摘要: 纖維素材料作為一種新型吸附劑, 具有優(yōu)異的機(jī)械性能和化學(xué)穩(wěn)定性, 通過化學(xué)改性可顯著提升其吸附性能, 在去除水溶液中的污染物方面展現(xiàn)出對重金屬離子、 有機(jī)小分子和微塑料等污染物的良好吸附能力, 也可作為血液凈化吸附劑用于治療血液疾病. 綜述纖維素材料在水溶液凈化中的應(yīng)用, 并總結(jié)纖維素材料作為吸附劑的研究進(jìn)展.
關(guān)鍵詞:" 纖維素; 化學(xué)改性; 水凈化; 血液凈化
中圖分類號: O63" 文獻(xiàn)標(biāo)志碼: A" 文章編號: 1671-5489(2025)01-0173-09
Research Progress of Adsorption Purification for Cellulose
Materials in Aqueous Solutions
LIU Guancheng," ZHANG Zhe," LONG Xin," YANG Bai
(State Key Laboratory of Supramolecular Structure and Materials," Jilin University,
Changchun 130012," China)
Abstract:" Cellulose materials as a novel class of adsorbents," it has excellent mechanical properties and chemical stability,"" their adsorption performance can be significantly enhanced through chemical modification. In the context of removing pollutants from aqueous solutions," cellulose materials show good adsorption capabilities for contaminants such as heavy metal ions," organic small molecules," and microplastics,"" they can also be used as" blood purification adsorbent for the treatment of blood-related diseases. We review the application of cellulose materials in the purification of aqueous solutions,"" and" summarize the research process of cellulose materials as adsorbents.
Keywords: cellulose;" chemical modification;" water purification;" blood purification
近年來, 隨著工業(yè)化的快速發(fā)展和環(huán)境污染的日益加劇, 探索如何有效去除水中有害污染物的方法已成為當(dāng)務(wù)之急. 因此, 開發(fā)有效的吸附凈化技術(shù)對維護(hù)良好的生態(tài)環(huán)境至關(guān)重要. 該技術(shù)要求使用低成本且環(huán)保的吸附劑, 這些吸附劑應(yīng)具有可大規(guī)模生產(chǎn)和應(yīng)用的潛力, 并且不會導(dǎo)致二次污染[1]. 在可用于吸附的材料中, 纖維素材料具有生物降解性、 經(jīng)濟(jì)性和可再生性, 是一種理想的天然高分子吸附劑[2]. 由于其獨(dú)特的結(jié)晶性和氫鍵特性, 纖維素不溶于大多數(shù)溶劑, 因此適合在多數(shù)溶劑尤其是水溶液中的凈化. 此外, 纖維素材料表現(xiàn)出良好的血液相容性[3-4], 使其能有效應(yīng)用于體內(nèi)水溶液的凈化, 具有治療血液疾病的潛力, 從而保障人類生活質(zhì)量.
本文綜述纖維素材料作為吸附劑在水溶液凈化中的應(yīng)用, 分析并討論相關(guān)的關(guān)鍵挑戰(zhàn)與未來發(fā)展前景, 為纖維素材料吸附劑的設(shè)計與應(yīng)用策略提供有益參考.
1 纖維素材料
纖維素是地球上含量最豐富的天然高分子, 主要來源于木材和棉花, 也可從其他植物的不同部位中提取. 它具有綠色、 良好的生物降解性、 生物相容性、 天然豐度和可持續(xù)性等特點(diǎn), 是吸附材料的優(yōu)良載體, 它本身也是一類有效的吸附材料. 纖維素的分子式為多糖, 是由β-(1,4)-糖苷鍵連接的 D-脫水吡喃葡萄糖單元整合的聚合物(圖1)[2].
由于沒有側(cè)鏈或支鏈, 纖維素鏈以有序結(jié)構(gòu)存在. 因此, 纖維素是一種半結(jié)晶聚合物, 它同時包含結(jié)晶相和非晶相. 雖然它是一種線性聚合物, 且包含的伯羥基和仲羥基均為親水性, 但由于纖維素鏈之間的強(qiáng)氫鍵, 因此它不溶于水和普通有機(jī)溶劑. 纖維素鏈之間的氫鍵和葡萄糖單元之間的范德華力導(dǎo)致纖維素中形成結(jié)晶區(qū)域[5].
纖維素材料主要由纖維素及其衍生物組成. 纖維素一般分為4種晶體類型: 纖維素Ⅰ型、 Ⅱ型、 Ⅲ型和Ⅳ型. 其中, 纖維素Ⅰ型為天然纖維素, 纖維素Ⅱ型是具有反平行排列鏈的再生纖維素, 由纖維素Ⅰ型經(jīng)堿液處理和重結(jié)晶制成. 再生纖維素與天然纖維素的不同之處在于其相對分子質(zhì)量較小、 結(jié)晶度和聚合度較低, 以及分子纏結(jié)較少. 纖維素Ⅲ型由纖維素Ⅰ型或纖維素Ⅱ型經(jīng)液氨處理制成, 纖維素Ⅳ型可通過纖維素Ⅲ型通過熱處理形成[6].
纖維素衍生物主要通過纖維素上的羥基引入不同取代基制備. 纖維素分子上的羥基可發(fā)生氧化、 酯化、 醚化和接枝共聚等反應(yīng)[6-8]. 通過調(diào)節(jié)纖維素分子的相對分子質(zhì)量和取代官能團(tuán)的分布可得到纖維素衍生物, 主要產(chǎn)品有甲基纖維素(MC)、 乙基纖維素(EC)、 羥乙基纖維素(HEC)、 羥丙基纖維素(HPC)、 醋酸纖維素(CA)和羧甲基纖維素(CMC)等衍生物[6].
2 纖維素作為吸附材料的化學(xué)改性
近年來, 纖維素材料被廣泛應(yīng)用于吸附凈化領(lǐng)域, 但纖維素的吸附性能較單一且其吸附能力有限, 需通過化學(xué)改性方式提高纖維素的吸附性能, 從而拓寬纖維素材料在吸附領(lǐng)域的應(yīng)用. 主要化學(xué)改性方法包括以下幾方面.
2.1 酯 化
纖維素的每個重復(fù)單元有3個羥基, 能與羧基進(jìn)行酯化反應(yīng). 在酯化過程中引入羧基, 增加纖維素材料的羧基含量, 從而可增強(qiáng)其靜電吸附作用或羧基螯合作用. 如Geay等[9]用丁二酸酐改性木漿, 對水溶液中Cd(Ⅱ)的吸附容量為 168.0 mg/g, 通過控制羧基含量實(shí)現(xiàn)了吸附性能的調(diào)控.
2.2 醚 化
纖維素可通過在堿性條件下與有機(jī)鹵化物以及環(huán)氧乙烷反應(yīng)而醚化. 與酯鍵相比, 醚鍵的優(yōu)勢在于它們在水性體系中的穩(wěn)定性, 即使在低/高 pH 值下也能穩(wěn)定存在. 纖維素材料最常用的醚化改性方法是用氯乙酸進(jìn)行羧甲基化, 從而引入帶有負(fù)電荷的羧基, 可用于吸附陽離子[10]. 纖維素也可與六甲基二硅氧烷反應(yīng)生成硅烷醚, 從而極大提高其表面的疏水性[11].
2.3 氧 化
纖維素材料常用的氧化方式有兩種: 1) 用 NaIO4 氧化, 常用于活化纖維素材料, 該氧化反應(yīng)導(dǎo)致纖維素重復(fù)單元中無水葡萄糖環(huán)的 C2—C3 鍵選擇性裂解, 產(chǎn)生2個醛基[12-14]; 2) 纖維素的伯羥基可通過哌啶氧銨鹽(TEMPO)介導(dǎo)的氧化選擇性轉(zhuǎn)化為 6-脫氧-6-羧基纖維素[15-18], 所得纖維素材料吸附劑富含羧基, 可用于吸附金屬離子(圖2).
2.4 接枝共聚
在接枝共聚改性方法中, 可在纖維素材料上先接枝單體再實(shí)現(xiàn)共聚, 也可通過各種引發(fā)方式使纖維素骨架產(chǎn)生自由基與單體直接反應(yīng)[19-23]. 在纖維素材料上實(shí)現(xiàn)接枝共聚改性的優(yōu)勢在于改性能提高纖維素材料活性位點(diǎn)的密度, 從而提高纖維素材料的吸附性能, 但缺點(diǎn)是該方法對設(shè)備要求較高, 并對共聚反應(yīng)的控制精確度要求較高.
3 纖維素材料在吸附凈化領(lǐng)域的應(yīng)用
3.1 吸附重金屬離子
一些工業(yè)生產(chǎn)過程產(chǎn)生的廢水中含有大量重金屬離子, 這些有毒的重金屬離子對人類健康和生態(tài)環(huán)境均有危害. 許多纖維素材料可作為重金屬離子的吸附劑: 約含質(zhì)量分?jǐn)?shù)為40%纖維素的甘蔗渣可吸附制革廢水中的 Cr(Ⅲ) 和 Cr(Ⅵ) 離子[24]; Khoramzadeh等[25]用它進(jìn)行生物吸附水溶液中的汞; 還可使用聚乙烯亞胺和 EDTA對甘蔗渣進(jìn)行化學(xué)改性, 引入螯合劑以吸附重金屬離子[26-28]. Low 等[29]將檸檬酸轉(zhuǎn)化為檸檬酸酐, 然后與木漿中纖維素的—OH 基團(tuán)反應(yīng), 形成酯鍵. 酯化過程提高了木纖維中羧酸的含量, —COOH基團(tuán)被引入木漿中, 最終提高了天然木材對Cu(Ⅱ) 和 Pb(Ⅱ)離子的吸附能力. 也可將纖維素材料與有機(jī)鹵化物(環(huán)氧氯丙烷)反應(yīng), 得到具有反應(yīng)性的環(huán)氧基團(tuán). 再通過接枝聚乙烯亞胺(PEI)實(shí)現(xiàn)功能化, 所得吸附劑Cell-PEI可吸附Hg, 其吸附容量為288 mg/g[30].
Saliba等[31]用酰胺肟基團(tuán)通過丙烯腈和木屑的醚化反應(yīng)對鋸末進(jìn)行化學(xué)改性, 從而在纖維素的結(jié)構(gòu)中添加氰基. 氰基的氨基酰化是通過將其與羥胺反應(yīng)實(shí)現(xiàn)的[31]. 酰胺酰亞胺化鋸末對 Cr(Ⅲ)和Cu(Ⅱ)的吸附能力分別為202.8,240.6 mg/g. Godiya 等[32]用自由基聚合酰胺(AM)改性CMC制備了CMC/PAM復(fù)合水凝膠(圖3), 其對Cu(Ⅱ),Pb(Ⅱ)和Cd(Ⅱ)的吸附容量大幅度提升.
3.2 吸附有機(jī)小分子
除重金屬離子污染外, 在工業(yè)制造和農(nóng)業(yè)生產(chǎn)過程中也會產(chǎn)生有機(jī)小分子類污染物, 如染料和農(nóng)藥等. 纖維素材料作為吸附劑, 對這些有機(jī)小分子的吸附清除已有較多研究成果[33-35]. Tasri 等[36]通過纖維素的酸性水解合成了納米纖維素, 并將其與聚吡咯偶聯(lián)(NCPPY), 表面改性使羧基和羥基等活性功能團(tuán)與染料和金屬離子相互作用, 可有效去除剛果紅染料(CR), 最大去除效率為85%(圖4).
Zhang等[37]將CMC和羧基化纖維素納米纖維(CNF-C)復(fù)合, 增加了羧基含量, 提高了對亞甲基藍(lán)(MB)染料的吸附(圖5). Zhao等[38]用聚乙烯亞胺(PEI)通過Schiff堿反應(yīng)將戊二醛與膜上的酰胺鍵交聯(lián), 增強(qiáng)了纖維素復(fù)合膜的性能, 通過靜電相互作用有效捕獲染料分子(剛果紅、 亞甲藍(lán)和孔雀石綠). Liu等[39]通過在纖維素上接枝丙烯酸和丙烯酰胺, 可有效增加其吸附位點(diǎn), 成功去除陰離子染料酸性藍(lán)93(AB93)和陽離子染料亞甲基藍(lán)(MB).
3.3 吸附微塑料
微塑料(MPs)是指直徑為0.1 μm~1 mm 的塑料碎片和顆粒, 環(huán)境中已檢出聚對苯二甲酸乙二醇酯(PET)等聚合物[40]. 微塑料不易降解, 可通過水等多種途徑進(jìn)入生物體內(nèi)并穩(wěn)定存在, 是影響生物健康風(fēng)險的重要因素.
Zhuang等[41]以纖維素納米纖維(CNF)為基體材料, 以2,3-環(huán)氧丙基三甲基氯化銨(EPTMAC)為改性劑, 以聚乙烯醇(PVA)為交聯(lián)劑, 采用液氮冷凍法制備具有定向結(jié)構(gòu)的改性纖維素納米纖維氣凝膠, 用于吸附水中小尺寸微塑料. 改性后的氣凝膠對小尺寸微塑料具有良好的吸附容量, 達(dá)146.38 mg/g. 此外, 還可用聚乙烯亞胺(PEI)對纖維素納米纖維(CNFs)進(jìn)行改性, 并通過簡單的反應(yīng)和冷凍干燥方法制備具有定向結(jié)構(gòu)的改性氣凝膠(圖6)[42].
3.4 血液凈化
纖維素材料應(yīng)用于生物大分子吸附, 主要體現(xiàn)在血液凈化領(lǐng)域. 血液凈化技術(shù)是一種利用膜分離或吸附分離原理清除病人血液中內(nèi)源性和外源性毒素的治療技術(shù), 在肝衰、 腎衰和膿毒血癥等危重病癥的治療中發(fā)揮關(guān)鍵作用[43-44]. 相對于水溶性小分子毒素, 對中大分子蛋白類血液毒素的有效清除是目前該領(lǐng)域的技術(shù)難點(diǎn). 其中歸屬于血液凈化技術(shù)中的血液灌流技術(shù), 主要是清除中大分子蛋白類血液毒素, 即將患者的血液引出體外, 與灌流器中的固態(tài)吸附材料接觸, 通過吸附清除血液毒素, 然后將凈化后的血液輸回給患者, 從而達(dá)到治療疾病的目的(圖7)[45-46]. 在血液灌流過程中, 吸附材料會與人體血液直接接觸, 所以高效生物相容性好的吸附材料是灌流技術(shù)研究的核心.
纖維素材料具有良好的生物相容性和生物活性, 適合作為血液灌流吸附劑載體(圖8), 尤其以纖維素微球作為血液灌流吸附劑的載體(圖7(B)). 目前, 纖維素及其衍生物已用于血液灌流清除毒素, 而且也有商業(yè)化的產(chǎn)品用于治療慢性腎臟病后期患者[47-50].
Tang 等[51]用疏水性烷基碳鏈(C18)修飾纖維素微球(圖9), 可有效吸附膽紅素," 膽紅素以單層形式吸附到纖維素微球的 C18 基團(tuán)上, 治療黃疸疾??; Qiao等[4]用纖維素微球與碳納米管復(fù)合吸附膽紅素; Cao等[52]將多黏菌B交聯(lián)接枝到纖維素微球上, 可對體內(nèi)毒素進(jìn)行有效吸附; 商業(yè)化應(yīng)用于治療疾病的Lixelle血液灌流柱通過將十六烷基胺接枝到纖維素微球上即可有效吸附清除β2-微球蛋白[53-57].
Fang等[58]研究了一種以纖維素微球?yàn)檩d體, 環(huán)氧氯丙烷為偶聯(lián)劑, 賴氨酸為配體的吸附劑, 通過帶正電的賴氨酸配體與內(nèi)毒素分子上帶負(fù)電的磷酸基團(tuán)相互作用實(shí)現(xiàn)對內(nèi)毒素的吸附, 在兔子模型的體內(nèi)研究中, 吸附劑在 2 h的血液灌流處理后血液中的血漿內(nèi)皮素(ET)水平從(5.56±0.54)EU/mL降至(0.41±0.26)EU/mL(1 EU=1 IU=1 μmol/min); 多黏菌B是一種能與內(nèi)毒素特異性結(jié)合的抗生素, 對內(nèi)毒素有較好的清除能力, Cao等[52]以多黏菌B為配體, 纖維素微球?yàn)檩d體, 制備了一種在水溶液中吸附容量為3.605 EU/mg的內(nèi)毒素吸附劑, 但以多黏菌B為配體的成本較高, 同時多黏菌B還會對腎臟和神經(jīng)系統(tǒng)有損害, 存在潛在的健康風(fēng)險;" Zhou等[59]通過聚多巴胺和聚乙烯亞胺修飾制備了一種有抗菌性和較強(qiáng)內(nèi)毒素吸附及去除能力的CA 膜(PDCA膜), 這種膜具有良好的血液相容性且無細(xì)胞毒性, 在動態(tài)實(shí)驗(yàn)條件下, PDCA 膜的內(nèi)毒素吸附能力達(dá)(2 322.1±45.9)EU/g.
4 展 望
綜上所述," 本文討論了纖維素材料作為吸附劑在水溶液中凈化的應(yīng)用, 以及纖維素材料提高其吸附性能的化學(xué)改性途徑. 通過化學(xué)改性可提高纖維素基吸附劑的吸附能力, 這是由于化學(xué)改性后纖維素材料上的活性結(jié)合位點(diǎn)增加所致. 盡管已有許多以纖維素材料為吸附劑進(jìn)行水溶液吸附凈化處理的研究報道, 但大多數(shù)吸附研究僅限于小批量規(guī)模, 僅有少數(shù)能在中試和工業(yè)規(guī)模上開發(fā)用于實(shí)際水溶液的吸附凈化處理. 此外, 纖維素材料吸附劑的開發(fā)研究不應(yīng)只局限在功能基團(tuán)的選擇上, 而應(yīng)該在纖維素材料上設(shè)計特定結(jié)構(gòu)的功能基元, 從而增強(qiáng)纖維素吸附劑的吸附選擇性, 提高吸附劑的吸附效率. 纖維素材料也可作為吸附劑的基體材料, 在此基礎(chǔ)上設(shè)計構(gòu)造出特定的多孔材料, 通過調(diào)控多孔材料的孔徑分布增強(qiáng)吸附劑對目標(biāo)物質(zhì)的清除效率.
參考文獻(xiàn)
[1] ASHORI A," CHIANI E," SHOKROLLAHZADEH S," et al. Cellulose-Based Aerogels for Sustainable Dye Removal:" Advances and Prospects [J]." Journal of Polymers and the Environment," 2024," 32(12):" 6149-6181.
[2] KAUSAR A," ZOHRA S T," IJAZ S," et al. Cellulose-Based Materials and Their Adsorptive Removal Efficiency for Dyes:" A Review [J]." International Journal of Biological Macromolecules," 2023," 224:" 1337-1355.
[3] XIE M," SUN J F," CHEN L. Procion Blue H-5R Functionalized Cellulose Membrane with Specific Removal of Bilirubin [J]." Cellulose," 2019," 26:" 8073-8085.
[4] QIAO L Z," LI Y L," LIU Y," et al. High-Strength," Blood-Compatible," and High-Capacity Bilirubin Adsorbent Based on Cellulose-Assisted High-Quality Dispersion of Carbon Nanotubes [J]." Journal of Chromatography A," 2020," 1634:" 461659-1-461659-9.
[5] MEDRONHO B," ROMANO A," MIGUEL M G," et al. Rationalizing Cellulose (in) Solubility:" Reviewing Basic Physicochemical Aspects and Role of Hydrophobic Interactions [J]." Cellulose," 2012," 19:" 581-587.
[6] SEDDIQI H," OLIAEI E," HONARKAR H," et al. Cellulose and Its Derivatives:" Towards Biomedical Applications [J]." Cellulose," 2021," 28(4):" 1893-1931.
[7] AZIZ T," FARID A," HAQ F," et al. A Review on the Modification of Cellulose and Its Applications [J]." Polymers," 2022," 14(15):" 3206-1-3206-34.
[8] YI T," ZHAO H Y," MO Q," et al. From Cellulose to Cellulose Nanofibrils: A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils [J]." Materials," 2020," 13(22):" 5062-1-5062-32.
[9] GEAY M," MARCHETTI V," CLéMENT A," et al. Decontamination of Synthetic Solutions Containing Heavy Metals Using Chemically Modified Sawdusts Bearing Polyacrylic Acid Chains [J]." Journal of Wood Science," 2000," 46:" 331-333.
[10] GERICKE M," TRYGG J," FARDIM P. Functional Cellulose Beads:" Preparation," Characterization," and Applications [J]." Chemical Reviews," 2013," 113(7):" 4812-4836.
[11] CERNY P," BARTOS P," KRIZ P," et al. Highly Hydrophobic Organosilane-Functionalized Cellulose:" A Promising Filler for Thermoplastic Composites [J]." Materials," 2021," 14(8):" 2005-1-2005-14.
[12] MELESE H," TSADE H. Cellulose Based Adsorbent for Cationic Methylene Blue Dye Removal [J]." Discover Applied Sciences," 2024," 6(2):" 46-1-46-15.
[13] KRAMAR A," IVANOVSKA A," KOSTIC′ M. Regenerated Cellulose Fiber Functionalization by Two-Step Oxidation Using Sodium Periodate and Sodium Chlorite: Impact on the Structure and Sorption Properties [J]." Fibers and Polymers," 2021," 22(8):" 2177-2186.
[14] LI Y," WANG F. Removal of Cu2+ from Aqueous Solution Using Three Alkyl-Amine-Modified Cellulose Absorbents Prepared via Schiff Base Grafting [J]." Desalination and Water Treatment," 2023," 282:" 146-154.
[15] LIU S S," LOW Z X," XIE Z L," et al. TEMPO-Oxidized Cellulose Nanofibers:" A Renewable Nanomaterial for Environmental and Energy Applications [J]." Advanced Materials Technologies," 2021," 6(7):" 2001180-1-2001180-23.
[16] YU H J," ZHENG L C," ZHANG T," et al. Adsorption Behavior of Cd(Ⅱ) on TEMPO-Oxidized Cellulose in Inorganic/Organic Complex Systems [J]." Environmental Research," 2021," 195:" 110848-1-110848-12.
[17] ABOU-ZEID R E," KAMAL K H," ABD EL-AZIZ M E," et al. Grafted TEMPO-Oxidized Cellulose Nanofiber Embedded with Modified Magnetite for Effective Adsorption of Lead Ions [J]." International Journal of Biological Macromolecules," 2021," 167:" 1091-1101.
[18] XING X Y," LI W Q," ZHANG J," et al. TEMPO-Oxidized Cellulose Hydrogel for Efficient Adsorption of Cu2+ and Pb2+ Modified by Polyethyleneimine [J]." Cellulose," 2021," 28(12):" 7953-7968.
[19] BHATTACHARYA A," MISRA B N. Grafting:" A Versatile Means to Modify Polymers:" Techniques," Factors and Applications [J]." Progress in Polymer Science," 2004," 29(8):" 767-814.
[20] GEORGOUVELAS D," ABDELHAMID H N," LI J," et al. All-Cellulose Functional Membranes for Water Treatment:" Adsorption of Metal Ions and Catalytic Decolorization of Dyes [J]." Carbohydrate Polymers," 2021," 264:" 118044-1-118044-10.
[21] BAYRAMOGLU G," ARICA M Y. Grafting of Regenerated Cellulose Films with Fibrous Polymer and Modified into Phosphate and Sulfate Groups:" Application for Removal of a Model Azo-Dye [J]." Colloids and Surfaces A:" Physicochemical and Engineering Aspects," 2021," 614:" 126173-1-126173-11.
[22] LI M," ZHANG S Q," CUI S Y," et al. Pre-grafting Effect on Improving Adsorption Efficiency of Cellulose Based Biosorbent for Hg (Ⅱ) Removal from Aqueous Solution [J]." Separation and Purification Technology," 2021," 277:" 119493-1-119493-12.
[23] LIU J T," CHEN Y C," JIANG S Y," et al. Rapid Removal of Cr (Ⅲ) from High-Salinity Wastewater by Cellulose-g-poly-(acrylamide-co-sulfonic acid) Polymeric Bio-adsorbent [J]." Carbohydrate Polymers," 2021," 270:" 118356-1-118356-10.
[24] ULLAH I," NADEEM R," IQBAL M," et al. Biosorption of Chromium onto Native and Immobilized Sugarcane Bagasse Waste Biomass [J]." Ecological Engineering," 2013," 60:" 99-107.
[25] KHORAMZADEH E," NASERNEJAD B," HALLADJ R. Mercury Biosorption from Aqueous Solutions by Sugarcane Bagasse [J]." Journal of the Taiwan Institute of Chemical Engineers," 2013," 44(2):" 266-269.
[26] ZHANG C Z," SU J J," ZHU H X," et al. The Removal of Heavy Metal Ions from Aqueous Solutions by Amine Functionalized Cellulose Pretreated with Microwave-H2O2[J]." RSC Advances," 2017," 7(54):" 34182-34191.
[27] GE H," HUANG H L," XU M," et al. Cellulose/Poly(ethylene imine) Composites as Efficient and Reusable Adsorbents for Heavy Metal Ions [J]." Cellulose," 2016," 23:" 2527-2537.
[28] HU T," HU X L," TANG C," et al. Adsorbent Grafted on Cellulose by in situ Synthesis of EDTA-Like Groups and Its Properties of Metal Ion Adsorption from Aqueous Solution [J]." Cellulose," 2022," 29(2):" 941-952.
[29] LOW K S," LEE C K," MAK S M. Sorption of Copper and Lead by Citric Acid Modified Wood [J]." Wood Science and Technology," 2004," 38:" 629-640.
[30] NAVARRO R R," SUMI K," FUJII N," et al. Mercury Removal from Wastewater Using Porous Cellulose Carrier Modified with Polyethyleneimine [J]." Water Research," 1996," 30(10):" 2488-2494.
[31] SALIBA R," GAUTHIER H," GAUTHIER R," et al. Adsorption of Copper(Ⅱ) and Chromium(Ⅲ) Ions onto Amidoximated Cellulose [J]." Journal of Applied Polymer Science," 2000," 75(13):" 1624-1631.
[32] GODIYA C B," CHENG X," LI D W," et al. Carboxymethyl Cellulose/Polyacrylamide Composite Hydrogel for Cascaded Treatment/Reuse of Heavy Metal Ions in Wastewater [J]." Journal of Hazardous Materials," 2019," 364:" 28-38.
[33] VARGHESE A G," PAUL S A," LATHA M S. Remediation of Heavy Metals and Dyes from Wastewater Using Cellulose-Based Adsorbents [J]." Environmental Chemistry Letters," 2019," 17:" 867-877.
[34] HAMIDON T S," ADNAN R," HAAFIZ M K M," et al. Cellulose-Based Beads for the Adsorptive Removal of Wastewater Effluents:" A Review [J]." Environmental Chemistry Letters," 2022," 20(3):" 1965-2017.
[35] GOEL N K," KUMAR V," MISRA N," et al. Cellulose Based Cationic Adsorbent Fabricated via Radiation Grafting Process for Treatment of Dyes Waste Water [J]." Carbohydrate Polymers," 2015," 132:" 444-451.
[36] TASRI S, MOHAMED M S, PADMANBAN V C, et al. Surface Modification of Nanocellulose Using Polypyrrole for the Adsorptive Removal of Congo Red Dye and Chromium in Binary Mixture [J]." International Journal of Biological Macromolecules," 2020," 151:" 322-332.
[37] ZHANG T J," XIAO S Y," FAN K H," et al. Preparation and Adsorption Properties of Green Cellulose-Based Composite Aerogel with Selective Adsorption of Methylene Blue [J]." Polymer," 2022," 258(14):" 125320-1-125320-13.
[38] ZHAO X Q," YANG M B," SHI Y C," et al. Multifunctional Bacterial Cellulose-Bentonite@Polyethylenimine Composite Membranes for Enhanced Water Treatment:" Sustainable Dyes and Metal Ions Adsorption and Antibacterial Properties [J]." Journal of Hazardous Materials," 2024," 477(15):" 135267-1-135267-17.
[39] LIU L," GAO Z Y," SU X P," et al. Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-Based Bioadsorbent [J]." ACS Sustainable Chemistry amp; Engineering," 2015," 3(3):" 432-442.
[40] WRIGHT S L," KELLY F J. Plastic and Human Health:" A Micro Issue? [J]." Environmental Science amp; Technology," 2017," 51(12):" 6634-6647.
[41] ZHUANG J," RONG N N," WANG X R," et al. Adsorption of Small Size Microplastics Based on Cellulose Nanofiber Aerogel Modified by Quaternary Ammonium Salt in Water [J]." Separation and Purification Technology," 2022," 293:" 121133-1-121133-11.
[42] ZHUANG J," PAN M Z," ZHANG Y H," et al. Rapid Adsorption of Directional Cellulose Nanofibers/3-Glycidoxypropyltrimethoxysilane/Polyethyleneimine Aerogels on Microplastics in Water [J]." International Journal of Biological Macromolecules," 2023," 235:" 123884-1-123884-10.
[43] YAO G S," JI F L," CHEN J W," et al. Nanobody-Functionalized Conduit with Built-in Static Mixer for Specific Elimination of Cytokines in Hemoperfusion [J]." Acta Biomaterialia," 2023," 172:" 260-271.
[44] LI M J," CHEN M M," YANG F C," et al. Protein/Polysaccharide Composite towards Multi-in-one Toxin Removal in Blood with Self-anticoagulation and Biocompatibility [J]." Advanced Healthcare Materials," 2023," 12(26):" 2300999-1-2300999-12.
[45] JU J," LIANG F X," ZHANG X X," et al. Advancement in Separation Materials for Blood Purification Therapy [J]." Chinese Journal of Chemical Engineering," 2019," 27(6):" 1383-1390.
[46] DOU W Y," WANG J," YAO Z K," et al. A Critical Review of Hemoperfusion Adsorbents:" Materials," Functionalization and Matrix Structure Selection [J]." Materials Advances," 2022," 3(2):" 918-930.
[47] WEBER V," ETTENAUER M," LINSBERGER I," et al. Functionalization and Application of Cellulose Microparticles as Adsorbents in Extracorporeal Blood Purification [J]."" Macromolecular Symposia," 2010," 294(2):" 90-95.
[48] KOBAYASHI A," NAKATANI M," FURUYOSHI S," et al. In vitro Evaluation of Dextran Sulfate Cellulose Beads for Whole Blood Infusion Low-Density Lipoprotein-Hemoperfusion [J]." Therapeutic Apheresis," 2002," 6(5):" 365-371.
[49] WANG Y J," YU Y T. In vitro and in vivo Evaluation of Amino Acid-Functionalized Cellulose Beads for Whole Blood Hemoperfusion [J]." Key Engineering Materials," 2005," 288:" 393-396.
[50] YAMAMOTO S," SATO M," SATO Y," et al. Adsorption of Protein-Bound Uremic Toxins through Direct Hemoperfusion with Hexadecyl-Immobilized Cellulose Beads in Patients Undergoing Hemodialysis [J]." Artificial Organs," 2018," 42(1):" 88-93.
[51] TANG W," YUAN Z T," SUN B," et al. Facile and Scalable Fabrication of Regenerated Cellulose Microspheres with High Strength and Porosity as a Potential Matrix for Hemoperfusion [J]." Journal of Macromolecular Science," 2024," 63(7):" 588-603.
[52] CAO X D," ZHU B Y," ZHANG X F," et al. Polymyxin B Immobilized on Cross-Linked Cellulose Microspheres for Endotoxin Adsorption [J]." Carbohydrate Polymers," 2016," 136:" 12-18.
[53] DHANDE O S," TEICHERT A," BROUMAND V," et al. Effects of Extracorporeal Blood Flow Rates on Patient Tolerance for LIXELLE Treatment during Outpatient Hemodialysis [J]." Blood Purification," 2024," 53(4):" 306-315.
[54] OHASHI A," NAKAI S," HORI H," et al. Suppression of Inflammation during Cell-Free Concentrated Ascites Reinfusion Therapy Using a Blood Purification Device [J]." Therapeutic Apheresis and Dialysis,nbsp; 2020," 54(5):" 511-515.
[55] TSUCHIDA K," YOSHIMURA R," NAKATANI T," et al. Blood Purification for Critical Illness:" Cytokines Adsorption Therapy [J]." Therapeutic Apheresis and Dialysis," 2006," 10(1):" 25-31.
[56] ODA Y," ISHIOKA K," OHTAKE T," et al. Dialysis-Related Amyloidosis Presenting as a Fever of Unknown Origin:" Symptoms and Management [J]." Internal Medicine," 2023," 62(24):" 3669-3677.
[57] ZHANG M J," LIU X J," ZHOU W," et al. Ordered Porous Materials for Blood Purification [J]." Separation and Purification Technology," 2023," 327(15): 124844-1-124844-16.
[58] FANG H," WEI J," YU Y T. In vivo Studies of Endotoxin Removal by Lysine-Cellulose Adsorbents [J]." Biomaterials," 2004," 25(23):" 5433-5440.
[59] ZHOU Y," ZHANG Q," XIA Z X," et al. Mixed-Charge Cellulose Nanocrystal Modified Cellulose Acetate Membrane with Endotoxin Scavenging Ability and Antibacterial Properties [J]." Journal of Applied Polymer Science," 2024," 141(33):" e55834-1-e55834-15.
(責(zé)任編輯: 單 凝)