• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      茶樹γ-氨基丁酸代謝途徑對(duì)早期茶尺蠖取食為害的響應(yīng)

      2024-11-08 00:00:00孫娟陳慧劉關(guān)華張瀚黃福印王玉璽王諾保德孟施江戴偉東陳健付建玉
      茶葉科學(xué) 2024年5期

      摘要:茶尺蠖(Ectropis obliqua Prout)為害會(huì)誘導(dǎo)茶樹釋放大量揮發(fā)性代謝物,這些代謝物作為重要信號(hào)物質(zhì)在趨避害蟲或吸引天敵方面的研究已被廣泛報(bào)道,但茶尺蠖為害對(duì)茶樹葉片中非揮發(fā)性代謝物質(zhì)空間變化的影響及其作用尚不清楚。以茶樹葉片為材料,限制茶尺蠖僅在葉尖部取食,再采集葉尖部、葉中部、葉基部3個(gè)位點(diǎn)組織,基于超高效液相色譜-四極桿軌道阱質(zhì)譜(UHPLC-Q-Exactive/MS)的分析方法對(duì)這3個(gè)位點(diǎn)組織的非揮發(fā)性代謝物質(zhì)進(jìn)行鑒定和分析。結(jié)果表明,與空白對(duì)照和機(jī)械損傷相比,茶尺蠖為害可誘導(dǎo)6種二聚兒茶素類、3種氨基酸類(包括γ-氨基丁酸)、1種黃酮和黃酮苷類、1種酚酸類共11種差異代謝物。與空白對(duì)照相比,茶尺蠖為害后,茶樹葉片3個(gè)位點(diǎn)的γ-氨基丁酸相對(duì)含量均明顯增加,在葉中部和葉基部均增加了1.99倍,且γ-氨基丁酸生物合成途徑中的關(guān)鍵基因在這3個(gè)位點(diǎn)均上調(diào)表達(dá)。茶尺蠖為害后,在葉片葉尖部和葉基部,γ-氨基丁酸的相對(duì)含量與其前體物質(zhì)谷氨酸的相對(duì)含量呈顯著正相關(guān)(P<0.05)。茶尺蠖取食添加了0.2、0.5、2.0 mg·g-1 γ-氨基丁酸的人工飼料后,其體質(zhì)量和體長均顯著小于對(duì)照組(P<0.05)。本研究表明,γ-氨基丁酸代謝途徑在茶樹抵御茶尺蠖為害的早期防御反應(yīng)中發(fā)揮了重要作用,為進(jìn)一步揭示茶樹的生化抗性機(jī)制奠定基礎(chǔ)。

      關(guān)鍵詞:茶樹;茶尺蠖;γ-氨基丁酸;空間變化

      中圖分類號(hào):S571.1;S435.711 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1000-369X(2024)05-816-15

      Response of γ-Aminobutyric Acid Metabolic Pathway in Tea Plants to Early Infestation of Ectropis obliqua

      SUN Juan1,2,3, CHEN Hui2,3, LIU Guanhua2,3, ZHANG Han2,3, HUANG Fuyin2,3, WANG Yuxi2,3, WANG Nuo2,3, BAO Demeng2,3, SHI Jiang2,4, DAI Weidong2,4, CHEN Jian1, FU Jianyu2,3*

      1. College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;

      2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;

      3. Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China;

      4. Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China

      Abstract: Tea geometrid (Ectropis obliqua Prout) infestation induces tea plants to release massive amounts of volatile organic compounds (VOCs), which are widely reported as important chemical cues that either repel the pests or attract their enemies. However, the spatial variations and the roles of the non-volatile metabolites in tea leaves infested by the tea geometrids are confusing. Taking tea leaves as materials, the feeding of E. obliqua was limited at the leaf tip, and then the tissues at the leaf tip, middle and base were collected. The non-volatile metabolites of the tissues at the three sites were identified and analyzed by ultra-high performance liquid chromatography-quadrupole orbitrap mass spectrometry (UHPLC-Q-Exactive/MS). The results demonstrate that compared with the blank control and mechanical injury tea leaves, tea geometrids induced 11 differential metabolites, including six dimeric catechins, three amino acids (including γ-aminobutyric acid), one flavonoid and flavonoid glycoside, and one phenolic acid compound. After the infestation of the tea geometrids, the relative contents of γ-aminobutyric acid at the three sites in tea leaves were significantly increased compared to the blank control tea leaves, and increased by 1.99-fold in the middle and base of leaves. In addition, the key genes involved in the γ-aminobutyric acid biosynthetic pathway were upregulated at all three sites of tea leaves. There was a significant positive correlation between the relative content of γ-aminobutyric acid and the relative content of glutamic acid (P<0.05). When the tea geometrids were fed with artificial diet supplemented with 0.2 mg·g-1, 0.5 mg·g-1 and 2.0 mg·g-1 γ-aminobutyric acid, their body weight and length were both significantly decreased compared with the control (P<0.05). The present study indicates that the inhibitory neurotransmitter γ-aminobutyric acid plays a pivotal role in the early defense response against tea geometrids, which will shed light on the biochemical resistance mechanism of the tea plants.

      Keywords: Camellia sinesis, Ectropis obliqua, γ-aminobutyric acid, spatial variation

      植物在進(jìn)化過程中形成了復(fù)雜而巧妙的防御系統(tǒng)來應(yīng)對(duì)害蟲的取食為害,包括組成型和誘導(dǎo)型[1]。組成型防御是植物自身固有的,能夠阻礙侵染的物理或化學(xué)防御性狀,如植物組織表面的蠟質(zhì)、刺、表皮毛等[2]。誘導(dǎo)型防御是指在受到攻擊或外界誘導(dǎo)的情況下,植物的形態(tài)或內(nèi)部代謝物發(fā)生變化,從而對(duì)害蟲的某些行為能力產(chǎn)生負(fù)面影響的一種特性[3]。植物的誘導(dǎo)型防御又可分為直接防御和間接防御。直接防御是指植物自身積累的物質(zhì)能夠直接影響害蟲的生理狀態(tài)及行為,如生成廣譜防御相關(guān)代謝物[4]。害蟲的取食可以誘導(dǎo)這些代謝物在植物體內(nèi)的空間分布發(fā)生變化,如新產(chǎn)生毒素,或在同一器官或整株植物中增加毒素的積累[5]。例如,斜紋夜蛾的取食會(huì)誘導(dǎo)玉米葉片中倍半萜的空間分布變化,倍半萜僅在受傷部位至葉尖之間產(chǎn)生,并呈現(xiàn)從葉尖到受害部位的梯度增加趨勢(shì)[6]。同樣,東方黏蟲的取食部位也會(huì)影響玉米葉片中抗蟲苯并噁嗪類化合物的產(chǎn)生和空間分布[7]。

      γ-氨基丁酸(Gamma-aminobutyric acid,GABA)是一種廣泛分布的非蛋白質(zhì)氨基酸[8],其作為一種神經(jīng)遞質(zhì)能夠抑制害蟲的生長發(fā)育,在煙草和擬南芥中對(duì)害蟲的防御反應(yīng)起關(guān)鍵作用[9-10]。研究表明,害蟲的爬行或取食會(huì)導(dǎo)致植物組織和細(xì)胞的損傷,快速誘導(dǎo)γ-氨基丁酸合成和積累[11-13]。植物中有兩條γ-氨基丁酸合成和轉(zhuǎn)化途徑:第一條途徑為γ-氨基丁酸支路,是γ-氨基丁酸合成與代謝的主要途徑,由谷氨酸脫羧酶(Glutamic acid decarboxylase,GAD)催化谷氨酸合成γ-氨基丁酸,再經(jīng)γ-氨基丁酸轉(zhuǎn)氨酶(GABA transaminase,GABA-T)和琥珀酸半醛脫氫酶(Succinic semialdehyde dehydrogenase,SSADH)催化生成琥珀酸進(jìn)入三羧酸(TCA)循環(huán),最后由α-酮戊二酸催化谷氨酸脫氫酶(Glutamate dehydrogenase,GDH)生成谷氨酸;第二條途徑為多胺降解途徑,主要由精氨酸脫羧酶(Arginine decarboxylase,ADC)催化精氨酸生成胍丁胺再轉(zhuǎn)化為腐胺,由銅胺氧化酶(Copper amine oxidase,CuAO)催化腐胺降解產(chǎn)物轉(zhuǎn)化為γ-氨基丁酸[14-15]。

      茶尺蠖(Ectropis obliqua Prout)是茶樹上一類發(fā)生普遍且為害嚴(yán)重的咀嚼式口器害蟲。近年來,茶園中茶尺蠖為害頻繁發(fā)生,茶葉產(chǎn)量受到了極大的影響[16]。大量研究表明,茶尺蠖取食為害誘導(dǎo)茶樹釋放大量揮發(fā)物,以直接趨避昆蟲或間接吸引天敵的方式來抵御蟲害[17-18]。茶尺蠖取食可誘導(dǎo)茶樹葉片中倍半萜合酶基因CsAFR和CsNES2表達(dá)水平的顯著上調(diào),增加(E,E)-α-法尼烯和(E)-橙花叔醇的釋放量[19]。此外,茶尺蠖會(huì)誘導(dǎo)茶樹釋放高濃度的吲哚并促進(jìn)茉莉酸和防御相關(guān)次生代謝物的產(chǎn)生[20]。茶尺蠖為害誘導(dǎo)的茶樹苯乙腈的合成和釋放量集中在白天,使茶樹免受晝行性茶尺蠖幼蟲的危害[21]。周圍健康茶樹植株也會(huì)感知受害植株釋放的化學(xué)信號(hào)(如β-羅勒烯和萜類同系物DMNT等化學(xué)信號(hào)),提高自身抗性水平,進(jìn)而實(shí)現(xiàn)群體防御[22]。

      非揮發(fā)性代謝物在茶樹對(duì)茶尺蠖的防御反應(yīng)過程中也發(fā)揮著至關(guān)重要的作用,如拒食、驅(qū)避、毒害茶尺蠖等[23-24]。研究表明,茶尺蠖幼蟲取食可顯著誘導(dǎo)茶樹葉片中槲皮素-

      3-O-葡萄糖苷、兒茶素、表兒茶素和表沒食子兒茶素沒食子酸酯等次級(jí)代謝產(chǎn)物含量顯著積累,最終產(chǎn)生直接防御反應(yīng)[25-26]。受害茶樹葉片產(chǎn)生的茉莉酸信號(hào)能夠傳遞到未受害的相鄰葉片,并誘導(dǎo)Kunitz型蛋白酶抑制劑基因CsKPI1的表達(dá),增強(qiáng)茶樹對(duì)茶尺蠖的防御能力[27]。當(dāng)前,對(duì)蟲害誘導(dǎo)茶樹抗性的研究主要以揮發(fā)性物質(zhì)為主,非揮發(fā)性物質(zhì)種類龐雜且難以準(zhǔn)確定量,因此單片茶樹葉片中非揮發(fā)性代謝物對(duì)蟲害的響應(yīng)及其機(jī)制研究鮮見報(bào)道。本研究以茶樹葉片為研究材料,利用代謝組學(xué)技術(shù)解析茶尺蠖為害葉尖后非揮發(fā)性代謝物在該葉片中的時(shí)空變化,并分析關(guān)鍵物質(zhì)γ-氨基丁酸合成途徑的基因表達(dá)水平,結(jié)合生物測(cè)定方法,為揭示茶樹非揮發(fā)性代謝物對(duì)蟲害的化學(xué)防御機(jī)制提供重要基礎(chǔ)。

      1 材料與方法

      1.1 供試茶苗

      供試茶苗為2年生龍井43扦插苗,種植在中國農(nóng)業(yè)科學(xué)院茶葉研究所嵊州綜合實(shí)驗(yàn)基地,選擇完好健康茶枝作為研究材料。

      1.2 供試茶尺蠖

      茶尺蠖幼蟲由中國農(nóng)業(yè)科學(xué)院茶葉研究所昆蟲飼養(yǎng)室提供。室內(nèi)飼養(yǎng)一代后的3齡幼蟲,饑餓3 h后用于單片茶樹葉片處理。室內(nèi)飼養(yǎng)一代后的初孵幼蟲,取食人工飼料至3齡后用于體質(zhì)量和體長指標(biāo)測(cè)定。

      1.3 供試飼料

      人工飼料參考楊子威等[28]的配方并適當(dāng)改進(jìn)。稱取10 g茶葉干粉、5 g大豆粉、0.35 g抗壞血酸、1.5 g酵母粉混勻備用。稱取1.2 g瓊脂粉,加入100 mL蒸餾水,加熱4 min至透明,立即加入1 g蔗糖、0.05 g山梨醇和0.085 g對(duì)羥基苯甲酸甲酯混勻,待溫度降到60 ℃時(shí),分別添加0.2、0.5、2.0 mg·g-1的γ-氨基丁酸,對(duì)照組不添加γ-氨基丁酸。最后分別倒入混勻的茶葉干粉中并攪拌均勻,待飼料凝固后放入﹣20 ℃冰箱保存待用。

      1.4 儀器與試劑

      主要儀器:超高效液相色譜-四極桿軌道阱質(zhì)譜儀(Ultra-high performance liquid chromatography-quadrupole orbitrap mass spectrometry,UHPLC-Q-Exactive/MS),美國Thermo Fisher公司;低溫冷凍離心機(jī),德國Eppendorf公司;數(shù)控超聲波清洗器,昆山市超聲儀器有限公司;LightCycler?480 Ⅱ?qū)崟r(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)儀,上海羅氏制藥有限公司;萬分之一電子天平,奧豪斯儀器(常州)有限公司;超景深顯微鏡(VHX-6000),基恩士有限公司。

      試劑:甲醇(色譜純)、抗壞血酸購自上海阿拉丁生化科技股份有限公司,乙腈(色譜純)購自西格瑪奧德里奇(上海)貿(mào)易有限公司,RNA提取試劑盒購自天根生化科技(北京)有限公司,逆轉(zhuǎn)錄試劑盒和熒光定量PCR試劑盒均購自南京諾唯贊生物科技股份有限公司,γ-氨基丁酸購自北京中農(nóng)思辰生物科技有限公司,大豆粉購自山東艾科特農(nóng)業(yè)發(fā)展有限公司,酵母粉購自賽默飛世爾科技公司,瓊脂粉和蔗糖均購自國藥集團(tuán)化學(xué)試劑有限公司,山梨醇購自北京科奧科技有限公司,對(duì)羥基苯甲酸甲酯購自合肥博美生物科技有限責(zé)任公司。

      1.5 茶樹葉片處理

      茶尺蠖為害組將2頭3齡茶尺蠖幼蟲接種于茶樹新梢芽下第3葉的葉尖部,套以透氣網(wǎng)袋防止逃逸。機(jī)械損傷組處理用消毒剪刀模擬茶尺蠖的取食方式,在茶樹新梢芽下第3葉的葉尖部形成創(chuàng)傷后,套以透氣網(wǎng)袋??瞻讓?duì)照組僅在茶樹新梢芽下第3葉套透氣網(wǎng)袋(圖1)。

      1.6 樣品采集

      處理6 h后取芽下第3葉的葉尖部、葉中部、葉基部(2 mm×2 mm圓形葉片,約0.83 mg)用于非揮發(fā)性代謝物及基因表達(dá)量分析。6個(gè)同一位點(diǎn)葉片組織作為1個(gè)混樣,每組處理3個(gè)混樣重復(fù)。

      1.7 非揮發(fā)性代謝物質(zhì)的測(cè)定

      1.7.1 樣品前處理

      樣品中加入100 μL 70%的甲醇溶液(V甲醇∶

      V水=7∶3),溶解后20 ℃水浴超聲30 min,以10 000 r·min-1離心10 min,取上清液待測(cè)。

      1.7.2 UHPLC-Q-Exactive/MS分析條件

      試驗(yàn)樣品的代謝組學(xué)分析采用UHPLC-Q-

      Exactive/MS進(jìn)行數(shù)據(jù)采集。

      UHPLC條件:T3色譜柱(100 mm×2.1 mm,1.8 μm),柱溫40 ℃,流速0.4 mL·min-1,進(jìn)樣量為3 μL。流動(dòng)相A為0.1%甲酸-水溶液,流動(dòng)相B為0.1%甲酸-乙腈溶液。洗脫程序:0 min,98% A;0~0.5 min,98% A;0.5~8.0 min,85% A;8.0~13.0 min,65% A;13.0~15.0 min,30% A;15.0~16.0 min,15% A;16.0~16.5 min,98% A;16.5~20.0 min,98% A。

      MS條件:采用電噴霧電離(Electrospray ionization,ESI)離子源,正離子全掃描模式,質(zhì)量掃描范圍為質(zhì)荷比(m/z)80~1 200,毛細(xì)管電壓3.5 kV,毛細(xì)管溫度300 ℃,輔助氣溫度350 ℃,輔助氣流速10 L·min-1。

      代謝物結(jié)構(gòu)鑒定參考前期研究結(jié)果和建立的數(shù)據(jù)庫[29-30]。

      1.8 基因表達(dá)量分析

      使用多糖多酚植物總RNA提取試劑盒(離心柱型)提取樣本RNA,將質(zhì)量合格的RNA采用逆轉(zhuǎn)錄試劑盒反轉(zhuǎn)錄為cDNA。使用LightCycler?480 Ⅱ?qū)崟r(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)儀及熒光定量PCR試劑盒進(jìn)行實(shí)時(shí)熒光定量PCR(qRT-PCR)。PCR反應(yīng)條件:95 ℃預(yù)變性30 s;95 ℃變性10 s,60 ℃退火30 s,40個(gè)循環(huán)。每個(gè)樣品3次生物學(xué)重復(fù)。采用 法分析基因的相對(duì)表達(dá)水平。CsGAPDH作為內(nèi)參基因[31],引物序列見表1。

      1.9 體質(zhì)量和體長測(cè)定

      將20頭初孵幼蟲接在放置有人工飼料的塑料培養(yǎng)皿中飼養(yǎng),每2 d更換1次人工飼料。飼喂至3齡后,用萬分之一電子天平和超景深顯微鏡(VHX-6000)分別測(cè)量幼蟲的體質(zhì)量和長度。每組處理重復(fù)3次。

      1.10 數(shù)據(jù)分析

      UHPLC-Q-Exactive/MS分析得到的原始圖譜采用Compound Discoverer 3.2軟件進(jìn)行峰匹配與峰面積提取,采用SIMCA-P 14.1軟件進(jìn)行有監(jiān)督的偏最小二乘回歸分析(Partial least squares discriminant analysis,PLS-DA),采用IBM SPSS Statistics 26軟件進(jìn)行單因素方差分析,GraphPad Prism 9繪制柱狀圖,熱圖分析由Tbtools-IIv 2.061軟件繪制,在基迪奧生物信息云平臺(tái)(https://www.omicshare.com)采用皮爾遜相關(guān)系數(shù)法完成相關(guān)性分析。

      2 結(jié)果與分析

      2.1 茶尺蠖為害誘導(dǎo)茶樹葉片中代謝物的變化

      通過一級(jí)質(zhì)譜、二級(jí)質(zhì)譜與標(biāo)準(zhǔn)品比較分析,從茶尺蠖為害后的茶樹葉片中共鑒定出138種化合物(表2),包括36種黃酮和黃酮苷類(26%)、20種二聚兒茶素類(14%)、17種氨基酸類(12%)、13種脂質(zhì)類(9%)、13種黃烷醇類(9%)、13種酚酸類(9%)、8種生物堿類(6%)、7種有機(jī)酸類(5%)、2種糖類(1%)、2種萜類(1%)、7種其他類(5%)(圖2A)。

      PLS-DA顯示,茶尺蠖為害后的葉片與空白對(duì)照組的葉片在第1主成分上(R2X[1]=0.282)有明顯的分離,與機(jī)械損傷后的葉片在第2主成分上(R2X[2]=0.199)有較明顯的分離(圖2B)。該結(jié)果表明,茶尺蠖為害能夠誘導(dǎo)單片茶樹葉片的非揮發(fā)性代謝物積累量發(fā)生明顯改變。

      基于VIP>1,P<0.05的篩選標(biāo)準(zhǔn),在不同處理組的茶樹葉片中共篩選出23種差異代謝物。與空白對(duì)照相比,茶尺蠖為害誘導(dǎo)產(chǎn)生16種差異代謝物,包括6種二聚兒茶素類(茶苷C、原飛燕草素A1、茶黃素、茶黃素-3-沒食子酸酯、茶黃素-3′-沒食子酸酯、茶黃素3,3′-二沒食子酸酯),3種氨基酸類(γ-氨基丁酸、丙氨酸、絲氨酸),3種生物堿類(鳥嘌呤、尿嘧啶苷酸、N-乳酰乙醇胺),1種黃酮和黃酮苷類(5-羥基-3′-甲氧基黃酮),1種酚酸類(沒食子酸),1種萜類(枸杞苷IX),1種脂質(zhì)類[甘油二酯(18∶3)]。其中,原飛燕草素A1、茶黃素-3-沒食子酸酯、茶黃素3,3′-二沒食子酸酯、5-羥基-3′-甲氧基黃酮、茶苷C、茶黃素、茶黃素-3′-沒食子酸酯、枸杞苷IX相對(duì)含量變化顯著,分別增加5.90倍、4.38倍、4.21倍、3.89倍、3.53倍、3.06倍、3.06倍、2.03倍(圖3)。

      與機(jī)械損傷相比,茶尺蠖為害誘導(dǎo)產(chǎn)生13種差異代謝物,包括7種二聚兒茶素類[茶苷C、原飛燕草素A1、茶黃素-3′-沒食子酸酯、茶黃素-3-沒食子酸酯、茶黃素3,3′-二沒食子酸

      酯、茶黃素、表沒食子兒茶素-3-O-(3-O-甲基)-沒食子酸酯],3種氨基酸類(γ-氨基丁酸、丙氨酸、絲氨酸),2種黃酮和黃酮苷類(5-羥基-3′-甲氧基黃酮、芹菜素-6-C-葡萄糖苷),1種酚酸類(沒食子酸)。其中,原飛燕草素A1、5-羥基-3′-甲氧基黃酮、茶苷C、茶黃素-3-沒食子酸酯、茶黃素3,3′-二沒食子酸酯、茶黃素-3′-沒食子酸酯、茶黃素相對(duì)含量變化顯著,分別增加3.39倍、2.88倍、2.74倍、2.50倍、2.30倍、2.29倍、2.01倍(圖3)。

      茶尺蠖為害顯著增加了茶樹葉片中11種差異代謝物的積累,包括茶苷C、原飛燕草素A1、茶黃素、茶黃素-3-沒食子酸酯、茶黃素-3′-沒食子酸酯、茶黃素3,3′-二沒食子酸酯、γ-氨基丁酸、丙氨酸、絲氨酸、5-羥基-3′-甲氧基黃酮和沒食子酸(圖3)。

      2.2 茶尺蠖為害誘導(dǎo)單片茶樹葉片中γ-氨基丁酸的空間變化

      茶尺蠖為害后,與空白對(duì)照相比,γ-氨基丁酸的相對(duì)含量在葉中部和葉基部顯著增加(P<0.05),均升高1.99倍,在葉尖部升高1.72倍。茶尺蠖為害后,與機(jī)械損傷相比,葉中部與葉基部的γ-氨基丁酸的相對(duì)含量顯著增加(P<0.05),葉尖部、葉中部、葉基部分別升高1.04倍、2.36倍和1.94倍(圖4)。以上結(jié)果說明,γ-氨基丁酸是茶尺蠖為害誘導(dǎo)產(chǎn)生的特征代謝物。

      2.3 γ-氨基丁酸生物合成途徑關(guān)鍵基因的變化

      由圖5所示,與空白對(duì)照相比,茶尺蠖為害或機(jī)械損傷后,γ-氨基丁酸合成途徑中關(guān)鍵基因(CsGDH1、CsGAD1、CsCUAO、CsSSADH1、CsSSADH2、CsADC1、CsADC2)的相對(duì)表達(dá)量在葉尖部、葉中部、葉基部均上調(diào)。與機(jī)械損傷相比,茶尺蠖為害后,這7個(gè)基因的表達(dá)量在葉尖部均下調(diào),而在葉中部均上調(diào),其中6個(gè)基因在葉基部上調(diào)。葉尖部可能因?yàn)橹苯邮芎Γ瑥亩a(chǎn)生應(yīng)激反應(yīng),之后防御信號(hào)傳導(dǎo)至葉中部、葉基部,通過上調(diào)γ-氨基丁酸生物合成途徑的關(guān)鍵基因,增加γ-氨基丁酸積累來抵御茶尺蠖取食[32]。

      2.4 γ-氨基丁酸生物合成途徑相關(guān)代謝物和基因的相關(guān)性分析

      茶尺蠖為害后,受害位點(diǎn)的γ-氨基丁酸相對(duì)含量與其前體物質(zhì)谷氨酸的相對(duì)含量呈顯著正相關(guān)(P<0.05),與合成途徑的關(guān)鍵基因CsGAD1、CsSSADH1、CsSSADH2、CsADC1、CsADC2、CsCUAO的相對(duì)表達(dá)量均呈正相關(guān)(圖6A)。葉中部的γ-氨基丁酸相對(duì)含量?jī)H與琥珀酸半醛的相對(duì)含量呈正相關(guān)(圖6B),而葉基部的γ-氨基丁酸相對(duì)含量與琥珀酸半醛的相對(duì)含量呈負(fù)相關(guān),與谷氨酸的相對(duì)含量呈極顯著正相關(guān)(P<0.01)(圖6C)。以上研究結(jié)果表明,茶樹葉片在茶尺蠖為害后,立即啟動(dòng)防御反應(yīng),加快前體物質(zhì)谷氨酸的合成和轉(zhuǎn)運(yùn),進(jìn)而增加γ-氨基丁酸積累以抵御蟲害。

      2.5 γ-氨基丁酸對(duì)茶尺蠖的生長抑制作用

      茶尺蠖分別取食添加了0.2、0.5、2.0 mg·g-1 γ-氨基丁酸的人工飼料后,其體質(zhì)量與體長均呈下降趨勢(shì),且與對(duì)照組差異顯著(P<0.05,圖7)。隨著γ-氨基丁酸濃度的升高,其對(duì)茶尺蠖幼蟲生長抑制作用也逐漸增強(qiáng)。

      3 討論

      茶樹能感知由植食性昆蟲取食或產(chǎn)卵造成的機(jī)械損傷和釋放的特定誘導(dǎo)物質(zhì),從而引起大量非揮發(fā)性代謝物質(zhì)的變化[33]。本研究以茶樹葉片為材料,采用代謝組學(xué)方法對(duì)不同處理下單片茶樹葉片3個(gè)不同部位的非揮發(fā)性物質(zhì)進(jìn)行鑒定和分析,發(fā)現(xiàn)與空白對(duì)照和機(jī)械損傷相比,茶尺蠖為害誘導(dǎo)葉片中11種差異代謝物的顯著積累,包括6種二聚兒茶素類(茶苷C、原飛燕草素A1、茶黃素、茶黃素-3-沒食子酸酯、茶黃素-3′-沒食子酸酯、茶黃素3,3′-二沒食子酸酯)、3種氨基酸類(γ-氨基丁酸、

      丙氨酸、絲氨酸)、1種黃酮和黃酮苷類(5-羥基-3′-甲氧基黃酮)和1種酚酸類(沒食子酸)。研究表明,非揮發(fā)性物質(zhì)參與茶樹對(duì)多種生物脅迫的響應(yīng),例如,槲皮素-3-O-葡萄糖苷、兒茶素、表兒茶素、表沒食子兒茶素沒食子酸酯和沒食子酸是茶尺蠖取食誘導(dǎo)茶樹積累的關(guān)鍵非揮發(fā)性物質(zhì),這些化合物是茶樹對(duì)茶尺蠖的直接抗性物質(zhì)[25-26,34-36]。然而,茶尺蠖為害誘導(dǎo)非揮發(fā)性物質(zhì)中的其他組分是否能夠激活相似的防御反應(yīng)有待進(jìn)一步研究。

      γ-氨基丁酸是茶樹中高含量非蛋白氨基酸,其對(duì)昆蟲的神經(jīng)傳遞具有負(fù)調(diào)節(jié)功能,例如,γ-氨基丁酸能抑制昆蟲神經(jīng)遞質(zhì)傳遞[37-40]。昆蟲體內(nèi)的γ-氨基丁酸會(huì)與γ-氨基丁酸受體結(jié)合[41],如離子型GABAA受體和代謝型GABAB受體等,快速激活相應(yīng)的氯離子通道,引發(fā)氯離子細(xì)胞內(nèi)流,導(dǎo)致細(xì)胞質(zhì)膜產(chǎn)生超極化[12],產(chǎn)生抑制性突觸后電位作用,抑制昆蟲神經(jīng)中樞的傳導(dǎo)并產(chǎn)生鎮(zhèn)靜效果[42]。因此,γ-氨基丁酸過度積累會(huì)產(chǎn)生持續(xù)抑制效應(yīng),從而影響昆蟲的生長和發(fā)育[43]。

      昆蟲取食會(huì)誘導(dǎo)植物啟動(dòng)先于系統(tǒng)反應(yīng)的局部快速反應(yīng)機(jī)制,包括鈣信號(hào)的傳導(dǎo),隨后激活γ-氨基丁酸代謝途徑,導(dǎo)致γ-氨基丁酸的積累[44]。本研究中γ-氨基丁酸在茶樹葉片的3個(gè)部位持續(xù)積累,并且其相對(duì)含量與前體物質(zhì)谷氨酸的相對(duì)含量在葉尖部和葉基部顯著正相關(guān),說明γ-氨基丁酸代謝途徑被激活以抵御茶尺蠖為害[45]。人工飼料飼喂試驗(yàn)也證明了低齡茶尺蠖幼蟲的生長發(fā)育明顯受到γ-氨基丁酸的抑制。

      本研究解析了茶尺蠖為害后單片茶樹葉片中非揮發(fā)性代謝物的相對(duì)含量變化和空間變化,并發(fā)現(xiàn)昆蟲抑制性神經(jīng)遞質(zhì)γ-氨基丁酸的相對(duì)含量與其前體物質(zhì)谷氨酸顯著相關(guān),并對(duì)茶尺蠖的生長發(fā)育有抑制效果,說明γ-氨基丁酸代謝途徑在茶樹抵御早期茶尺蠖為害的防御反應(yīng)中發(fā)揮重要作用。

      參考文獻(xiàn)

      [1] Walling L L. The myriad plant responses to herbivores [J]. Journal of Plant Growth Regulation, 2000, 19(2): 195-216.

      [2] 謝輝, 王燕, 劉銀泉, 等. 植物組成型防御對(duì)植食性昆蟲的影響[J]. 植物保護(hù), 2012, 38(1): 1-5.

      Xie H, Wang Y, Liu Y Q, et al. The influence of plant constitutive defense system on phytophagous insects [J]. Plant Protection, 2012, 38(1): 1-5.

      [3] Agrawal A A. Induced responses to herbivory and increased plant performance [J]. Science, 1998, 279(5354): 1201-1202.

      [4] Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants [J]. Plant Signaling & Behavior, 2020, 15(6): 1737450. doi: 10.1080/15592324.2020.1737450.

      [5] Kessler A, Baldwin I T. Plant responses to insect herbivory: the emerging molecular analysis [J]. Annual Review of Plant Biology, 2002, 53: 299-328.

      [6] K?llner T G, Lenk C, Schnee C, et al. Localization of sesquiterpene formation and emission in maize leaves after herbivore damage [J]. BMC Plant Biology, 201psSEPEtj12RDx5q2sPXeqJV52JcCqZwpP09JcbqzNJw=3, 13(1): 15. doi: 10.1186/1471-2229-13-15.

      [7] Malook S U, Qi J F, Hettenhausen C, et al. The oriental armyworm (Mythimna separata) feeding induces systemic defence responses within and between maize leaves [J]. Philosophical Transactions of the Royal Society B, 2019, 374(1767): 20180307. doi: 10.1098/rstb.2018.0307.

      [8] Li L, Dou N, Zhang H, et al. The versatile GABA in plants [J]. Plant Signaling & Behavior, 2021, 16(3): 1862565. doi:10.1080/15592324.2020.1862565.

      [9] Macgregor K B, Shelp B J, Peiris S, et al. Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae [J]. Journal of Chemical Ecology, 2003, 29(9): 2177-2182.

      [10] Scholz S S, Malabarba J, Reichelt M, et al. Evidence for GABA-induced systemic GABA accumulation in Arabidopsis upon wounding [J]. Frontiers in Plant Science, 2017, 8: 388. doi: 10.3389/fpls.2017.00388.

      [11] Bown A W, Hall D E, MacGregor K B. Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production [J]. Plant Physiology, 2002, 129(4): 1430-1434.

      [12] Bown A W, MacGregor K B, Shelp B J. Gamma-aminobutyrate: defense against invertebrate pests? [J]. Trends in Plant Science, 2006, 11(9): 424-427.

      [13] Scholz S S, Reichelt M, Mekonnen D W, et al. Insect herbivory-elicited gaba accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response [J]. Frontiers in Plant Science, 2015, 6: 1128. doi: 10.3389/fpls.2015.01128.

      [14] Zhou H L, Chen H Y, Bao D P, et al. Recent advances of γ-aminobutyric acid: physiological and immunity function, enrichment, and metabolic pathway [J]. Frontiers in Nutrition, 2022, 9: 1076223. doi: 10.3389/fnut.2022.1076223.

      [15] 周俊萍, 徐玉娟, 溫靖, 等. γ-氨基丁酸(GABA)的研究進(jìn)展[J]. 食品工業(yè)科技, 2024, 45(5): 393-401.

      Zhou J P, Xu Y J, Wen J, et al. Research progress of γ-aminobutyric acid (GABA) [J]. Science and Technology of Food Industry, 2024, 45(5): 393-401.

      [16] 程永祥. 1969—2019年臨安茶尺蠖發(fā)生特點(diǎn)調(diào)查與分析[J]. 中國茶葉, 2020, 42(4): 55-56, 59.

      Cheng Y X. Investigation and analysis on the occurrence characteristics of tea geometrid in Lin'an from 1969 to 2019 [J]. China Tea, 2020, 42(4): 55-56, 59.

      [17] Liu G H, Wang Q, Chen H, et al. Plant-derived monoterpene S-linalool and β-ocimene generated by CsLIS and CsOCS-SCZ are key chemical cues for attracting parasitoid wasps for suppressing Ectropis obliqua infestation in Camellia sinensis L [J]. Plant, Cell & Environment, 2024, 47(3): 913-927.

      [18] Liao Y Y, Tan H B, Jian G T, et al. Herbivore-induced (Z)-3-Hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light [J]. Journal of Agricultural and Food Chemistry, 2021, 69(43): 12608-12620.

      [19] Liu G H, Yang M, Fu J Y. Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis) [J]. Plant Physiology and Biochemistry, 2020, 155: 650-657.

      [20] Ye M, Liu M M, Erb M, et al. Indole primes defence signalling and increases herbivore resistance in tea plants [J]. Plant, Cell & Environment, 2021, 44(4): 1165-1177.

      [21] Qian J J, Liao Y Y, Jian G T, et al. Light induces an increasing release of benzyl nitrile against diurnal herbivore Ectropis grisescens Warren attack in tea (Camellia sinensis) plants [J]. Plant, Cell & Environment, 2023, 46(11): 3464-3480.

      [22] Jing T T, Qian X N, Du W K, et al. Herbivore-induced volatiles influence moth preference by increasing the β-ocimene emission of neighbouring tea plants [J]. Plant, Cell & Environment, 2021, 44(11): 3667-3680.

      [23] Chen Y F, Wang Z Y, Gao T, et al. Deep learning and targeted metabolomics-based monitoring of chewing insects in tea plants and screening defense compounds [J]. Plant, Cell & Environment, 2023, 47: 698-713.

      [24] Wang W W, Zheng C, Hao W J, et al. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis [J]. Plos One, 2018, 13(8): e0201670. doi: 10.1371/journal.pone.0201670.

      [25] Jing T T, Du W K, Qian X N, et al. UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding [J]. Plant, Cell & Environment, 2024, 47(2): 682-697.

      [26] Li X W, Zhang J, Lin S B, et al. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants [J]. Plant, Cell & Environment, 2021, 45: 496-511.

      [27] Zhu J Y, He Y X, Yan X M, et al. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis) [J]. Horticulture Research, 2019, 6(1): 126. doi:10.1038/s41438-019-0208-5.

      [28] Yang Z W, Duan X N, Jin S, et al. Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants [J]. Journal of Chemical Ecology, 2013, 39(6): 744-751.

      [29] Gao J J, Zhou M X, Chen D, et al. High-throughput screening and investigation of the inhibitory mechanism of α-glucosidase inhibitors in teas using an affinity selection-mass spectrometry method [J]. Food Chemistry, 2023, 422: 136179. doi: 10.1016/j.foodchem.2023.136179.

      [30] Dai W D, Hu Z Y, Xie D C, et al. A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis) [J]. Food Chemistry, 2020, 311: 126007. doi:10.1016/j.foodchem.2019.126007.

      [31] 孫美蓮, 王云生, 楊冬青, 等. 茶樹實(shí)時(shí)熒光定量PCR分析中內(nèi)參基因的選擇[J]. 植物學(xué)報(bào), 2010, 45(5): 579-587.

      Sun M L, Wang Y S, Yang D Q, et al. Selection of reference genes in real time fluorescence quantitative PCR analysis of tea plants [J]. Chinese Bulletin of Botany, 2010, 45(5): 579-587.

      [32] Bown A W, Shelp B J. Plant GABA: not just a metabolite [J]. Trends in Plant Science, 2016, 21(10): 811-813.

      [33] Zhang J, Yu Y C, Qian X N, et al. Recent advances in the specialized metabolites mediating resistance to insect pests and pathogens in tea plants (Camellia sinensis) [J]. Plants, 2024, 13(2): 323. doi: 10.3390/plants13020323.

      [34] Lin S B, Ye M, Li X W, et al. A novel inhibitor of the jasmonic acid signaling pathway represses herbivore resistance in tea plants [J]. Horticulture Research, 2022, 9: uhab038. doi: 10.1093/hr/uhab038.

      [35] 冉偉, 張瑾, 張新, 等. 茶尺蠖幼蟲取食提高茶樹兒茶素代謝響應(yīng)強(qiáng)度[J]. 茶葉科學(xué), 2018, 38(2): 133-139.

      Ran W, Zhang J, Zhang X, et al. Infestation of Ectropis obliqua affects the catechin metabolism in tea plants [J]. Journal of Tea Science, 2018, 38(2): 133-139.

      [36] Zhang X, Ran W, Li X W, et al. Exogenous application of gallic acid induces the direct defense of tea plant against Ectropis obliqua caterpillars [J]. Frontiers in Plant Science, 2022, 13: 833489. doi: 10.3389/fpls.2022.833489.

      [37] Huang T F, Jander G, Vos M D. Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis [J]. Phytochemistry, 2011, 72(13): 1531-1537.

      [38] Mith?fer A, Boland W. Plant defense against herbivores: chemical aspects [J]. Annual Review of Plant Biology, 2012, 63: 431-450.

      [39] Seifikalhor M, Aliniaeifard S, Hassani B, et al. Diverse role of γ-aminobutyric acid in dynamic plant cell responses [J]. Plant Cell Reports, 2019, 38(8): 847-867.

      [40] Tarkowski ? P, Signorelli S, H?fte M. γ-Aminobutyric acid and related amino acids in plant immune responses: emerging mechanisms of action [J]. Plant, Cell & Environment, 2020, 43(5): 1103-1116.

      [41] 筱禾. 作用于GABA受體殺蟲劑的代謝、作用機(jī)制及開發(fā)研究[J]. 世界農(nóng)藥, 2019, 41(2): 18-28.

      Xiao H. Study on metabolism, mechanism of action and development of insecticides acting on GABA receptors [J]. World Pesticide, 2019, 41(2): 18-28.

      [42] Irving S N, Osborne M P, Wilson R G. Studies on L-glutamate in insect haemolymph [J]. Physiological Entomology, 1979, 4(2): 139-146.

      [43] Hosie A M, Aronstein K, Sattelle D B, et al. Molecular biology of insect neuronal GABA receptors [J]. Trends in Neurosciences, 1997, 20(12): 578-583.

      [44] Kiep V, Vadassery J, Lattke J, et al. Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis [J]. The New Phytologist, 2015, 207(4): 996-1004.

      [45] 余光輝, 涂奕霏, 李承龍, 等. 植物GABA信號(hào)途徑研究[J]. 中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 40(5): 472-477.

      Yu G H, Tu Y F, Li C L, et al. GABA signaling pathway research in plant kingdoms [J]. Journal of South-central Minzu University (Natural Science Edition), 2021, 40(5): 472-477.

      上饶县| 泗阳县| 怀宁县| 靖宇县| 会东县| 南昌市| 成都市| 金山区| 富蕴县| 鹿邑县| 弋阳县| 西峡县| 邮箱| 临清市| 太保市| 临沂市| 班玛县| 无为县| 华宁县| 海宁市| 临洮县| 松江区| 东乌珠穆沁旗| 涟源市| 凤庆县| 元江| 奇台县| 维西| 文化| 西乌珠穆沁旗| 延津县| 江门市| 都江堰市| 同德县| 台东县| 合江县| 高要市| 名山县| 夏邑县| 伽师县| 夹江县|