【摘要】近年來,外泌體與脂質(zhì)代謝相關(guān)的研究越來越多。外泌體可以影響脂質(zhì)代謝的發(fā)生與發(fā)展,在脂代謝與脂質(zhì)相關(guān)疾病中發(fā)揮重要作用。同時,脂質(zhì)代謝也能調(diào)節(jié)外泌體的生物發(fā)生及功能作用?,F(xiàn)結(jié)合近年來國內(nèi)外研究,闡述外泌體在脂質(zhì)代謝相關(guān)領(lǐng)域的研究進展,并對外泌體在脂代謝與脂質(zhì)相關(guān)疾病中的潛在價值及臨床應(yīng)用進行展望。
【關(guān)鍵詞】外泌體;囊泡;脂質(zhì)代謝;脂代謝相關(guān)疾病;動脈粥樣硬化
【DOI】10.16806/j.cnki.issn.1004-3934.2024.08.000
Research Progress on Exosomes and Lipid Metabolism
YANG Anni,LI Lamei,WANG Lyuya,CAI Gaojun
(Department of Cardiology,The Wujin Clinical College of Xuzhou Medical University,Wujin Hospital Affiliated to Jiangsu University,Changzhou 213017,Jiangsu,China)
【Abstract】"In recent years,more and more studies have been conducted on the relationship between exosomes"and lipid metabolism. Exosomes can affect the occurrence and development of lipid metabolism and play an important role in lipid metabolism and lipid-related diseases. At the same time,lipid metabolism can also regulate the biogenesis and function of exosomes. In this paper,based on recent domestic and foreign studies,the research progress of exosomes in the fields related to lipid metabolism was reviewed,and the potential value and clinical application of exosomes in lipid metabolism and lipid-related diseases"are prospected.
【Keywords】Exosomes; Vesicles; Lipid metabolism; Lipid metabolism-related diseases; Atherosclerosis
自Valadi等[1]發(fā)現(xiàn)外泌體可以通過將RNA轉(zhuǎn)移到受體細胞,并在細胞通訊中發(fā)揮作用以來,有關(guān)外泌體的研究在近30年間進入了一個飛速發(fā)展的時期。外泌體是質(zhì)膜與多泡體融合后從細胞釋放的小細胞外囊泡(extracellular vesicle,EV)亞型,直徑約為100"nm[2]。其通過釋放內(nèi)容物到受體細胞中或與細胞表面受體相互作用來改變近處細胞和遠處細胞的代謝,在細胞間通信中起著核心作用[3]。外泌體中的不同成分在細胞分化、免疫調(diào)節(jié)和腫瘤等生理和病理過程中發(fā)揮重要作用[4];因其具有循環(huán)穩(wěn)定性高、免疫原性低、生物相容性好以及細胞毒性低等優(yōu)點,使外泌體成為了腫瘤診斷和治療中炙手可熱的研究熱點[5]。
近來研究表明,外泌體與脂質(zhì)代謝關(guān)系密切。一方面外泌體能夠調(diào)節(jié)脂質(zhì)合成、降解和分泌;其分泌和相應(yīng)成分的失調(diào)可導致脂質(zhì)代謝改變,進而導致疾病的發(fā)生[6]。另一方面,脂質(zhì)代謝也影響外泌體的產(chǎn)生、分泌和內(nèi)化[7]。現(xiàn)結(jié)合國內(nèi)外文獻,從外泌體和脂質(zhì)之間的相互作用,以及在生理和病理過程中的作用方面進行綜述。
1""外泌體簡介
1.1""外泌體的產(chǎn)生
外泌體來源于不同起源類型的EV。EV是一類由多種細胞類型分泌的具有脂質(zhì)雙分子膜結(jié)構(gòu)的納米級囊泡[8]。根據(jù)大小差異、起源類型及釋放方式的不同,EV可分為凋亡小體、外泌體、微囊泡等多種亞群[9]。外泌體起源于包含有多個腔內(nèi)囊泡的多泡體,其中腔內(nèi)囊泡由內(nèi)體膜向內(nèi)出芽和裂變產(chǎn)生,然后在多泡內(nèi)體與質(zhì)膜融合后釋放[10]。
1.2""外泌體的特點及作用
外泌體可廣泛分布于各種細胞和體液中[11]。相關(guān)研究[12]表明,外泌體作為一種“交通工具”專門從事細胞間的信息傳遞,通過轉(zhuǎn)移源細胞的遺傳物質(zhì)和蛋白質(zhì)等作用于靶細胞而發(fā)揮作用。其通過調(diào)節(jié)細胞代謝,如影響基因調(diào)控和細胞間信號傳遞、免疫應(yīng)答反應(yīng)、細胞穩(wěn)態(tài)調(diào)節(jié)、促進細胞發(fā)育、腫瘤細胞增殖和血管形成等,在生理或病理條件下的細胞間通信中起著關(guān)鍵作用[13]。
2""外泌體與脂質(zhì)
2.1""脂質(zhì)影響外泌體的形成
脂質(zhì)作為外泌體的重要組成部分,不僅參與外泌體的膜形成,也影響著外泌體的合成與釋放。外泌體的形成受多種分子和途徑調(diào)節(jié),其主要機制可分為兩大類:轉(zhuǎn)運必需內(nèi)體分選復合體(endosomal sorting complex required for transport, ESCRT)依賴性和非ESCRT依賴性[14]。ESCRT是由E類液泡蛋白分選(vacuolar protein sorting,Vps)蛋白組裝而成的一類復合物,其包括:ESCRT 0、Ⅰ、Ⅱ、Ⅲ,主要通過自身的多蛋白機制來影響外泌體的生物發(fā)生[15]。其中,磷脂酰肌醇3-磷酸可結(jié)合ESCRT-0的FYVE結(jié)構(gòu)域協(xié)助早期ESCRT蛋白Vps27/Hrs的募集,以達到促進外泌體形成的目的。除此之外,ESCRT相關(guān)蛋白ALIX也在ESCRT依賴性途徑內(nèi)的外泌體生成中起著重要作用。研究[16]表明,ESCRT Ⅲ可以通過ESCRT 0-Bro1/ALIX-SNF7/CHMP4的替代途徑,在溶血雙磷脂酸存在的條件下將包括CD9、CD63和CD81在內(nèi)的四蛋白遞送至外泌體,從而影響外泌體的形成。
越來越多的證據(jù)[17]表明,外泌體的生物發(fā)生深受富含膽固醇的脂筏樣結(jié)構(gòu)域影響。其主要成分除膽固醇外,還囊括鞘脂、磷脂酰絲氨酸和神經(jīng)酰胺等物質(zhì)[9],并在ESCRT非依賴性外泌體的形成中發(fā)揮重要作用。其中,中性鞘磷脂酶2-神經(jīng)酰胺是ESCRT非依賴性機制研究中最受歡迎的作用途徑[18]。膜的內(nèi)層通常富含神經(jīng)酰胺,神經(jīng)酰胺分子通過觸發(fā)膜內(nèi)陷和出芽,從而有助于外泌體的形成。除神經(jīng)酰胺外,外泌體膜上所富集的膽固醇也可促進細胞對外泌體的攝取[11]。
2.2""外泌體調(diào)節(jié)脂質(zhì)代謝
外泌體通過轉(zhuǎn)移脂肪酸、膽固醇、神經(jīng)酰胺、遺傳物質(zhì)以及酶等物質(zhì)參與脂質(zhì)的合成、運輸和降解過程[19]。據(jù)相關(guān)研究報道,外泌體可能含有幾種脂質(zhì)合成酶,通過調(diào)節(jié)脂質(zhì)和脂質(zhì)代謝酶在細胞間的轉(zhuǎn)移,從而影響受體細胞行為。由此可見,外泌體既可以誘導受體細胞中脂質(zhì)的合成,也可以作為載體釋放細胞中合成的脂質(zhì)[20]。研究[21]表明,外泌體miRNA-320通過內(nèi)質(zhì)網(wǎng)應(yīng)激信號以及胰島素-磷脂酰肌醇3激酶通路促進脂肪分解,并且miRNA-320在脂肪細胞中的過度表達可以抑制脂肪生成。類似的是,外泌體核仁蛋白16通過ATP-檸檬酸裂解酶的磷酸化上調(diào)乙酰輔酶A水平并影響腫瘤相關(guān)成纖維細胞中的脂質(zhì)代謝,從而表明來源于癌細胞的外泌體與脂肪生成顯著相關(guān)[22]。
3""外泌體與脂質(zhì)代謝相關(guān)的心血管疾病
3.1""肥胖
哺乳動物的脂肪組織主要包括白色脂肪組織(white"adipose"tissue, WAT)和棕色脂肪組織(brown"adipose"tissue, BAT)。其中,WAT的異常沉積是導致肥胖的主要原因,而肥胖可以促進多種代謝性疾病的發(fā)生發(fā)展,包括高血壓、糖尿病、高脂血癥、心腦血管疾病、癌癥等[23]。Zhao等[24]研究表明,肝細胞來源的外泌體miRNA let-7b-5p在肝臟和WAT之間的TGF信號轉(zhuǎn)導通路中起著關(guān)鍵作用,并可以通過介導Adrb3基因的表達調(diào)節(jié)脂肪細胞的功能。除此之外,外泌體let-7b-5p還可以通過抑制能量消耗來影響脂肪細胞的能量平衡,從而促進肥胖的發(fā)展。肝外泌體衍生的miRNA-130a通過介導肝臟和脂肪組織之間的相互作用,調(diào)節(jié)脂肪組織中的能量代謝,進而影響肥胖的發(fā)生發(fā)展[25]。此外,脂肪干細胞來源的外泌體可以顯著減少高脂飲食喂養(yǎng)小鼠中肥胖誘導的WAT炎癥、全身胰島素抵抗、血脂異常和肝脂肪變性;同時通過增加BAT中過氧化物酶體增殖物激活受體γ輔激活子1α和肉堿棕櫚酰轉(zhuǎn)移酶1β的表達,促進能量消耗和抵抗肥胖進展,并進一步改善全身代謝[26]。
3.2""動脈粥樣硬化
動脈粥樣硬化是一種包含多種細胞類型和機制間相互作用而形成的進行性病變。外泌體不僅可以通過影響脂質(zhì)沉積、炎癥反應(yīng)、血管功能以及斑塊形成與破裂等過程,調(diào)節(jié)動脈粥樣硬化的發(fā)生與發(fā)展[27];還可以通過影響動脈粥樣硬化中的信號轉(zhuǎn)導、促進巨噬細胞極化等,調(diào)節(jié)動脈粥樣硬化中的炎癥浸潤[28]。同時,來源于巨噬細胞的外泌體也可通過其相應(yīng)代謝產(chǎn)物來促進或抑制動脈粥樣硬化的形成。Bouchareychas等[29]研究表明,巨噬細胞衍生外泌體通過影響細胞的病理過程、調(diào)節(jié)細胞間通訊從而作用于動脈粥樣硬化的發(fā)生發(fā)展過程。其證明,骨髓衍生巨噬細胞外泌體可通過抑制膽固醇的外排,影響動脈粥樣硬化斑塊中的脂質(zhì)沉積。此外,Zhang等[30]研究證明了間充質(zhì)干細胞來源的外泌體miRNA,通過促進或抑制動脈粥樣硬化斑塊的形成來調(diào)節(jié)動脈粥樣硬化的進展。
3.3""冠狀動脈粥樣硬化性心臟病
隨著動脈粥樣硬化的逐步進展,斑塊積聚致冠狀動脈狹窄或閉塞,則進一步導致冠心病的發(fā)生。如前所述,外泌體在動脈粥樣硬化的發(fā)生發(fā)展中占據(jù)著重要作用[27-28]。除此之外,外泌體也廣泛參與于心血管疾病的發(fā)生和發(fā)展[31]。氧化型低密度脂蛋白誘導巨噬細胞釋放外泌體miRNA-106a-3p,并通過促進血管平滑肌細胞增殖和抑制細胞凋亡,阻礙冠心病發(fā)展[32]。與常氧狀態(tài)下生長的心臟祖細胞泌體相比,缺氧心臟祖細胞來源外泌體中miRNA-17以及miRNA-199a等顯著表達,并通過降低結(jié)締組織生長因子、波形絲蛋白、Ⅰ型膠原和Ⅲ型膠原水平,參與抗心肌纖維化的過程,從而減輕冠心病后的心肌損傷[33],如圖1。此外,血管平滑肌細胞來源的外泌體通過參與血管平滑肌細胞與內(nèi)皮細胞之間的信號傳遞,來維持血管穩(wěn)態(tài),干擾外泌體分泌則影響血管穩(wěn)態(tài)的維持,從而導致冠心病發(fā)生發(fā)展[34]。
3.4""心房顫動
心房顫動(atrial fibrillation, AF)作為最常見的持續(xù)性心律失常,可致血栓栓塞以及卒中等一系列相關(guān)疾病的風險增加[35]。而許多研究[36]表明,脂肪組織與AF發(fā)生的病理生理過程息息相關(guān)。Xie等[37]研究發(fā)現(xiàn),肥胖個體的內(nèi)臟脂肪組織所釋放的外泌體通過調(diào)節(jié)核因子κB活性,在M1巨噬細胞極化中發(fā)揮重要作用。而研究證實,炎癥和巨噬細胞均可影響AF的發(fā)生。其中,促炎性巨噬細胞通過分泌白介素-1β和腫瘤壞死因子-α進一步加劇心房電重構(gòu)[38]。此外,脂肪細胞衍生的外泌體miRNA-1224通過旁分泌作用抑制M2巨噬細胞極化,促進心房纖維化的形成[39]。Auriane等[40]研究發(fā)現(xiàn),與皮下脂肪組織相比,心外膜脂肪組織中外泌體含量較高;并且心外膜脂肪組織來源的外泌體miRNA-1-3p和miRNA-133a-3p可通過過表達降低傳導速度,從而誘發(fā)心肌細胞持續(xù)折返性心律失常的形成。因此,AF患者心外膜脂肪組織來源的外泌體所具有的獨特致心律失常特征,可能為AF治療提供新的作用靶點。
4 "展望
盡管外泌體已從多種方面展現(xiàn)其在疾病診療中的潛在臨床價值及靶向藥物輸送的優(yōu)越性,但在臨床中的實際應(yīng)用仍面臨著不可小覷的問題。主要體現(xiàn)在外泌體作用機制的復雜性與不確定性,以及其高度異質(zhì)性,為獲取與存儲帶來了別樣的挑戰(zhàn)。包括合適的給藥劑量、途徑與時機仍是未來需要研究的方向[4]。
5 "小結(jié)
本綜述主要討論了外泌體與脂質(zhì)間的相互作用,涵蓋了脂質(zhì)對外泌體生物合成等方面的影響,以及外泌體對脂質(zhì)代謝與脂代謝相關(guān)疾病的調(diào)控與作用,體現(xiàn)了在脂質(zhì)代謝相關(guān)疾病中,外泌體作為生物標志物及潛在治療靶點應(yīng)用于疾病診斷、治療及預后的重要價值。
參考文獻
[1] Valadi H,Ekstr?m K,Bossios A,et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol,2007,9(6):654-659.
[2] van de Wakker SI,Bauzá-Martinez J,Ríos Arceo C,et al. Size matters:functional differences of small extracellular vesicle subpopulations in cardiac repair responses[J]. J Extracell Vesicles,2024,13(1):e12396.
[3] Gurung S,Perocheau D,Touramanidou L,et al. The exosome journey:from biogenesis to uptake and intracellular signalling[J]. Cell Commun Signal,2021,19(1):47.
[4] Liu Y J,Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication[J]. Cell Commun Signal,2023,21(1):77.
[5] Zhang Y,Liu Q,Zhang X,et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy[J]. J Nanobiotechnology,2022,20(1):279.
[6] Zein Abdin Z,Geng AZ,Chandy M. Exosomes and lipid metabolism in metabolic and cardiovascular disorders[J]. Curr Opin Lipidol,2023,34(2):82-91.
[7] Davidson SM,Boulanger CM,Aikawa E,et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies:from exosomes to microvesicles[J]. Cardiovasc Res,2023,119(1):45-63.
[8] Skotland T,Llorente A,Sandvig K. Lipids in extracellular vesicles:what can be learned about membrane structure and function?[J]. Cold Spring Harb Perspect Biol,2023,15(8):a041415.
[9] Donoso-Quezada J,Ayala-Mar S,González-Valdez J. The role of lipids in exosome biology and intercellular communication:Function,analytics and applications[J]. Traffic,2021,22(7):204-220.
[10] Ghadami S,Dellinger K. The lipid composition of extracellular vesicles:applications in diagnostics and therapeutic delivery[J]. Front Mol Biosci,2023,10:1198044.
[11] Mori T,Giovannelli L,Bilia AR,et al. Exosomes:potential next-generation nanocarriers for the therapy of inflammatory diseases[J]. Pharmaceutics,2023,15(9):2276.
[12] Kimiz-Gebologlu I,Oncel SS. Exosomes:Large-scale production,isolation,drug loading efficiency,and biodistribution and uptake[J]. J Control Release,2022,347:533-543.
[13] Gurunathan S,Kang MH,Kim JH. A comprehensive review on factors influences biogenesis,functions,therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine,2021,16:1281-1312.
[14] Lee YJ,Shin KJ,Jang HJ,et al. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis[J]. Dev Cell,2023,58(4):320-334.e328.
[15] Levy-Myers R,Daudelin D,Na CH,et al. An independent regulator of global release pathways in astrocytes generates a subtype of extracellular vesicles required for postsynaptic function[J]. Sci Adv,2023,9(25):eadg2067.
[16] Ju Y,Bai H,Ren L,et al. The role of exosome and the ESCRT pathway on enveloped virus infection[J]. Int J Mol Sci,2021,22(16):9060.
[17] Krylova SV,F(xiàn)eng D. The machinery of exosomes:biogenesis,release,and uptake[J]. Int J Mol Sci,2023,24(2):1337.
[18] Han QF,Li WJ,Hu KS,et al. Exosome biogenesis:machinery,regulation,and therapeutic implications in cancer[J]. Mol Cancer,2022,21(1):207.
[19] Wang N,Li J,Hu Z,et al. Exosomes:new insights into the pathogenesis of metabolic syndrome[J]. Biology (Basel),2023,12(12):1480.
[20] Skotland T,Sagini K,Sandvig K,et al. An emerging focus on lipids in extracellular vesicles[J]. Adv Drug Deliv Rev,2020,159:308-321.
[21] Liu L,Li X. Downregulation of miR-320 alleviates endoplasmic reticulum stress and inflammatory response in 3T3-L1 adipocytes[J]. Exp Clin Endocrinol Diabetes,2021,129(2):131-137.
[22] Yin KL,Li M,Song PP,et al. Unraveling the emerging niche role of hepatic stellate cell-derived exosomes in liver diseases[J]. J Clin Transl Hepatol,2023,11(2):441-451.
[23] Du M,Li X,Xiao F,et al. Serine active site containing protein 1 depletion alters lipid metabolism and protects against high fat diet-induced obesity in mice[J]. Metabolism,2022,134:155244.
[24] Zhao J,Hu L,Gui W,et al. Hepatocyte TGF-β signaling inhibiting WAT browning to promote NAFLD and obesity is associated with Let-7b-5p[J]. Hepatol Commun,2022,6(6):1301-1321.
[25] Wu J,Dong T,Chen T,et al. Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte[J]. Metabolism,2020,103:154006.
[26] Zhao H,Shang Q,Pan Z,et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes,2018,67(2):235-247.
[27] Yang K,Xiao Q,Niu M,et al. Exosomes in atherosclerosis:convergence on macrophages[J]. Int J Biol Sci,2022,18(8):3266-3281.
[28] Wen C,Li B,Nie L,et al. Emerging roles of extracellular vesicle-delivered circular RNAs in atherosclerosis[J]. Front Cell Dev Biol,2022,10:804247.
[29] Bouchareychas L,Duong P,Phu TA,et al. High glucose macrophage exosomes enhance atherosclerosis by driving cellular proliferation amp; hematopoiesis[J]. iScience,2021,24(8):102847.
[30] Zhang N,Luo Y,Zhang H,et al. Exosomes derived from mesenchymal stem cells ameliorate the progression of atherosclerosis in ApoE(-/-) mice via FENDRR[J]. Cardiovasc Toxicol,2022,22(6):528-544.
[31] Xu Y,Wan W,Zeng H,et al. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases:Situations and challenges[J]. J Transl Int Med,2023,11(4):341-354.
[32] Liu Y,Zhang WL,Gu JJ,et al. Exosome-mediated miR-106a-3p derived from ox-LDL exposed macrophages accelerated cell proliferation and repressed cell apoptosis of human vascular smooth muscle cells[J]. Eur Rev Med Pharmacol Sci,2020,24(12):7039-7050.
[33] Zhang S,Yang Y,Lv X,et al. Unraveling the intricate roles of exosomes in cardiovascular diseases:a comprehensive review of physiological significance and pathological implications[J]. Int J Mol Sci,2023,24(21):15677.
[34] Qiu H,Shi S,Wang S,et al. Proteomic profiling exosomes from vascular smooth muscle cell[J]. Proteomics Clin Appl,2018,12(5):e1700097.
[35] Joglar JA,Chung MK,Armbruster AL,et al. 2023 ACC/AHA/ACCP/HRS Guideline for the diagnosis and management of atrial fibrillation:a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice Guidelines[J]. Circulation,2024,149(1):e1-e156.
[36] Willar B,Tran KV,F(xiàn)itzgibbons TP. Epicardial adipocytes in the pathogenesis of atrial fibrillation:An update on basic and translational studies[J]. Front Endocrinol (Lausanne),2023,14:1154824.
[37] Xie Z,Wang X,Liu X,et al. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization[J]. J Am Heart Assoc,2018,7(5):e007442.
[38] Yang P,Chen Z,Huang W,et al. Communications between macrophages and cardiomyocytes[J]. Cell Commun Signal,2023,21(1):206.
[39] Zhang D,Yao X,Teng Y,et al. Adipocytes-derived exosomal microRNA-1224 inhibits M2 macrophage polarization in obesity-induced adipose tissue inflammation via MSI2-mediated Wnt/β-catenin axis[J]. Mol Nutr Food Res,2022,66(18):e2100889.
[40] Ernault AC,de Winter R,F(xiàn)abrizi B,et al. MicroRNAs in extracellular vesicles released from epicardial adipose tissue promote arrhythmogenic conduction slowing[J]. Heart Rhythm O2,2023,4(12):805-814.
收稿日期:2024-01-04