅷ-1亞家族中,4個基因(RdbHLH28、RdbHLH96、RdbHLH109和RdbHLH110)的內含子數(shù)量大于等于10,分布在Ⅲ-2、Ⅳ-2和Ⅻ亞家族中,84個RdbHLH基因(72.41%)的內含子數(shù)量為2~8個;外顯子數(shù)量為1~14個不等,12個RdbHLH基因(10.34%)有1個外顯子,分布在Ⅲ-1、Ⅷ-1和Ⅹ亞家族中,98個RdbHLH基因(84.48%)外顯子數(shù)量為2~8個。多序列比對結果和保守結構域顯示(圖2:b和圖3),RdbHLH基因均含有典型的bHLH結構域,其中含bHLH_SF超家族結構域的基因數(shù)量最多,為36個,同一亞家族RdbHLH結構域組成相似性較高。

      如圖2:a和圖3所示,共鑒定出15個Motif(Motif 1-Motif 15),不同基因包含的Motif數(shù)量為1~8個,Motif長度為21~100個氨基酸(表3)。除RdbHLH8、 RdbHLH68、 RdbHLH71、 RdbHLH82、RdbHLH100、RdbHLH102和RdbHLH108不存在堿性基本區(qū),RdbHLH99不存在HLH區(qū)外,其余108個RdbHLH(93.10%)均同時含有Motif 1和Motif 2結構,Motif 1和Motif 2位置除了在RdbHLH42、RdbHLH57和RdbHLH88基因中間隔較遠外,在其余RdbHLH中均緊密相鄰,Motif 1包含一個堿性基本區(qū)域和一個螺旋區(qū)域,而Motif 2包含一個環(huán)狀區(qū)域和另一個螺旋區(qū)域,兩個基序共同組成bHLH結構域(圖3和圖4),RdbHLH保守結構域氨基酸序列中有28個氨基酸較保守(sequence identity>50%),9個氨基酸高度保守(sequence identity>90%)。一般來說,系統(tǒng)發(fā)育樹相鄰分支上的RdbHLH具有相似的基序結構,如Ⅰ-2、Ⅱ、Ⅳ-1、Ⅴb、Ⅶ、Ⅷ1、Ⅸ-1、Ⅺ、Ⅻ等亞家族的基序結構均高度保守。

      2.4 RdbHLH基因啟動子順式作用元件分析

      基因啟動子區(qū)域上游序列作為轉錄因子結合位點,被認為是順式調控元件,在植物生物學過程中發(fā)揮重要調控作用(Schmitz et al., 2022)。為進一步研究RdbHLH的功能,本文對啟動子區(qū)域的順式元件進行了鑒定和分析。如表4和圖5所示,116個RdbHLH基因中共含有32種,2 731個主要的順式作用元件,可大致分為四類(Schmitz et al., 2022):第一類與植物生長發(fā)育有關,如分生組織和蛋白代謝調節(jié)元件等,包括AT-rich element、CAT-box和O2-site,占總元件數(shù)量的4.58%;第二類與激素響應有關,如脫落酸、生長素、赤霉素、茉莉酸甲酯和水楊酸等,包括ABRE、GARE-motif、P-box、TATC-box、TCA-element和TGA-element等9個元件,占比33.54%;第三類為光響應元件,包括ACE、AE-box、GA-motif、G-box、GT1-motif和MRE等13個元件,占比43.39%;第四類為低溫、干旱、創(chuàng)傷和厭氧等脅迫響應元件,包括ARE、ATC-motif、LTR、TC-rich repeats和WUN-motif等7個元件,占比18.49%。其中,共有47個(40.52%)RdbHLH家族基因含響應干旱脅迫的順式作用元件。

      2.5 RdbHLH家族基因在不同干旱處理下的表達分析

      不同干旱脅迫處理下RdbHLH基因的差異表達情況如圖6所示。在干旱脅迫下,共有36個RdbHLH基因表達量顯著變化,RdbHLH40、RdbHLH21和RdbHLH48在CK組中具有較高的表達量,而在干旱脅迫和復水處理下,表達量均較低,這可能是這些基因參與調控植物正常的生長發(fā)育,干旱脅迫限制了植物正常生理過程并抑制了這些基因的表達; RdbHLH28、 RdbHLH104、RdbHLH103在D5處理下,表達量急劇增加,表明這些基因對干旱脅迫較為敏感,在植物抵御中度干旱脅迫階段發(fā)揮重要調控作用;RdbHLH56、RdbHLH7、RdbHLH91、RdbHLH65在CK和D5處理下具有較高表達量,而在D9處理下表達量降低,表明重度干旱脅迫限制了這些基因的表達;RdbHLH23、RdbHLH100、RdbHLH52、RdbHLH82、RdbHLH98和RdbHLH81在D9處理下表達量急劇升高,重度干旱脅迫誘導了這些基因的表達;RdbHLH51、RdbHLH16、RdbHLH50、RdbHLH27和RdbHLH69等9個基因在REC處理下表達量較高,推測這些基因參與植物脅迫損傷后的修復機制;RdbHLH49、RdbHLH95和RdbHLH64在D5和D9處理下表達量均較高,表明這些基因參與植物整個干旱脅迫的響應,其中RdbHLH49和RdbHLH95的表達響應更為強烈,可能在植株抗干旱脅迫過程中發(fā)揮了重要調控作用。

      2.6 RdbHLH蛋白三維結構預測

      基于轉錄表達分析,對強烈響應干旱脅迫的12個RdbHLH蛋白(RdbHLH28、RdbHLH104、RdbHLH103、RdbHLH23、RdbHLH100、RdbHLH52、RdbHLH82、RdbHLH98、RdbHLH81、RdbHLH49、RdbHLH95和RdbHLH64)三維結構的預測如圖7所示。所有RdbHLH均具有α-螺旋、β-折疊、β-轉角及無規(guī)則卷曲的空間構象。整體蛋白三維結構具有一定相似性,所有蛋白成員均具保守的bHLH結構。

      2.7 RdbHLH轉錄因子蛋白互作網絡分析

      蛋白互作網絡(圖8)顯示,RdbHLH33(同源磷酸三聚異構酶,triose phosphate isomerase,AtTIM),與調控糖酵解的關鍵酶甘油醛-3-磷酸脫氫酶(glyceraldehyde-3- phosphate dehydrogenase)的AtGAPA-2、AtGAPB、AtGAPC2和AtGAPCP-2等蛋白間存在較強互作關系(Suzuki et al., 2021; Simkin et al., 2023),擬南芥AtGAPCp在干旱脅迫響應和ABA信號通路中起關鍵作用(Zhang et al., 2019),推測轉錄因子RdbHLH33能夠誘導GAPA-2、GAPB、GAPC2和GAPCP-2的表達,促進信號傳導,協(xié)同調控光合作用還原磷酸戊糖途徑和糖酵解途徑,維持細胞ATP水平,并增強植株對高溫和干旱等逆境的抗性。RdbHLH46(同源AtbHLH29,類FER鐵吸收調節(jié)劑,F(xiàn)ER-like regulator of iron uptake,F(xiàn)RU)、RdbHLH50(同源AtbHLH105,耐IAA-亮氨酸3,IAA-leucine resistant 3,ILR3)、RdbHLH47(同源AtbHLH104)和RdbHLH52(同源AtbHLH39)共同調節(jié)基因的表達以增加鐵的吸收、分布和利用,維持植物鐵穩(wěn)態(tài),并在缺鐵期間提供光保護以減少活性氧積累對植株造成損傷(Jakoby et al., 2004; Akmakjian et al., 2021)。AtbHLH13(Huang et al., 2018)、髓細胞組織增生蛋白2(myelocytomatosis protein 2,MYC2)(Zhu et al., 2023)、茉莉酸ZIM結構域蛋白1(1JAZ1)(Feng et al., 2020)和TIFY7(Singh & Mukhopadhyay, 2021)均參與調控茉莉酸誘導的脅迫響應,RdbHLH56(同源AtbHLH13)和RdbHLH7(同源AtMYC2)與AtJAZ1和AtTIFY7蛋白間存在較強的互作關系,此外,茉莉酸響應轉錄因子AtRERJ1(同源RdbHLH23)(Kiribuchi et al., 2004)、AtbHLH92(同源RdbHLH48)(Shen et al., 2021)和AtJAZ1蛋白間也存在較強互作關系,推測RdbHLH轉錄因子RdbHLH56、RdbHLH7、RdbHLH23和RdbHLH48在茉莉酸信號通路和鹽滲透脅迫響應過程發(fā)揮關鍵調節(jié)作用。轉錄因子Speechless(SPCH)和MUTE均參與調節(jié)氣孔發(fā)育,促進葉表皮轉化為氣孔(Yang et al., 2022; Zuch et al., 2023),G蛋白信號調節(jié)因子E1(regulator of G-protein signaling E1, RGE1)參與調節(jié)胚胎生長和發(fā)育(Zuo et al., 2021),F(xiàn)AMA可促進氣孔保衛(wèi)細胞分化(Ohashi-Ito & Bergmann, 2006),CBF啟動子誘導因子1(inducer of CBF expression 1, ICE1)是調節(jié)冷誘導的轉錄激活劑, 可通過調控SPCH、MUTE和FAMA基因的連續(xù)作用以介導表皮氣孔分化(Feng et al., 2013),故推測RdbHLH19(同源AtICE1)分別與RdbHLH74(同源AtMUTE)、RdbHLH42(同源AtSPCH)和RdbHLH67(同源AtRGE1)相互作用調節(jié)植物冷應激反應、氣孔發(fā)育和胚胎發(fā)育(Liang & Yang, 2015)。擬南芥TIFY轉錄因子AtTIFY7(Liu & Chen, 2019)、bHLH轉錄因子Transparent Testa 8 (AtTT8)(Shin et al., 2013)和Glabra 3(AtGL3)(Zhang et al., 2016)均參與調控花青素的生物合成,據(jù)互作關系推測RdbHLH37(同源AtTT8)、RdbHLH53(同源AtGL3)和TIFY7轉錄因子共同參與調控花青素等黃酮類化合物的合成。隱花色素2(cryptochromes 2, CRY2)、光敏色素A(phytochrome A, PHYA)、光敏色素互作因子3/7(phytochrome interacting factor 3/7, PIF3/7)和隱花色素互作因子bHLH1(cryptochrome-interacting basic helix-loop-helix 1, CIB1)均參與調控植物光周期生長和開花時間(Zuo et al., 2011; Liu et al., 2013),RdbHLH105(同源AtPIF3)、AtPHYA、AtCRY2、RdbHLH21(同源AtPIF7)和RdbHLH65(同源AtCIB1)之間存在較強互作關系,故推測RdbHLH105、RdbHLH21和RdbHLH65參與調控植物的光形態(tài)建成、代謝生物合成及信號轉導。DYT1(dysfunctional tapetum 1)是擬南芥花藥發(fā)育及絨氈層早期分化過程中重要的轉錄因子(Li et al., 2017),AtbHLH10(Huang et al., 2020)、AtbHLH30(Reisfeld et al., 2022)和AtbHLH41(Reisfeld et al., 2022)均參與了絨氈層和花粉的發(fā)育調控,據(jù)互作關系可推測RdbHLH13(同源AtbHLH10)、RdbHLH2(同源AtDYT1)、RdbHLH8(同源AtbHLH41)、RdbHLH89(同源AtbHLH30)和RdbHLH39(同源AtbHLH144)共同參與調控花的發(fā)育。

      3 討論與結論

      本研究共鑒定了116個RdbHLH轉錄因子家族成員,相比白菜、玉米和馬鈴薯等物種,成員數(shù)量較少,可能是不同物種在進化、基因組復制或基因組大小及生境等方面的差異導致了物種間bHLH基因數(shù)目的不同,馬纓杜鵑RdbHLH家族基因沒有經歷大規(guī)模的基因復制事件(gene duplication),而大規(guī)?;驈椭剖录е铝薭HLH家族基因在白菜、玉米和馬鈴薯中的擴展(Carretero-Paulet et al., 2010; Xu et al., 2015)。所有蛋白平均疏水指數(shù)均為負值,表明RdbHLH轉錄因子均為親水性蛋白;等電點跨度較大 (4.87~9.93),表明其編碼蛋白能適應不同的酸堿環(huán)境;絕大多數(shù)RdbHLH蛋白不穩(wěn)定指數(shù)大于40,表明RdbHLH蛋白整體穩(wěn)定性較差,絕大多數(shù)RdbHLHd蛋白定位于細胞核,表明該家族基因主要在細胞核發(fā)揮功能。馬纓杜鵑RdbHLH基因家族成員聚類劃分為17個亞家族,這與植物bHLH家族一般可劃分為15~25個亞家族的早期研究結果相符合(Pires & Dolan, 2010),其中第Ⅲ亞家族的成員數(shù)量最多,無歸類為Ⅵ亞家族的RdbHLH成員,這可能是該亞類蛋白在馬纓杜鵑的進化過程中丟失所致。同一亞家族內基因的結構、保守結構域和Motif組合具有一定相似性,但在不同亞家族間差異較大,推測正是由于這些特異結構和Motif組合的存在導致了bHLH家族基因功能分化,從而調控植物復雜的生物學過程(Wani et al., 2021)。RdbHLH基因啟動子順式調控元件可分為植物生長發(fā)育、植物激素響應、植物光響應和脅迫響應四類,表明RdbHLH基因參與調控植物多方面的生物學過程,光響應相關的元件數(shù)量最多,分布最廣,表明光信號可能在RdbHLH基因的轉錄調控中發(fā)揮重要作用(Nawaz et al., 2014)。47個RdbHLH家族基因含響應干旱脅迫的順式作用元件,表明大量RdbHLH參與響應干旱脅迫。對不同干旱脅迫處理下RdbHLH的差異表達分析研究發(fā)現(xiàn)其表達模式存在顯著差異,說明其功能發(fā)生分化,在響應干旱脅迫過程中發(fā)揮不同作用(Zhang et al., 2022),干旱的加劇誘導了RdbHLH49、RdbHLH95、RdbHLH64、RdbHLH100、RdbHLH52和RdbHLH82基因的高表達,其中RdbHLH49和RdbHLH95的表達響應更為強烈,在復水后這些基因的表達量降低,這可能是復水作用在一定程度上緩解了植株的干旱損傷,推測它們可能在植物抵御干旱脅迫過程中發(fā)揮調控作用。

      RdbHLH46(同源AtFRU)、RdbHLH50(同源AtILR3)、RdbHLH47(同源AtbHLH104)和RdbHLH52(同源AtbHLH39)參與調控鐵的吸收、分布和利用,維持植物中鐵穩(wěn)態(tài),并在缺鐵期間提供光保護,RdbHLH37(同源AtTT8)、RdbHLH53(ATGL3)和AtTIFY7共同參與調控花青素等黃酮類化合物的合成,這與Kazemitabar等(2020)對芝麻(Sesamum indicum)SinbHLH的蛋白互作研究結果一致,F(xiàn)RU、ILR3和TT8在芝麻生命周期中調控脅迫響應、鐵離子內環(huán)境穩(wěn)定和花青素合成。RdbHLH19(同源AtICE1)分別與RdbHLH74(同源AtMUTE)、RdbHLH42(同源AtSPCH)和RdbHLH67(同源AtRGE1)互作調節(jié)植物冷應激反應、氣孔發(fā)育和胚胎發(fā)育,該互作關系與前人在擬南芥中的發(fā)現(xiàn)相符,ICE1可能通過與SPCH、MUTE和FAMA形成異二聚體,在氣孔發(fā)育過程中起正調控作用(Pillitteri & Torri, 2007; Liu et al., 2009)。RdbHLH105(同源AtPIF3)、RdbHLH21(同源AtPIF7)、RdbHLH65(同源AtCIB1)、PHYA和CRY2共同參與調控植物的光形態(tài)建成、代謝生物合成及信號轉導,這與Liu等(2018)的研究發(fā)現(xiàn)相符,CRY2通過激活CIB1來促進開花素(flowering locus T, FT)mRNA的表達,以響應藍光。RdbHLH13(同源AtbHLH10)、RdbHLH2(同源AtDYT1)、RdbHLH8(同源AtbHLH41)、RdbHLH89(同源AtbHLH30)和RdbHLH39(同源AtbHLH144)共同參與調控花的發(fā)育,這與Cheng等(2023)對擬南芥的研究結果相符,AtbhLH10可與DYT1形成蛋白質復合物,協(xié)同作用調控花藥分化。差異表達分析中,一些響應干旱脅迫的關鍵蛋白也被預測存在顯著相互作用, 綜合互作關系推測馬纓杜鵑對干旱脅迫的響應主要通過激發(fā)脅迫信號傳導通路和滲透調節(jié)系統(tǒng),并合成黃酮類化合物以消除活性氧,緩解脅迫損傷。

      本研究中,RdbHLH基因的系統(tǒng)發(fā)育關系和基序結構等特征與功能預測相呼應。例如:擬南芥Ia亞家族的AtbHLH45、AtbHL97和AtbHLH98與氣孔發(fā)育控制相關(Zhou et al., 2020),同屬于Ia亞家族的RdbHLH74和RdbHLH42在互作網絡中也體現(xiàn)了該功能;Ⅷb亞家族中的AtbHLH37、de0d7e8e08d739bf1e07e85fe0bf5e01AtbHLH40、AtbHLH43和AtbHLH88調控花和果的發(fā)育(Carretero-Paulet et al., 2010),被劃分在Ⅷb亞家族的RdbHLH72、RdbHLH106、RdbHLH107、RdbHLH11和RdbHLH85在互作網絡中也具有類似功能;AtbHLH38、AtbHLH39、AtbHLH100和AtbHLH101基因參與鐵缺乏反應(Wang et al., 2013),Ib1亞家族中RdbHLH102、RdbHLH68和RdbHLH52在互作網絡中也被預測參與缺鐵反應,這體現(xiàn)了系統(tǒng)發(fā)育功能推測與蛋白互作網絡功能預測相一致。此外,在互作網絡中,RdbHLH56、RdbHLH7、RdbHLH23和RdbHLH48被預測在茉莉酸信號通路發(fā)揮作用,在這些基因啟動子中也存在與茉莉酸甲酯相關的順式調控元件,包括G-box CGTCA和TGACG基序,預測參與光響應的RdbHLH56、RdbHLH7、RdbHLH23和RdbHLH48基因啟動子中也存在G-box、 Box 4和GT1-motif等光響應順式調控元件,這體現(xiàn)了RdbHLH基因結構和功能的統(tǒng)一。

      綜上所述,本研究鑒定了116個RdbHLH基因,對家族成員進行了系統(tǒng)的特征分析和進化分類,結合轉錄表達數(shù)據(jù),對RdbHLH基因在干旱脅迫下的表達模式進行了總結,篩選出與干旱脅迫相關的2個重要候選基因,RdbHLH49和RdbHLH95可能在馬纓杜鵑抵御干旱脅迫過程中發(fā)揮重要作用,但具體功能仍需開展后續(xù)實驗進行驗證。本研究結4a92a627e8369ac434133c3ad54d0e14果為進一步研究RdbHLH基因的生物學功能提供了理論依據(jù),也為培育馬纓杜鵑優(yōu)良園藝品種提供了靶向基因資源。

      參考文獻:

      AKMAKJIAN GZ, RIAZ N, GUERINOT ML, 2021. Photoprotection during iron deficiency is mediated by the bHLH transcription factors PYE and ILR3 [J]. Proc Natl Acad Sci USA, 118(40): e2024918118.

      BANO N, PATEL P, CHAKRABARTY D, et al., 2021. Genome-wide identification, phylogeny, and expression analysis of the bHLH gene family in tobacco (Nicotiana tabacum) [J]. Physiol Mol Biol Plant, 27(8): 1747-1764.

      CAI YF, WANG JH, ZHANG L, et al., 2019. Physiological and transcriptomic analysis highlight key metabolic pathways in relation to drought tolerance in Rhododendron delavayi [J]. Physiol Mol Biol Plant, 25(4): 991-1008.

      CARRETERO-PAULET L, GALSTYAN A, ROIG VI, et al., 2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae [J]. Plant Physiol, 153(3): 1398-1412.

      CHENG Z, SONG WY, ZHANG XL, 2023. Genic male and female sterility in vegetable crops [J]. Hortic Res, 10(1): uhac232.

      FELLER A, MACHEMER K, BRAUN EL, et al., 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors [J]. Plant J, 66(1): 94-116.

      FENG HL, MA NN, MENG X, et al., 2013. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco [J]. Plant Physiol Biochem, 73: 309-320.

      FENG XJ, ZHANG L, WEI XL, et al., 2020. OsJAZ13 negatively regulates jasmonate signaling and activates hypersensitive cell death response in rice [J]. Int J Mol Sci, 21(12): 4379.

      HAO YQ, ZONG XM, REN P, et al., 2021. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis [J]. Int J Mol Sci, 22(13): 7152.

      HEIM MA, JAKOBY M, WERBER M, et al., 2003. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity [J]. Mol Biol Evol, 20(5): 735-747.

      HUANG H, GAO H, LIU B, et al., 2018. bHLH13 regulates jasmonate-mediated defense responses and growth [J]. Evol Bioinform, 14: 1176934318790265.

      HUANG JY, WANG C, LI X, et al., 2020. Conservation and divergence in the meiocyte sRNAomes of Arabidopsis, soybean, and cucumber [J]. Plant Physiol, 182(1): 301-317.

      JAKOBY M, WANG HY, REIDT W, et al., 2004.FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana [J]. Febs Lett, 577(3): 528-534.

      KAZEMITABAR SK, FARAJI S, NAJAFI ZH, 2020. Identification and in silico evaluation of bHLH genes in the Sesamum indicum genome: growth regulation and stress dealing specially through the metal ions homeostasis and flavonoid biosynthesis [J]. Gene Rep, 19: 100639.

      KIRIBUCHI K, SUGIMORI M, TAKEDA M, et al., 2004. RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix-loop-helix protein [J]. Biochem Biophys Res Commun, 325(3): 857-863.

      LANG YH, LIU Z, 2020. Basic helix-loop-helix (bHLH) transcription factor family in yellow horn (Xanthoceras sorbifolia Bunge): genome-wide characterization, chromosome location, phylogeny, structures and expression patterns [J]. Int J Biol Macromol, 160: 711-723.

      LI CJ, YAN CX, SUN QX, et al., 2021. The bHLH transcription factor AhbHLH112 improves the drought tolerance of peanut [J]. BMC Plant Biol, 21(1): 1-12.

      LI DD, XUE JS, ZHU J, et al., 2017. Gene regulatory network for tapetum development in Arabidopsis thaliana [J]. Front Plant Sci, 8: 1559.

      LI JL, WANG T, HAN J, et al., 2020. Genome-wide identification and characterization of cucumber bHLH family genes and the functional characterization of CsbHLH041 in NaCl and ABA tolerance in Arabidopsis and cucumber [J]. BMC Plant Biol, 20(1): 1-20.

      LI ZX, LIU C, ZHANG Y, et al., 2019. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis [J]. J Exp Bot, 70(19): 5471-5486.

      LIANG CH, YANG CC, 2015. Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis [J]. Plant Mol Biol, 88(4/5): 459-470.

      LIU HF, CHEN FB, 2019. Candidate genes in red pigment biosynthesis of a red-fleshed radish cultivar (Raphanus sativus L.) as revealed by transcriptome analysis [J]. Biochem Syst Ecol, 86: 103933.

      LIU HT, WANG Q, LIU YW, et al., 2013. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms [J]. Proc Natl Acad Sci USA, 110(43): 17582-17587.

      LIU RJ, WANG YY, TANG S, et al., 2021. Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation [J]. Sci Rep, 11(1): 10764.

      LIU T, OHASHI IK, BERGMANN 31bcff9eb0e97ebb5b4ac096f62b85d6f4233a53a45ec256cf44f146c145133bDC, 2009. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses [J]. Development, 136(13): 2265-2276.

      LIU YW, LI X, MA DB, et al., 2018. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering [J]. Embo Rep, 19(10): e45762.

      NAWAZ Z, KAKAR KU, SAAND MA, et al., 2014. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses [J]. BMC Genomics, 15(1): 1-18.

      OHASHI IK, BERGMANN DC, 2006. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development [J]. Plant Cell, 18(10): 2493-2505.

      PILLITTERI LJ, TORRI KU, 2007. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development [J]. BioEssays, 29(9): 861-870.

      PIRES N, DOLAN L, 2010. Origin and diversification of basic-helix-loop-helix proteins in plants [J]. Mol Biol Evol, 27(4): 862-874.

      REISFELD G, FAIGENBOIM A, FOX H, et al., 2022. Differentially expressed transcription factors during male and female cone development in Pinus halepensis [J]. Agronomy-Basel, 12(7): 1588.

      SALIH H, TAN L, HTET NNW, 2021. Genome-wide identification, characterization of bHLH transcription factors in mango [J]. Trop Plant Biol, 14(1): 72-81.

      SCHMITZ RJ, GROTEWOLD E, STAM M, 2022. Cis-regulatory sequences in plants: their importance, discovery, and future challenges [J]. Plant Cell, 34(2): 718-741.

      SHEN TJ, WEN XP, WEN Z, et al., 2021. Genome-wide identification and expression analysis of bHLH transcription factor family in response to cold stress in sweet cherry (Prunus avium L.) [J]. Sci Hort-Amstdam, 279: 109905.

      SHIN DH, CHOI MG, KIM K, et al., 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis [J]. Febs Lett, 587(10): 1543-1547.

      SIMKIN AJ, ALQURASHI M, LOPEZ-CALCAGNO PE, et al., 2023. Glyceraldehyde-3-phosphate dehydrogenase subunits A and B are essential to maintain photosynthetic efficiency [J]. Plant Physiol, 122: 491-504.

      SINGH P, MUKHOPADHYAY K, 2021. Comprehensive molecular dissection of TIFY transcription factors reveal their dynamic responses to biotic and abiotic stress in wheat (Triticum aestivum L.) [J]. Sci Rep, 11(1): 1-17.

      SONG XM, HUANG ZN, DUAN WK, et al., 2014. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis) [J]. Mol Genet Genomics, 289(1): 77-91.

      STRADER L, WEIJERS D, WAGNER D, 2022. Plant transcription factors-being in the right place with the right company [J]. Curr Opin Plant Biol, 65: 102136.

      SUN KL, WANG HY, XIA ZL, 2019. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco [J]. Plant Sci, 280: 97-109.

      SUN W, ZHOU NN, WANG YH, et al., 2021. Characterization and functional analysis of RdDFR1 regulation on flower color formation in Rhododendron delavayi [J]. Plant Physiol Biochem, 169: 203-210.

      SUN WJ, JIN X, MA ZT, et al., 2020. Basic helix-loop-helix (bHLH) gene family in tartary buckwheat (Fagopyrum tataricum): genome-wide identification, phylogeny, evolutionary expansion and expression analyses [J]. Int J Biol Macromol, 155: 1478-1490.

      SUZUKI YJ, ISHIYAMA K, SUGAWARA M, et al., 2021. Overproduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase improves photosynthesis slightly under elevated CO2 conditions in rice [J]. Plant Cell Physiol, 62(1): 156-165.

      WANG H, MU KY, LIU CY, et al., 2020. Gene expression profiling of Rhododendron pulchrumleaves under drought stress [J]. Tree Genet Genom, 16(4): 1-12.

      WANG N, CUI Y, LIU Y, et al., 2013. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana [J]. Mol Plant, 6(2): 503-513.

      WANG RQ, ZHAO P, KONG NN, et al., 2018. Genome-wide identification and characterization of the potato bHLH transcription factor family [J]. Genes, 9(1): 54.

      WANI SH, ANAND S, SINGH B, et al., 2021. WRKY transcription factors and plant defense responses: latest discoveries and future prospects [J]. Plant Cell Rep, 40(7): 1071-1085.

      WU YY, WU SH, WANG XQ, et al., 2022. Genome-wide identification and characterization of the bHLH gene family in an ornamental woody plant Prunus mume [J]. Hortic Plant J, 8(4): 531-544.

      XU WJ, DUBOS C, LEPINIEC L, 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes [J]. Trends Plant Sci, 20(3): 176-185.

      YANG X, GAVYA SL, ZHOU ZM, et al., 2022. Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase-mediated phosphocode on the master regulator SPEECHLESS [J]. Sci Adv, 8(40): eadd2063.

      ZHANG CH, FENG RC, MA RJ, et al., 2018. Genome-wide analysis of basic helix-loop-helix superfamily members in peach [J]. PLoS ONE, 13(4): e0195974.

      ZHANG L, CHEN W, LIU RR, et al., 2022.Genome-wide characterization and expression analysis of bHLH gene family in physic nut (Jatropha curcas L.) [J]. PeerJ, 10: e13786.

      ZHANG L, SONG ZQ, LI FF, et al., 2019. Retracted article: The specific MYB binding sites bound by TaMYB in the GAPCp2/3 promoters are involved in the drought stress response in wheat [J]. BMC Plant Biol, 19(1): 1-14.

      ZHANG N, SUN QQ, LI HF, et al., 2016. Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage [J]. Front Plant Sci, 7: 197.

      ZHANG TT, LV W, ZHANG HS, et al., 2018. Genome-wide analysis of the basic helix-loop-helix (bHLH) transcription factor family in maize [J]. BMC Plant Biol, 18: 1-14.

      ZHANG ZS, CHEN J, LIANG CL, et al., 2020. Genome-wide identification and characterization of the bHLH transcription factor family in pepper (Capsicum annuum L.) [J]. Front Genet, 11: 570156.

      ZHAO MR, LI J, ZHU L, et al., 2019. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development [J]. Genes, 10(7): 496.

      ZHOU X, LIAO YL, KIM SU, et al., 2020. Genome-wide identification and characterization of bHLH family genes from Ginkgo biloba [J]. Sci Rep, 10(1): 13723.

      ZHU J, WANG WS, YAN DW, et al., 2023. CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in Arabidopsis [J]. Nucl Acid Res, 51(2): 619-630.

      ZUCH DT, HERRMANN A, KIM ED, et al., 2023. Cell cycle dynamics during stomatal development: window of MUTE action and ramification of its loss-of-function on an uncommitted precursor [J]. Plant Cell Physiol, 64(3): 325-335.

      ZOU ZC, LIU HT, LIU B, et al., 2011. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis [J]. Curr Biol, 21(10): 841-847.

      ZUO ZF, SUN HJ, LEE HY, et al., 2021. Identification of bHLH genes through genome-wide association study and antisense expression of ZjbHLH076/ZjICE1 influence tolerance to low temperature and salinity in Zoysia japonica [J]. Plant Sci, 313: 111088.

      垣曲县| 普兰店市| 斗六市| 贡山| 荆州市| 博野县| 黔江区| 古交市| 宾阳县| 玛纳斯县| 额尔古纳市| 彰化市| 宁国市| 咸阳市| 闻喜县| 马龙县| 甘孜| 宁武县| 溧水县| 项城市| 青海省| 五原县| 鹤壁市| 卢氏县| 楚雄市| 河东区| 辽源市| 额济纳旗| 沛县| 繁峙县| 晴隆县| 南溪县| 卢氏县| 和田市| 基隆市| 武定县| 溧水县| 兴文县| 敖汉旗| 司法| 金川县|