摘要:【目的】對苦蕎雜交后代株型性狀和產(chǎn)量性狀進行遺傳分析,為矮稈苦蕎新品種培育提供良好的理論依據(jù)?!痉椒ā恳灾旮卟町愝^大的2個苦蕎品種雜交F2和F3代群體為研究對象,分析其株高、主莖節(jié)數(shù)、一級分枝數(shù)、二級分枝數(shù)、莖粗、單株粒數(shù)、單株粒重和千粒重8個農(nóng)藝性狀的遺傳規(guī)律,并對性狀間的相關(guān)性進行分析?!窘Y(jié)果】8個農(nóng)藝性狀在F2和F3群體中均出現(xiàn)超親分離;主莖節(jié)數(shù)和千粒重的變異系數(shù)小于20.00%,單株粒數(shù)和單株粒重的變異系數(shù)大于50.00%,其他性狀的變異系數(shù)為20.00%~40.00%。株高、主莖節(jié)數(shù)、單株粒數(shù)和單株粒重的加性方差小于顯性方差,平均顯性度均大于1.00;一級分枝數(shù)、二級分枝數(shù)、莖粗和千粒重的顯性方差小于加性方差,平均顯性度小于1.00。千粒重的狹義遺傳率、廣義遺傳率和固定遺傳率均大于其他性狀。F3代群體農(nóng)藝性狀間相關(guān)分析結(jié)果顯示,株高和單株粒重均與單株粒數(shù)、千粒重、主莖節(jié)數(shù)、一級分枝數(shù)、二級分枝數(shù)和莖粗存在極顯著正相關(guān)(Plt;0.01、Plt;0.001)。篩選出13個株高比母本矮、單株粒數(shù)和單株粒重比母本多的優(yōu)良單株,其中有3個單株的株高比母本矮50 cm及以上。13個優(yōu)良單株的農(nóng)藝性狀間相關(guān)分析結(jié)果顯示,株高與主莖節(jié)數(shù)存在極顯著正相關(guān)(Plt;0.01),單株粒重與莖粗、單株粒數(shù)存在極顯著正相關(guān)(Plt;0.001),株高和單株粒重均與其他性狀無顯著相關(guān)(Pgt;0.05)?!窘Y(jié)論】苦蕎矮稈高產(chǎn)育種過程中,由于千粒重與其他性狀相關(guān)系數(shù)較小,且具有較高遺傳率,可在雜交初期世代進行單株選擇;株高與其他主要農(nóng)藝性狀存在顯著或極顯著正相關(guān),則需要綜合考慮性狀間的相關(guān)性進行單株選擇,才能達到選育高產(chǎn)矮稈苦蕎品種的目的。
關(guān)鍵詞:苦蕎;株型;產(chǎn)量;遺傳規(guī)律;雜交育種
中圖分類號:S517.035.1文獻標(biāo)志碼:A文章編號:2095-1191(2024)09-2558-09
Genetic analysis on plant type traits and yield traits in tartary buckwheat hybrid progeny
LI Chun-hua1,Jiayangduola1,WU Han1,LIANG Xiu-xue1,LI Yu-ming2,WANG Yan-qing3,LI Han1,SUN Mo-ke1,TIAN Juan1,REN Chang-zhong1*
(1Baicheng Academy of Agricultural Sciences,Baicheng,Jilin 137000,China;2Integrated Service Center ofTianqiaoling Town of Wangqing County,Yanbian,Jilin 133204,China;3Biotechnology and GermplasmResources Institute,Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of AgriculturalBiotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation,Ministry ofAgriculture and Rural Affairs,Kunming,Yunnan 650205,China)
Abstract:【Objective】The study aimed to conduct a genetic analysis of plant type traits and yield traits in tartary buckwheat hybrid progeny,providing theoretical basis for the cultivation of new dwarf tartary buckwheat varieties.【Method】The study focused on the F2 and F3 generation populations of hybrid progeny from 2 tartary buckwheat varietieswith great differences in plant height.The genetic patterns of 8 agronomic traits were analyzed,including plant height,node number of main stem,number of first branches,number of secondary branches,stem diameter,number of seeds per plant,seed weight per plant,and thousand-kernel weight,along with the analysis of the correlation among these traits.【Result】The 8 agronomictraits exhibited superparental segregation in both F2 and F3 populations.The coefficients of variation for node number of main stem and thousand-kernel weight were less than 20.00%,while the coefficients for the number of seeds per plant and seed weight per plant were greater than 50.00%.The coefficients for all other traits ranged from 20.00%to 40.00%.The additive variance for plant height,node number of main stem,number of seeds per plant and seed weight per plant was less than the dominant variance,with a mean degree of dominance greater than 1.00.Conversely,for the number of first branches,number of second branches,stem diameter and thousand-kernel weight,the dominant variance was less than the additive variance,resulting in a mean degree of dominance less than 1.00.In this case,the narrow sense heritability,broad sense heritability and fixed heritability of thousand-kernel weight were greater than those of the other traits.Correlation analysis among agronomic traits in the F3 generation population revealed that both plant height and seed weight per plant were extremely significantly and positively correlated with number of seeds per plant,thousand-kernel weight,node number of main stem,number of first branches,number of secondary branches and stem diameter(Plt;0.01,Plt;0.001).A total of 13 superior lines were identified which were shorter than the female pa-rent and had a greater number of seeds per plant and seed weight per plant than the female parent,with 3 lines being at least 50 cm shorter than the female parent.Correlation analysis among the agronomic traits of the 13 superior lines re-vealed extremely significant positive correlation between plant height and the node number of main stem(Plt;0.01),and extremely significant positive correlation between seed weight per plant and both stem diameter and number of seeds per plant(Plt;0.001).Both plant height and seed weight per plant were not significantly correlated with the other traits(Pgt;0.05).【Conclusion】In the breeding process for high-yield dwarf tartary buckwheat,thousand-kernel weight has a low cor-relation coefficient with other traits and exhibits high heritability,allowing for single-plant selection in the early genera-tions of hybridization.However,since plant height shows significant or extremely significant positive correlation with other main agronomic traits,it is necessary to comprehensively consider the correlations among traits during single-plant selection to achieve the optimal selection target for high-yield dwarf tartary buckwheat.
Key words:tartary buckwheat;plant type;yield;genetic patterns;hybrid breeding
Foundation items:National Natural Science Foundation of China(31860412);China Agriculture Research System—Oat and Buckwheat(CARS-07);Baicheng Guiding Scientific and Technological Development Plan Project(202210)
0引言
【研究意義】苦蕎(Fagopyrum tataricum Gaertn.)具有耐寒、生育期短的特性,是我國經(jīng)濟作物和避災(zāi)救荒作物,也是中西部生態(tài)環(huán)境脆弱且欠發(fā)達地區(qū)的主要糧食作物(陸平,1994;林汝法,2013)??嗍w具有很高的營養(yǎng)價值和藥用價值(王迪等,2023),作為保健食品深受人們的喜愛,其生產(chǎn)受到人們的重視(李旭霞等,2023;余莎等,2023),市場對苦蕎的需求逐年增加,但其產(chǎn)量低,難以滿足市場需求(陳慶富,2018)。株型是影響苦蕎群體產(chǎn)量的重要性狀,主要包括株高、莖粗、分枝數(shù)、葉片數(shù)、花序數(shù)及分枝部位高度和分枝區(qū)長度等(林汝法,2013)。多年來,較多學(xué)者致力于提高蕎麥生產(chǎn)能力研究,培育出許多高產(chǎn)的蕎麥新品種(馬寧等,2016;楊媛等,2016;張清明等,2016;王安虎等,2017),但這些品種在生產(chǎn)過程中易倒伏,嚴重影響植株農(nóng)藝性狀及籽粒品質(zhì),甚至減產(chǎn)50%以上(向達兵等,2014;鐘林等,2020)。倒伏是作物減產(chǎn)的主要原因(伍浩天等,2020),其中植株過高是易發(fā)生倒伏的重要因素之一(Wang et al.,2015a;高鑫等,2012)。株高作為農(nóng)作物的重要農(nóng)藝性狀,是株型的重要組成部分,與產(chǎn)量、倒伏性等密切相關(guān)(羅炬等,2012)。因此,探究苦蕎株高的遺傳特性,并進行矮稈抗倒伏親本的創(chuàng)制和育種,對提高苦蕎產(chǎn)量具有重要的意義?!厩叭搜芯窟M展】近年來,關(guān)于蕎麥倒伏性的問題越來越受到諸多學(xué)者的關(guān)注(向達兵等,2014;Wang et al.,2015b;佘恒志等,2018;高翔等,2019;陶建波等,2023)。據(jù)水稻和小麥相關(guān)研究報道,自1960年半矮稈基因sd1導(dǎo)入到禾本科植物以來,選育了無數(shù)的半矮稈品種,極大地提高了糧食產(chǎn)量(Hedden,2003),后續(xù)矮稈性狀和矮稈品種對產(chǎn)量的貢獻已被眾多科研和生產(chǎn)實踐所證實,矮化育種已成為重要的育種手段(薛建峰等,2011;Daoura et al.,2014;Wang et al.,2014;Yang et al.,2015;董曉杰等,2022)。研究證明,株高與倒伏呈顯著正相關(guān),降低株高是提高抗倒伏性的最有效措施(張志才,2006)。因此,培育矮稈品種是解決苦蕎倒伏問題最經(jīng)濟、最有效的途徑。苦蕎的株高等株型性狀及產(chǎn)量相關(guān)性狀均屬于數(shù)量性狀,基因型和環(huán)境共同控制其表型(林汝法,2013),鑒定數(shù)量性狀基因時直接利用傳統(tǒng)的育種方法難度很大。要有效開展苦蕎矮稈育種必須深入了解苦蕎株高及相關(guān)性狀的遺傳特性。同時,要減少育種過程中選擇的盲目性,提高育種效率,需要利用與矮稈基因連鎖的遺傳標(biāo)記,對目標(biāo)性狀進行跟蹤選擇,縮小育種群體規(guī)模(Gupta et al.,1999;董娜等,2013)。【本研究切入點】當(dāng)前,我國春夏季種植的大多數(shù)苦蕎品種的植株較高,易倒伏。作物株高與產(chǎn)量、抗倒性等緊密相關(guān),因此對苦蕎株型性狀和產(chǎn)量性狀開展遺傳分析及分子生物學(xué)研究十分必要。目前,未見有關(guān)苦蕎雜交后代株型性狀和產(chǎn)量性狀的遺傳規(guī)律解析及矮稈品種培育的研究報道?!緮M解決的關(guān)鍵問題】利用株高差異較大的2個苦蕎品種雜交后代開展株型性狀和產(chǎn)量性狀的遺傳規(guī)律及相關(guān)分析,并從其后代中篩選出矮稈高產(chǎn)新品系,為苦蕎矮稈性狀的遺傳基礎(chǔ)研究提供良好的基礎(chǔ)。
1材料與方法
1.1試驗材料
試驗?zāi)副静牧蠟樵颇鲜∞r(nóng)業(yè)科學(xué)院生物技術(shù)與種質(zhì)資源研究所蕎麥課題組由曲靖地方苦蕎資源經(jīng)60Co-γ輻射誘變后經(jīng)過系統(tǒng)選育而成的高產(chǎn)優(yōu)質(zhì)品種云蕎1號。該品種的適應(yīng)范圍較廣、平均產(chǎn)量較高(3000 kg/ha以上),平均株高在130 cm以上(李春花等,2017),在全國各蕎麥種植區(qū)均有種植,但種植在春夏季時植株較高,易倒伏,很難正常發(fā)揮該品種的高產(chǎn)效果。父本材料是在云南發(fā)現(xiàn)的一個矮稈的苦蕎近緣野生種(F.tartaricum ssp.Potanini Bata-lin)YZ56,該品種植株較矮(60 cm以下),相對其他品種抗倒伏強,但產(chǎn)量低,其籽粒帶刺不易加工,在生產(chǎn)上還未推廣應(yīng)用。
1.2試驗方法
試驗在吉林省白城市農(nóng)業(yè)科學(xué)院內(nèi)的大棚和試驗地(45°37′N,122°47′E)中進行,該地海拔143.65 m。2019年9月對云蕎1號和YZ56進行雜交,獲得了F1代雜交種。2020年4月將其雜交種自交獲得了236粒F1代的種子,同年9月將236粒F1代的種子與親本各10粒,每盆1粒種植在花盆,并在10月初將花盆移到溫室中,自交獲得F2代的種子,收獲時對F2代群體236個單株及親本進行農(nóng)藝性狀測定。2021年6月將親本各10粒和每株系各1粒組成的F3代群體236粒進行盆栽,每盆種1粒,自交獲得F3代的種子,收獲時對F3代群體236個單株及親本進行農(nóng)藝性狀測定。2022年的3月,再利用單粒傳法(SSD)在溫室里自交獲得F4代的種子,同年6月底從F4代群體236個單株中各選取50粒種植在大田中,待種子成熟時從中隨機選取5個單株進行農(nóng)藝性狀測定。選目標(biāo)材料的基準(zhǔn)是株高比母本矮,單株粒數(shù)和單株粒重比母本大的單株。
1.3測定項目
在籽粒70%~80%成熟時,對供試材料進行株高、主莖節(jié)數(shù)、一級分枝數(shù)、二級分枝數(shù)和莖粗的測定后單獨收獲。單株粒數(shù)、單株粒重和千粒重的測定是在籽粒風(fēng)干2周以后進行。
1.4統(tǒng)計分析
1.4.1 F2和F3代群體及親本農(nóng)藝性狀的表現(xiàn)值分析
采用JMP 9.0.2和Excel 2010進行遺傳多樣性分析、相關(guān)分析等試驗數(shù)據(jù)統(tǒng)計。
1.4.2農(nóng)藝性狀的遺傳規(guī)律測定利用后代群體單株間的方差測定各農(nóng)藝性狀的遺傳規(guī)律和遺傳率(李春花等,2020)。F2和F3代群體的方差由加性方差(A)、顯性方差(D)和環(huán)境方差(E1)表示。E1由公式(1)計算得出。
E1=(S1+S2)/(n1+n2-2)(1)
式中,S1和S2分別表示云蕎1號和米蕎的性狀平方和,n1和n2分別表示親本的個體數(shù)。
F2代群體單株間方差:Vp(F2)=1/2A+1/4D+E1(2)
F3代群體單株間方差:Vp(F3)=3/4A+3/16D+E1(3)
利用上述二元方程式(2)和(3)得出A和D,再根據(jù)李春花等(2020)的計算方式計算出廣義遺傳率、狹義遺傳率、固定遺傳率和平均顯性度。
2結(jié)果與分析
2.1親本及F2和F3代群體農(nóng)藝性狀測定結(jié)果
由表1可知,F(xiàn)2代群體的株高、主莖節(jié)數(shù)、一級分枝數(shù)、二級分枝數(shù)和千粒重平均值小于F3代群體,但F2代群體的莖粗、單株粒數(shù)和單株粒重平均值大于F3代群體。F3代群體的株高、莖粗、單株粒數(shù)、千粒重、單株粒重和F2代群體的8個性狀的平均值均小于母本;F2代群體的株高、主莖節(jié)數(shù)、二級分枝數(shù)、莖粗、千粒重和F3代群體的株高、主莖節(jié)數(shù)、莖粗、單株粒數(shù)、千粒重、單株粒重的平均值均大于父本的平均值。
由表1還可知,除F2代群體株高和二級分枝數(shù)的變異系數(shù)大于F3代群體以外,其他性狀的變異系數(shù)均小于F3代群體;F2和F3代群體主莖節(jié)數(shù)和千粒重的變異系數(shù)均小于20.00%,其中千粒重的變異系數(shù)最小,單株粒數(shù)和單株粒重的變異系數(shù)大于50.00%,其中單株粒重的變異系數(shù)最大,其他性狀的變異系數(shù)為20.00%~40.00%。
2.2農(nóng)藝性狀的遺傳規(guī)律分析結(jié)果
由表2可知,一級分枝數(shù)、二級分枝數(shù)、莖粗和千粒重的顯性方差小于加性方差,平均顯性度小于1.00;株高、主莖節(jié)數(shù)、單株粒數(shù)和單株粒重的加性方差小于顯性方差,平均顯性度大于1.00。8個農(nóng)藝性狀在F2代群體中的廣義遺傳率為0.62~0.86,在F3代群體中的廣義遺傳率為0.64~0.89,其中株高在F2和F3代群體中的廣義遺傳率較小,分別為0.62和0.64;千粒重在F2和F3代群體中的廣義遺傳率較大,分別為0.86和0.89。8個農(nóng)藝性狀在F2代群體中的狹義遺傳率為0.41~0.65,在F3代群體中的狹義遺傳率為0.51~0.77,其中主莖節(jié)數(shù)在F2和F3代群體中的狹義遺傳率較小,分別為0.41和0.51;千粒重在F2和F3代群體中的狹義遺傳率較大,分別為0.65和0.77。8個農(nóng)藝性狀的固定遺傳率來為0.64~0.85,其中株高的固定遺傳率最?。?.64),千粒重的固定遺傳率最大(0.85)。
2.3 F3代群體農(nóng)藝性狀間的相關(guān)分析結(jié)果
對F3代群體農(nóng)藝性狀進行相關(guān)分析,結(jié)果如表3所示。除千粒重與一級分枝數(shù)和二級分枝數(shù)無顯著(rgt;0.05,下同)相關(guān)性外,千粒重與其他性狀間及其他性狀之間均呈顯著(rlt;0.05)或極顯著(rlt;0.01、rlt;0.001)相關(guān)性。除千粒重與二級分枝數(shù)呈負相關(guān)外,其他性狀之間均呈正相關(guān)。單株粒數(shù)與單株粒重的相關(guān)系數(shù)最大(0.983),一級分枝數(shù)與千粒重的相關(guān)系數(shù)最?。?.084)。千粒重與其他性狀(除株高外)間的相關(guān)系數(shù)均小于其他性狀間的相關(guān)系數(shù),單株粒數(shù)和單株粒重與株高、主莖節(jié)數(shù)、二級分枝數(shù)、莖粗的相關(guān)系數(shù)均大于0.500以上。
2.4矮稈高產(chǎn)品種的篩選結(jié)果
從236個單株中篩選出13個株高比母本矮,且單株粒數(shù)和單株粒重比母本多的單株(表4)。其中編號15、21、24的株高分別為122.51、129.37和128.63 cm,比母本(179.12 cm)矮49.00 cm及以上,主莖節(jié)數(shù)分別為22.39、23.56和23.37個,小于母本(25.36個),一級分枝數(shù)分別為7.67、8.25和9.71個,大于母本(6.18個),二級分枝數(shù)分別為25.47、24.59和26.93個,是母本(6.15個)的4倍以上,莖粗分別為5.25、5.33和5.30 mm,均小于母本(5.57 mm),單株粒數(shù)分別為606.12、877.39和666.28粒,比母本(454.26粒)多,單株粒重分別為11.80、15.74和11.81 g,比母本(10.40 g)重,千粒重分別為21.20、21.24和21.10 g,略小于母本(21.45 g),表明這3個單株有望可作為選育矮稈高產(chǎn)品種的株系。
2.5優(yōu)良新材料農(nóng)藝性狀間的相關(guān)分析結(jié)果
對13份優(yōu)良新材料的8個農(nóng)藝性狀進行相關(guān)分析,結(jié)果如表5所示。株高與主莖節(jié)數(shù)、一級分枝數(shù)與二級分枝數(shù)、莖粗與單株粒數(shù)均呈極顯著正相關(guān)(rlt;0.01)。單株粒重與莖粗和單株粒數(shù)呈極顯著正相關(guān)(rlt;0.001)。一級分枝數(shù)和莖粗呈顯著負相關(guān)(rlt;0.01)。其他大部分性狀間無顯著相關(guān)性。單株粒數(shù)和單株粒重的相關(guān)系數(shù)最高(0.943),主莖節(jié)數(shù)和單株粒重的相關(guān)系數(shù)最低(-0.010)。
3討論
矮化育種中并非植株越矮越好,而是以降低株高為主要目標(biāo)的株型綜合改良育種(王坤波和劉正德,1996)??嗍w農(nóng)藝性狀的遺傳規(guī)律及相關(guān)分析對矮稈育種非常關(guān)鍵。本研究通過對苦蕎雜交后代的株型性狀和產(chǎn)量性狀進行遺傳規(guī)律及相關(guān)分析,為今后矮稈苦蕎育種提供理論依據(jù)。本研究結(jié)果顯示,F(xiàn)2和F3代群體的8個農(nóng)藝性狀均出現(xiàn)超親分離,表明雜交后代群體中出現(xiàn)了與父母本不同的基因型,暗示有望選擇出超雙親性狀的矮稈高產(chǎn)新品種。在不同作物的研究中,雜交后代的超親分離是一個普通現(xiàn)象(梁慧珍等,2014;徐海等,2015;朱昊華等,2022)。本研究在苦蕎上也驗證了這一結(jié)論。作物的遺傳多樣性主要通過農(nóng)藝性狀的變異系數(shù)來體現(xiàn),變異系數(shù)越大,遺傳背景越豐富(Alizadeh etal.,2015)。賈瑞玲等(2015)對50份苦蕎種質(zhì)資源的6個主要農(nóng)藝性狀進行遺傳多樣性分析,結(jié)果發(fā)現(xiàn)變異系數(shù)最大的性狀是單株粒重,最小的性狀是千粒重。田爽琪等(2023)對3個苦蕎雜交組合后代群體7個農(nóng)藝性狀進行遺傳多樣性分析,結(jié)果發(fā)現(xiàn)變異系數(shù)最大的性狀是單株粒重(66.15%),最小的性狀是千粒重(6.59%)。本研究結(jié)果也顯示,苦蕎主要農(nóng)藝性狀中,變異系數(shù)最大的性狀是單株粒重,最小的性狀是千粒重,與賈瑞玲等(2015)、田爽琪等(2023)的研究結(jié)果一致,說明8個農(nóng)藝性狀中單株粒重的個體差異較大,遺傳多樣性豐富,具有最大的選擇和提高潛力,千粒重則選擇范圍窄,相對穩(wěn)定。
本研究結(jié)果顯示,株高、主莖節(jié)數(shù)、單株粒數(shù)和單株粒重的加性方差小于顯性方差,平均顯性度大于1.00,與Li等(2012)、李春花等(2020)的研究結(jié)果一致,表明株高、主莖節(jié)數(shù)和單株粒重易受外界環(huán)境因素的影響,不易在初期世代進行選拔。本研究還發(fā)現(xiàn),一級分枝數(shù)的加性方差大于顯性方差,并平均顯性度小于1.00,與李春花等(2020)的研究結(jié)果一致,表明苦蕎的一級分枝數(shù)以加性效應(yīng)為主。千粒重的加性方差大于顯性方差,平均顯性度小于1.00,廣義遺傳率、狹義遺傳率和固定遺傳率均大于其他性狀,與Li等(2019)的研究結(jié)果一致,表明千粒重可在初期世代進行單株選擇。梁龍兵等(2016)對苦蕎品種小米蕎和晉蕎2號雜交后代F2和F3代群體的7個農(nóng)藝性狀進行分析,結(jié)果顯示單株粒數(shù)和株高的廣義遺傳率和狹義遺傳率均最大。田爽琪等(2023)對3個苦蕎雜交組合后代群體的7個農(nóng)藝性狀進行分析,結(jié)果發(fā)現(xiàn)單株粒重的廣義遺傳率最大,單株粒數(shù)的狹義遺傳率最大。這與本研究發(fā)現(xiàn)苦蕎株高的廣義遺傳率最小,千粒重的廣義遺傳率最大,主莖節(jié)數(shù)的狹義遺傳率最小、千粒重的狹義遺傳率最大存在一定差異,其原因可能是種植環(huán)境、雜交組配、后代群體大小、分析方法等不同所導(dǎo)致。
已有較多作物農(nóng)藝性狀與產(chǎn)量相關(guān)分析的研究報道(Zeng et al.,2019;李煒等,2022)。唐鏈等(2016)對苦蕎品種小米蕎和晉蕎2號雜交F2和F3代群體的農(nóng)藝性狀進行相關(guān)分析,結(jié)果發(fā)現(xiàn)株高與主莖分枝數(shù)、單株粒重、單株粒數(shù)均存在極顯著正相關(guān)。田爽琪等(2023)對3個苦蕎雜交組合后代群體的7個農(nóng)藝性狀進行分析,結(jié)果發(fā)現(xiàn)株高、主莖分枝、莖基直徑、單株粒數(shù)和單株粒重5個性狀存在極顯著正相關(guān)。本研究結(jié)果表明,株型性狀(株高、主莖節(jié)數(shù)、莖粗等)與單株粒數(shù)和單株粒重間均存在極顯著正相關(guān),與唐鏈等(2016)、田爽琪等(2023)的研究結(jié)果一致,表明苦蕎符合植株越高、莖稈越粗壯、分枝越多、單株粒數(shù)越多,產(chǎn)量就越高的一般規(guī)律。但由于株高越高,越易倒伏,故選擇矮稈高產(chǎn)品種難度較大。但劉愈之等(2023)以平?jīng)?3號為母本、天水市農(nóng)業(yè)科學(xué)研究所的優(yōu)異抗銹材料41-42為父本進行雜交,選育了矮稈多抗高產(chǎn)冬小麥新品種隴麥671;周彥忠等(2017)以平?jīng)?3號為母本、天水市農(nóng)業(yè)科學(xué)研究所的優(yōu)異抗銹材料41-42為父本進行雜交,選育了矮稈高產(chǎn)花色新品種漯花4087。本研究篩選出13個株高比母本矮、單株粒數(shù)和單株粒重比母本多的優(yōu)良單株,且株高除了與主莖節(jié)數(shù)存在顯著正相關(guān)外,與其他性狀無顯著相關(guān)性,表明通過雜交可選育矮稈高產(chǎn)的理想型苦蕎新品種,為實現(xiàn)苦蕎株高的顯著矮化,滿足高產(chǎn)宜機化新品種選育提供了思路和借鑒。
4結(jié)論
苦蕎矮稈高產(chǎn)育種過程中,由于千粒重與其他性狀相關(guān)系數(shù)較小,且具有較高遺傳率,可在雜交初期世代進行單株選擇;株高與其他主要農(nóng)藝性狀存在顯著或極顯著正相關(guān),則需要綜合考慮性狀間的相關(guān)性進行單株選擇,才能達到選育高產(chǎn)矮稈苦蕎品種的目的。
參考文獻(References):
陳慶富.2018.蕎麥生產(chǎn)狀況及新類型栽培蕎麥育種研究的最新進展[J].貴州師范大學(xué)學(xué)報(自然科學(xué)版),36(3):1-7.[Chen Q F.2018.The status of buckwheat production and recent progresses of breeding on new type of culti-vated buckwheat[J].Journal of Guizhou Normal Univer-sity(Natural Sciences),36(3):1-7.]doi:10.16614/j.gznuj.zrb.2018.03.001.
董娜,張新,王清連,李成奇,劉陽陽.2013.短季棉早熟及相關(guān)性狀的QTL定位[J].核農(nóng)學(xué)報,27(10):1431-1440.[Dong N,Zhang X,Wang Q L,Li C Q,Liu Y Y.2013.QTL location study on earliness and its related traits of short season cotton[J].Journal of Nuclear Agricultural Sciences,27(10):1431-1440.]
董曉杰,李志江,馬金豐,李祥羽,孫廣全,鄭雅潞.2022.谷子矮稈育種現(xiàn)狀及其與赤霉素敏感性關(guān)系[J].黑龍江農(nóng)業(yè)科學(xué),(3):80-86.[Dong X J,Li Z J,Ma J F,Li X Y,Sun G Q,Zheng Y L.2022.Current situation of millet dwarf breeding and its relationship with gibberellin sensitivity[J].Heilongjiang Agricultural Sciences,(3):80-86.]doi:10.11942/j.issn 1002-276.2022.03.008.
高翔,郝志萍,呂慧卿,劉璋,周忠宇,賀文文,閻昊,王官.2019.蕎麥抗倒性研究進展[J].中國農(nóng)學(xué)通報,35(13):6-11.[Gao X,Hao Z P,LüH Q,Liu Z,Zhou Z Y,He W W,Yan H,Wang G.2019.Research progress on lodging resistance of buckwheat[J].Chinese Agricultural Science Bulletin,35(13):6-11.]
高鑫,高聚林,于曉芳,王志剛,孫繼穎,蘇治軍,胡樹平,葉君,王海燕,崔超,李維敏.2012.高密植對不同類型玉米品種莖稈抗倒特性及產(chǎn)量的影響[J].玉米科學(xué),20(4):69-73.[Gao X,Gao J L,Yu X F,Wang Z G,Sun J Y,Su Z J,Hu S P,Ye J,Wang H Y,Cui C,Li W M.2012.Stalks lodging-resistance characteristics and yield traits among different maize varieties under high close planting[J].Jour-nal of Maize Sciences,20(4):69-73.]doi:10.13597/j.cnki.maize.science.2012.04.014.
賈瑞玲,馬寧,魏立平,劉彥明,南銘.2015.50份苦蕎種質(zhì)資源農(nóng)藝性狀的遺傳多樣性分析[J].干旱地區(qū)農(nóng)業(yè)研究,33(5):11-16.[Jia R L,Ma N,Wei L P,Liu Y M,Nan M.2015.Genetic diversity analysis on the agronomic charac-teristics of 50 tartary buckwheat germplasms[J].Agricul-tural Research in the Arid Areas,33(5):11-16.]doi:10.7606/j.issn.1000-7601.2015.05.03.
李春花,孫道旺,何成興,王艷青,盧文潔,尹桂芳,王莉花.2017.蕎麥秸稈粉還田對雜草及苦蕎產(chǎn)量的影響[J].雜草學(xué)報,35(2):61-66.[Li C H,Sun D W,He C X,Wang Y Q,Lu W J,Yin G F,Wang L H.2017.Effect of buckwheat-straw powder returning to field on weeds and tartary yield[J].Journal of Weed Science,35(2):61-66.]doi:10.19588/j.issn.1003-935X.2017.02.008.
李春花,尹桂芳,黃金亮,王艷青,盧文潔,孫道旺,王春龍,郭來春,魏黎明,加央多拉,任長忠,王莉花.2020.苦蕎株型相關(guān)性狀的遺傳分析及其對產(chǎn)量的影響[J].江西農(nóng)業(yè)大學(xué)學(xué)報,42(5):881-887.[Li C H,Yin G F,Huang J L,Wang Y Q,Lu W J,Sun D W,Wang C L,Guo L C,Wei L M,Jiayangduola,Ren C Z,Wang L H.2020.Genetic analysis of plant-type related traits and its effect on yield per plant in tartary buckwheat[J].Acta Agriculturae Uni-versitatis Jiangxiensis,42(5):881-887.]doi:10.13836/j.jjau.2020099.
李煒,畢影東,劉建新,王玲,劉淼,邸樹峰,樊超,楊光,謝婷婷,來永才.2022.寒地野生大豆資源農(nóng)藝性狀的相關(guān)性和主成分分析[J].土壤與作物,11(1):10-17.[Li W,BiY D,Liu J X,Wang L,Liu M,Di S F,F(xiàn)an C,Yang G,Xie T T,Lai Y C.2022.Correlation and principal component analysis for agronomic traits of wild soybean in cold region[J].Soils and Crops,11(1):10-17.]doi:10.11689/j.ieen.2095.2022.01.002.
李旭霞,師靜,劉晶.2023.寧夏地區(qū)蕎麥及制品加工現(xiàn)狀調(diào)研分析[J].農(nóng)產(chǎn)品加工,(9):84-86.[Li X X,Shi J,Liu J.2023.Investigation and analysis on the processing status of buckwheat and its products in Ningxia[J].Farm Pro-ducts Processing,(9):84-86.]doi:10.16693/j.cnki.1671-9646(X).2023.05.019.
梁慧珍,余永亮,楊紅旗,張海洋,董薇,崔暐文,鞏鵬濤,方宣鈞.2014.幼苗期大豆根系性狀的遺傳分析與QTL檢測[J].中國農(nóng)業(yè)科學(xué),47(9):1681-1691.[Liang H Z,Yu Y L,Yang H Q,Zhang H Y,Dong W,Cui W W,Gong P T,F(xiàn)ang X J.2014.Genetic and QTL analysis of root traits atseedling stage in soybean[Glycine max(L.)Merr.][J].Scientia Agricultura Sinica,47(9):1681-1691.]doi:10.3864/j.issn.0578-1752.2014.09.003.
梁龍兵,陳其皎,石桃雄,梁成剛,張啟迪,唐鏈,饒慶琳,陳慶富.2016.苦蕎雜交后代主花序特征遺傳變異研究[J].河南農(nóng)業(yè)科學(xué),45(5):13-17.[Liang L B,Chen Q J,Shi T X,Liang C G,Zhang Q D,Tang L,Rao Q L,Chen Q F.2016.Genetic analysis of main inflorescence traits of hybridization progeny of tartary buckwheat[J].Journal of Henan Agricultural Sciences,45(5):13-17.]doi:10.15933/j.cnki.1004-3268.2016.05.003.
林如法.2013.苦蕎舉要[M].北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社.[Lin R F.2013.Tartary buckwheat[M].Beijing:China Agricultural Science and Technology Press.]
劉愈之,鄭琪,任根深,丁志遠,劉眾,王亞翠,李娜,郭懷亮.2023.矮稈多抗高產(chǎn)冬小麥新品種—隴麥671[J].麥類作物學(xué)報,43(6):808.[Liu Y Z,Zheng Q,Ren G S,Ding Z Y,Liu Z,Wang Y C,Li N,Guo H L.2023.Dwarf straw multi-resistant high yielding winter wheat variety-Longmai 671[J].Journal of Triticeae Crops,43(6):808.]doi:10.7606/j.issn.1009-1041.2023.06.16.
陸平.1994.蕎麥低產(chǎn)的生理原因探析[J].種子,(1):46-47.[Lu P.1994.Exploration of physiological causes of low yield of buckwheat[J].Seed,(1):46-47.]doi:10.16590/j.cnki.1001-4705.1994.01.044.
羅炬,邵高能,魏祥進,陳明亮,唐紹清,焦桂愛,謝黎虹,胡培松.2012.一個控制水稻株高QTLqPH3的遺傳分析[J].中國水稻科學(xué),26(4):417-422.[Luo J,Shao G N,Wei X J,Chen M L,Tang S Q,Jiao G A,Xie L H,Hu P S.2012.Genetic analysis of a QTLqPH3 for plant height in rice[J].Chinese Journal of Rice Science,26(4):417-422.]doi:10.3969/j.issn.1001-7216.2012.04.005.
馬寧,劉彥明,魏立平,趙小琴,賈瑞玲.2016.蕎麥新品種定苦蕎1號選育報告[J].甘肅農(nóng)業(yè)科技,(9):1-4.[Ma N,Liu Y M,Wei L P,Zhao X Q,Jia R L.2016.Report on new-bred tartary buckwheat cultivar Dingkuqiao 1[J].Gansu Agricultural Science and Technology,(9):1-4.]doi:10.3969/j.issn.1001-1463.2016.09.001.
佘恒志,聶蛟,李英雙,張玉珂,黃科慧,張園莉,方小梅,阮仁武,易澤林.2018.施硅量對甜蕎倒伏及產(chǎn)量的影響[J].中國農(nóng)業(yè)科學(xué),51(14):2664-2674.[She H Z,Nie J,Li Y S,Zhang Y K,Huang K H,Zhang Y L,F(xiàn)ang X M,Ruan R W,Yi Z L.2018.Effects of silicon application rate on com-mon buckwheat lodging and yield[J].Scientia Agricultura Sinica,51(14):2664-2674.]doi:10.3864/j.issn.0578-1752.2018.14.004.
唐鏈,梁成剛,梁龍兵,張啟迪,饒慶琳,陳慶富.2016.苦蕎株高及主莖分枝數(shù)的遺傳相關(guān)分析[J].江蘇農(nóng)業(yè)科學(xué),44(9):129-132.[Tang L,Liang C G,Liang L B,Zhang Q D,Rao Q L,Chen Q F.2016.Genetic correlation analysis of plant height and branch number of main stem in tartary buckwheat[J].Jiangsu Agricultural Sciences,44(9):129-132.]doi:10.15889/j.issn.1002-1302.2016.09.037.
陶建波,伍浩天,王藝鋼,張瑞豐,雷蕾,方小梅,易澤林.2023.硅肥和納米土墑材料配施對苦蕎倒伏的影響[J].西南大學(xué)學(xué)報(自然科學(xué)版),45(9):25-35.[Tao J B,Wu H T,Wang Y G,Zhang R F,Lei L,F(xiàn)ang X M,Yi Z L.2023.Effect of silica fertilizer and nano soil moisture mate-rial application on tartary buckwheat lodging[J].Journal of Southwest University(Natural Science Edition),45(9):25-35.]doi:10.13718/j.cnki.xdzk.2023.09.003.
田爽琪,唐鏈,王為旋,張帆,柯瑾,李洪有,石桃雄,陳慶富.2023.三個苦蕎雜交組合后代群體主要農(nóng)藝性狀的遺傳分析[J].分子植物育種.(2023-04-24)[2023-11-08].https://kns.cnki.net/kcms/detail/46.1068.S.20230424.1123.004.html.[Tian S Q,Tang L,Wang W X,Zhang F,Ke J,Li H Y,Shi T X,Chen Q F.2023.Genetic analysis on main agronomic traits of progeny populations of three tartary buckwheat(Fagopyrum tataricum)crosses[J].Melecular Plant Breeding.(2023-04-24)[2023-11-08].https://kns.cnki.net/kcms/detail/46.1068.S.20230424.1123.004.html.]
王安虎,夏明忠,蔡光澤,戴紅燕.2017.苦蕎新品種西蕎4號的選育與栽培技術(shù)研究[J].種子,36(2):113-115.[Wang AH,Xia M Z,Cai G Z,Dai H Y.2017.Breeding and culti-vation techniques of buckwheat new varieties Xiqiao No.4[J].Seed,36(2):113-115.]doi:10.16590/j.cnki.1001-4705.2017.02.113.
王迪,楊漢梅,李陽倩,賈夢婷,鄒亮,楊帆.2023.苦蕎麥“品、質(zhì)、效、用”的多維評價及其活性成分高值化利用的研究進展[J].浙江農(nóng)業(yè)學(xué)報,35(8):1960-1974.[Wang D,Yang H M,Li Y Q,Jia M T,Zou L,Yang F.2023.Multidi-mensional evaluation of“variety,quality,efficiency and application”of tartary buckwheat and research progress of high-value utilization of active ingredients[J].Acta Agri-culturae Zhejiangensis,35(8):1960-1974.]doi:10.3969/j.issn.1004-1524.20230387.
王坤波,劉正德.1996.試論棉花矮化育種[J].中國棉花,23(9):2-3.[Wang K B,Liu Z D.1996.An experimentalstudy of cotton dwarf breeding[J].China Cotton,2(9):2-3.]
伍浩天,聶蛟,楊文娟,張智勇,吳康紅,李曉瑜,方小梅,阮仁武,易澤林.2020.機播深度、播種量和施肥量對苦蕎倒伏及產(chǎn)量的影響[J].草業(yè)學(xué)報,29(12):61-72.[Wu H T,Nie J,Yang W J,Zhang Z Y,Wu K H,Li X Y,F(xiàn)ang X M,Ruan R W,Yi Z L.2020.Effects of machine sowing depth and amounts of seeds and fertilizer on lodging and yield of tartary buckwheat[J].Acta Prataculturae Sinica,29(12):61-72.]doi:10.1168/cyxb2020048.
向達兵,李靜,范昱,彭鐮心,宋超,趙剛,趙江林.2014.種植密度對苦蕎麥抗倒伏特性及產(chǎn)量的影響[J].中國農(nóng)學(xué)通報,30(6):242-247.[Xiang D B,Li J,F(xiàn)an Y,Peng L X,Song C,Zhao G,Zhao J L.2014.The effects of planting density on lodging resistance and yield of tartary buck-wheat[J].Chinese Agricultural Science Bulletin,30(6):242-247.]
徐海,宮彥龍,夏原野,閆志強,王華杰,唐亮,徐正進.2015.中日水稻品種雜交后代株型性狀的變化及其相互關(guān)系[J].中國水稻科學(xué),29(4):363-372.[Xu H,Gong Y L,Xia YY,Yan Z Q,Wang H J,Tang L,Xu Z J.2015.Varia-tions in plant type traits and their relationship of progeny derived from the cross between Chinese rice variety andJapanese rice variety[J].Chinese Journal Rice Science,29(4):363-372.]doi:10.3969/j.issn.1001-7216.2015.04.005.
薛建峰,湯永榮,查仁明,羅洪發(fā).2011.2個水稻矮桿突變體的遺傳分析[J].中國農(nóng)學(xué)通報,27(27):60-64.[Xue J F,Tang Y R,Zha R M,Luo H F.2011.Genetic analysis of two dwarf mutants of rice[J].Chinese Agricultural Scien-ce Bulletin,27(27):60-64.]
楊媛,王慧,石金波,郭忠賢,李占成,李蔭藩,楊芳.2016.國審苦蕎新品種晉蕎麥(苦)6號的選育[J].山西農(nóng)業(yè)科學(xué),44(12):1758-1760.[Yang Y,Wang H,Shi J B,Guo Z X,Li Z C,Li Y F,Yang F.2016.Breeding of a new state approved variety Jinqiaomai 6 of buckwheat[J].Journal of Shanxi Agricultural Sciences,44(12):1758-1760.]doi:10.3969/j.issn.1002-2481.2016.12.04.
余莎,甘國超,陳雪婷,蔡利,易華平,楊清,熊婷,唐雅琪.2023.涼山苦蕎麥的營養(yǎng)價值及苦蕎涼面的開發(fā)前景研究[J].現(xiàn)代食品,29(3):55-58.[Yu S,Gan G C,Chen X T,Cai L,Yi H P,Yang Q,Xiong T,Tang Y Q.2023.Study on the nutritional value of bitter buckwheat in Liangshan and the development prospect of bitter buckwheat cold noodles[J].Modern Food,29(3):55-58.]doi:10.16736/j.cnki.cn41-1434/ts.2023.03.012.
張清明,趙衛(wèi)敏,馬裕群,伍瓊.2016.蕎麥新品種六苦蕎4號的選育及栽培管理技術(shù)[J].貴州農(nóng)業(yè)科學(xué),44(7):9-10.[Zhang Q M,Zhao W M,Ma Y Q,Wu Q.2016.Breeding of a new buckwheat cultivar Liukuqiao 4 and its cultiva-tion and management technology[J].Guizhou Agricultural Sciences,44(7):9-10.]doi:10.3969/j.issn.1001-3601.2016.07.004.
張志才.2006.作物倒伏成因分析及抗倒對策研究進展[J].耕作與栽培,(4):1-2.[Yang Z C.2006.Progress in analy-sing the causes of crop failures and countermeasuresagainst them[J].Tillage and Cultivation,(4):1-2.]doi:10.3969/j.issn.1008-2239.2006.04.001.
鐘林,熊芳秋,羅曉玲,劉鋼,楊馨,孫崇蘭.2020.春苦蕎抗倒伏栽培試驗[J].農(nóng)業(yè)科技通訊,(4):136-141.[Zhong L,Xiong F Q,Luo X L,Liu G,Yang X,Sun C L.2020.Experiment on lodging-resistant cultivation of spring tar-tary buckwheat[J].Bulletin of Agricultural Science and Technology,(4):136-141.]doi:10.3969/j.issn.1000-6400.2020.04.045.
周彥忠,李飛,姬小玲,盧邦林李斯佳,徐保華.2017.矮稈、高產(chǎn)花生新品種漯花4087的選育[J].山西農(nóng)業(yè)科學(xué),45(7):1069-1071.[Zhou Y Z,Li F,Ji X L,Lu B L,Li S J,Xu B H.2017.Breeding of new dwarf peanut variety Luo-hua 4087 with high and stable yield[J].Journal of Shanxi Agricultural Sciences,45(7):1069-1071.]doi:10.3969/j.issn.1002-2481.2017.07.06.
朱昊華,范超,王俊仁,許如根,郭寶健,朱娟,呂超.2022.不同生態(tài)類型大麥品種(系)雜交后代主要農(nóng)藝性狀的分析[J].大麥與谷類科學(xué),39(1):1-7.[Zhu H H,F(xiàn)an C,Wang J R,Xu R G,Guo B J,Zhu J,LüC.2022.Analysis of the main agronomic characters of hybrid progenies of barley varieties(lines)under different ecological types[J].Barley and Cereal Sciences,39(1):1-7.]doi:10.14069/j.cnki.32-1769/s.2022.01.001.
Alizadeh K,F(xiàn)atholahi S,da Silva T J A.2015.Variation in the fruit characteristics of local pear(Pyrus spp.)in the northwest of Iran[J].Genetic Resources and Crop Evolu-tion,62(5):635-641.doi:10.1007/s 10722-015-0241-7.
Daoura B G,Chen L,Du YY,Hu Y G.2014.Genetic effects of dwarfing gene Rht-5 on agronomic traits in common wheat(Triticum aestivum L.)and QTL analysis on its linkedtraits[J].Field Crops Research,156:22-29.doi:10.1016/j.fcr.2013.10.007.
Gupta P K,Varsheny R K,Sharma P C,Ramesh B.1999.Molecular markers and their applications in wheat breeding[J].Plant Breeding,118(5):369-390.doi:10.1046/j.1439-0523.1999.00401.x.
Hedden P.2003.The genes of the green revolution[J].Trendsin Genetics,19(1):5-9.doi:10.1016/S0168-9525(02)00009-4.
Li C H,Kobayashi K,Yoshida Y,Ohsawa R.2012.Genetic analyses of agronomic traits in tartary buckwheat(Fagopy-rum tartaricum(L.)Gaertn.)[J].Breeding Science,62(4):303-309.doi:10.1270/jsbbs.62.303.
Li C H,Xie Z M,Wang Y Q,Lu W J,Yin G F,Sun D W,Ren C Z,Wang L H.2019.Correlation and genetic analysis ofseed shell thickness and yield factors in tartary buckwheat(Fagopyrum tataricum(L.)Gaertn.)[J].Breeding Sci-ence,69(3):464-470.doi:10.1270/jsbbs.18081.
Wang C,Hu D,Liu X B,She H Z,Ruan R W,Yang H,Yi Z L,Wu D Q.2015a.Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat(Fagopyrum esculentum M.)[J].Field Crops Research,180:46-53.doi:10.1016/j.fcr.2015.05.009.
Wang Y S,Chen L,Du Y Y,Yang Z Y,Condon A G,Hu Y G.2014.Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat(Triticum aestivum L.)[J].Field Crops Research,162:39-47.doi:10.1016/j.fcr.2014.03.014.
Wang Y S,Du Y Y,Yang Z Y,Chen L,Condon A G,Hu Y G.2015b.Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat[J].Field Crops Research,179:35-43.doi:10.1016/j.fcr.2015.04.010.
Yang Z Y,Zheng J C,Liu C Y,Wang Y S,Condon A G,Chen Y F,Hu Y G.2015.Effects of the GA-responsive dwarfing gene Rht18 from tetraploid wheat on agronomic traits of common wheat[J].Field Crops Research,183:92-101.doi:10.1016/j.fcr.2015.07.028.
Zeng W J,Xu L,He Q L,Zhang L L,Xu H L,Liang Z S.2019.Correlation analysis of main agronomic traits and contents of diterpence lactones of Andrographis paniculata[J].China Journal of Chinese Materia Medica,44(15):3233-3238.doi:10.19540/j.cnki.cjcmm.20190527.109.
(責(zé)任編輯 陳燕)