摘要:乙型肝炎肝硬化是我國(guó)肝硬化最主要組成部分,由肝炎發(fā)展到肝硬化后患者病死率明顯增加。大量研究證實(shí)腸道菌群會(huì)影響乙型肝炎肝硬化病程進(jìn)展,包括對(duì)炎癥反應(yīng)和腸道免疫調(diào)節(jié)的影響、對(duì)HBV的抑制、產(chǎn)生氨類物質(zhì)等。本文就乙型肝炎肝硬化腸道菌群變化的研究進(jìn)展進(jìn)行綜述,歸納通過干預(yù)腸道菌群治療乙型肝炎肝硬化的新思路。
關(guān)鍵詞:乙型肝炎;肝硬化;胃腸道微生物組;RNA,核糖體,16S
基金項(xiàng)目:中國(guó)人民解放軍火箭軍特色醫(yī)學(xué)中心自主科研項(xiàng)目(25FC003)
Gut microbiota in hepatitis B cirrhosis
LI Yannan 1 ,LI Changzheng 2
1. Department of Gastroenterology,Training Base for Postgraduate Students,PLA Rocket Force Characteristic Medical Center of Jinzhou Medical University,Beijing 100088,China;2. Department of Gastroenterology,PLA Rocket Force Characteristic Medical Center,Beijing 100088,China
Corresponding author:LI Changzheng,licz435@163.com (ORCID:0009-0001-3771-6155)
Abstract:Hepatitis B cirrhosis is the most significant component of liver cirrhosis in China,and there is a significant increase in the mortality rate of patients after progression from hepatitis to liver cirrhosis. A large number of studies have shown that gut microbiota may influence the progression of hepatitis B cirrhosis,including the impact on the regulation of inflammatory response and intestinal immunity,the inhibition of HBV,and the production of ammonia-like substances. This article reviews the research advances in the changes in gut microbiota in hepatitis B cirrhosis patients and explores new ideas for the treatment of hepatitis B cirrhosis by intervening in gut microbiota.
Key words:Hepatitis B;Liver Cirrhosis;Gastrointestinal Microbiome;RNA,Ribosomal,16S
Research funding:Independent Research Project of Chinese People’s Liberation Army Rocket Force Characteristic Medical Center (25FC003)
肝臟中約70%的血液供應(yīng)來自腸道,可清除腸道中的毒素,良好的腸道菌群是維護(hù)肝臟正常工作的關(guān)鍵因素,肝臟與腸道菌群二者進(jìn)行相互作用[1]。肝硬化是消化科常見疾病,目前我國(guó)肝硬化主要病因仍以HBV為主。近年通過對(duì)糞便樣本進(jìn)行16S rRNA測(cè)序及微生物組學(xué)與代謝組學(xué)的綜合分析,越來越多的證據(jù)表明乙型肝炎肝硬化患者的腸道菌群和代謝產(chǎn)物發(fā)生了顯著變化[2]。本文旨在總結(jié)目前關(guān)于腸道菌群與乙型肝炎肝硬化之間的關(guān)系,并分析腸道菌群對(duì)其進(jìn)展及防治方面的研究現(xiàn)狀。
1 乙型肝炎肝硬化患者腸道菌群變化特征
乙型肝炎肝硬化患者腸道菌群組成的特點(diǎn)是總體α多樣性顯著降低,主要為潛在致病菌的豐度增加及有益菌的豐度減少。Zeng等[3]發(fā)現(xiàn),乙型肝炎肝硬化患者門水平的厚壁菌門豐度較低,擬桿菌門的豐度較高;在科水平上,雙歧桿菌科、毛螺菌科和梭狀芽孢桿菌科等有益菌群數(shù)量明顯減少,而腸桿菌科非常豐富。Chen等[4]發(fā)現(xiàn)在屬水平上,普氏菌屬和考拉桿菌屬豐度降低,嗜血桿菌屬、梭桿菌屬、韋榮球菌屬和鏈球菌屬豐度增加。
在乙型肝炎肝硬化伴肝性腦病患者中發(fā)現(xiàn)梭狀芽孢桿菌屬-Ⅺ、韋榮球菌屬、腸球菌屬、普雷沃菌屬豐度有所增加[5]。
2 腸道菌群變化加速乙型肝炎肝硬化進(jìn)展的機(jī)制
一些在菌群平衡時(shí)認(rèn)定的有益菌,當(dāng)發(fā)生腸道菌群紊亂時(shí)可能轉(zhuǎn)化為致病菌(例如梭狀芽孢桿菌、擬桿菌、腸球菌等)[6]。當(dāng)乙型肝炎肝硬化患者的腸道菌群失調(diào)時(shí),可出現(xiàn)腸道通透性增加、小腸細(xì)菌過度生長(zhǎng)和細(xì)菌移位,炎癥反應(yīng)、腸道免疫調(diào)節(jié)、對(duì)HBV免疫反應(yīng)及產(chǎn)氨等方面均受到較大影響(表1)。來自腸道的菌群及其代謝物[脂多糖(LPS)、短鏈脂肪酸(short-chain fatty acids,SCFA)、膽汁酸(bile acid,BA)、色氨酸(Trp)及其代謝物等]進(jìn)入靜脈系統(tǒng)后再經(jīng)門靜脈侵入肝臟,加速了乙型肝炎肝硬化的發(fā)展及其相關(guān)并發(fā)癥的發(fā)生[7]。
2.1 LPS 的作用 LPS 多是由革蘭陰性菌釋放的內(nèi)毒素,當(dāng)LPS結(jié)合到特定的Toll樣受體時(shí),啟動(dòng)分泌促炎細(xì)胞因子,導(dǎo)致肝纖維化發(fā)展[3]。毛螺菌、雙歧桿菌可以減少腸道中的LPS[8-9],但在乙型肝炎肝硬化患者中毛螺菌、雙歧桿菌顯著減少,而嗜血桿菌屬、梭桿菌屬、韋榮球菌屬等革蘭陰性菌增加,使更多的 LPS 進(jìn)入全身循環(huán),上述病理改變可能加重產(chǎn)LPS的菌群過度生長(zhǎng),形成惡性循環(huán),加速乙型肝炎肝硬化患者病情發(fā)展[4,10]。Zhu等[11]研究認(rèn)為L(zhǎng)PS是觸發(fā)全身炎癥的主要成分,當(dāng)大量LPS進(jìn)入體循環(huán)可導(dǎo)致內(nèi)毒素血癥,血腦屏障通透性增加和神經(jīng)炎癥時(shí),高氨會(huì)引起肝性腦病的發(fā)生。
2.2 SCFA的作用 SCFA是腸道菌群在腸道內(nèi)發(fā)酵活動(dòng)的主要產(chǎn)物,特別是乙酸鹽、丙酸鹽和丁酸鹽[12]。SCFA可以抑制促炎菌的增殖、減少慢性炎癥的發(fā)生以及調(diào)節(jié)T淋巴細(xì)胞分化[9]。在健康患者中SCFA主要由毛螺菌科及瘤胃球菌科生產(chǎn),多項(xiàng)研究證實(shí)在乙型肝炎肝硬化患者中此兩種菌群豐度下降,推測(cè)因此導(dǎo)致了SCFA減少,進(jìn)而促進(jìn)乙型肝炎肝硬化的發(fā)展[13]。同時(shí),Pant等[14]發(fā)現(xiàn)丁酸可能通過調(diào)節(jié)SIRT-1/p53途徑抑制HepG2.2.15細(xì)胞的 HBV復(fù)制和 HBV感染細(xì)胞的增殖,因此通過調(diào)控產(chǎn)丁酸菌群來抑制HBV的復(fù)制為進(jìn)一步研究提供了新思路。
2.3 BA的作用 BA由肝臟產(chǎn)生進(jìn)入腸道后,依賴腸道菌群將其生物轉(zhuǎn)化完成肝腸循環(huán),并通過法尼酯 X 受體、G蛋白偶聯(lián)膽汁酸受體等通路調(diào)節(jié)機(jī)體物質(zhì)代謝和免疫反應(yīng),還可通過誘導(dǎo)產(chǎn)生抗菌肽來抑制腸道菌群的過度生長(zhǎng),穩(wěn)定腸道菌群結(jié)構(gòu)[15]。乙型肝炎肝硬化患者肝臟生成BA減少,削弱了其對(duì)腸道致病菌群的抑制作用,引起炎癥反應(yīng),進(jìn)一步加劇乙型肝炎肝硬化的進(jìn)展[6]。Wang等 [16]研究發(fā)現(xiàn)梭狀芽孢桿菌、擬桿菌、乳酸桿菌、雙歧桿菌、瘤胃球菌和腸球菌參與 BA 的生物轉(zhuǎn)化,在中/晚期肝纖維化的慢性乙型肝炎患者中,腸道菌群將初級(jí)BA轉(zhuǎn)化為次級(jí)BA的能力降低,同時(shí)參與BA代謝的細(xì)菌在該類患者中也減少,表明腸道菌群的改變可能引起B(yǎng)A在肝內(nèi)淤積,加重肝細(xì)胞損傷。
2.4 Trp的作用 Trp可由擬桿菌、梭菌等多種腸道菌群將其轉(zhuǎn)化為吲哚和吲哚衍生物[17],其中吲哚-3-丙酸可抑制NF-κB信號(hào)轉(zhuǎn)導(dǎo),降低炎性細(xì)胞因子水平,從而抑制肝內(nèi)炎癥和肝損傷[18]。Trp在犬尿氨酸(Kyn)途徑經(jīng)乳酸桿菌、雙歧桿菌等作用產(chǎn)生吲哚胺-2-雙加氧酶,其可以干擾HBV復(fù)制,可能減緩乙型肝炎肝硬化的進(jìn)程[19]。一些腸道菌群(如梭狀芽孢桿菌、擬桿菌等)可能通過調(diào)控5-羥色胺(5-HT)途徑,將1%~2%的Trp轉(zhuǎn)化為5-HT[20],Lang等[21]在小鼠實(shí)驗(yàn)中發(fā)現(xiàn)5-HT延遲激活病毒特異性CD8 + T淋巴細(xì)胞的浸潤(rùn),延緩了對(duì)病毒的控制,導(dǎo)致病毒誘導(dǎo)肝細(xì)胞損傷,因此在乙型肝炎肝硬化患者中,一些腸道菌群可能引起CD8 + T淋巴細(xì)胞反應(yīng)延遲,干擾對(duì)病毒的抑制,加重乙型肝炎肝硬化的發(fā)展。
3 腸道菌群在乙型肝炎肝硬化治療中的應(yīng)用
通過上述腸道菌群對(duì)乙型肝炎肝硬化病程的影響,提示在原發(fā)病治療同時(shí),可以通過糾正腸道菌群紊亂來提高HBC患者的臨床治療效果,延緩疾病進(jìn)展,改善患者的生活質(zhì)量及預(yù)后。
3.1 益生菌 益生菌是對(duì)宿主有利的活性微生物,可通過降低血漿內(nèi)毒素水平、調(diào)節(jié)BA減輕肝損傷、降低血氨濃度改善肝性腦病[5]。Kwak等 [22]分別給予兩組乙型肝炎肝硬化患者益生菌及安慰劑,治療4周時(shí),乳酸桿菌、鼠李糖桿菌、嗜酸桿菌均有增加,小腸細(xì)菌過度生長(zhǎng)有24%得到改善。最近還有研究表明,鼠李糖乳桿菌GG通過激活法尼醇 X 受體-生長(zhǎng)因子 15信號(hào)通路來促進(jìn)BA排泄,從而防止肝內(nèi)BA淤積所致的肝損傷和肝纖維化[23]。Lee等 [24]研究發(fā)現(xiàn)青少年芽孢桿菌的細(xì)胞提取物SPM0212劑量依賴性地將細(xì)胞外HBsAg水平降低多達(dá)50%,HBsAg在HepG2.2.15細(xì)胞中的基因表達(dá)也受到了40%的抑制;該提取物亦可顯著提高黏病毒耐藥性A(一種IFN誘導(dǎo)的抗病毒效應(yīng)子)的表達(dá)水平,證明了其對(duì)HBV的抗病毒活性。
3.2 糞便微生物群移植(fecal microbiota tranplantation,F(xiàn)MT) FMT是指將功能腸道菌群從健康供體轉(zhuǎn)移到患者身上,合理選擇供者進(jìn)行FMT有助于降低肝硬化復(fù)發(fā)性肝性腦病患者的住院率,改善其認(rèn)知和菌群失調(diào)[25]。魏琦等[26]研究表明慢性乙型肝炎小鼠經(jīng)FMT治療后血清HBsAg、Toll樣受體4、IL-18表達(dá)水平顯著降低,菌群多樣性得到恢復(fù),表明FMT在慢性乙型肝炎的治療中發(fā)揮了積極的作用,其機(jī)制可能與改善腸道菌群結(jié)構(gòu)和多樣有關(guān),但FMT對(duì)乙型肝炎肝硬化治療的影響仍需要進(jìn)一步深入研究。
3.3 抗生素 利福昔明是一種非全身抗生素,胃腸道吸收低,抗菌活性好。首先,利福昔明作為肝硬化炎癥調(diào)節(jié)劑,可降低循環(huán)中腸源性內(nèi)毒素水平,Acharya等[27]對(duì)肝硬化患者使用8周利福昔明并監(jiān)測(cè)其腸道菌群,發(fā)現(xiàn)可產(chǎn)生內(nèi)毒素的韋榮菌豐度減少。其次,利福昔明可能抑制尿素脫氨細(xì)菌的分裂,從而減少氨和其他在肝性腦病發(fā)病中發(fā)揮重要作用的物質(zhì)產(chǎn)生[28]。再次,在利福昔明的選擇作用下,乳酸桿菌等益生菌可以更好地生長(zhǎng),增加其相對(duì)數(shù)量,對(duì)腸道菌群的調(diào)節(jié)及HBC病程起到積極的作用[29]。
4 小結(jié)
綜上所述,乙型肝炎肝硬化與腸道菌群存在必然的聯(lián)系,為治療乙型肝炎肝硬化的治療提供了新思路,但二者的相互作用關(guān)系、具體作用機(jī)制、抑制HBV貢獻(xiàn)的協(xié)同微生物等問題,仍需進(jìn)一步研究,以期能夠發(fā)現(xiàn)改善及治療乙型肝炎肝硬化的新方法。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)聲明:李艷男負(fù)責(zé)設(shè)計(jì)論文框架,撰寫論文;李長(zhǎng)政負(fù)責(zé)擬定寫作思路,指導(dǎo)撰寫文章并最后定稿。
參考文獻(xiàn):
[1] TRANAH TH, EDWARDS LA, SCHNABL B, et al. Targeting the gut-liver-immune axis to treat cirrhosis[J]. Gut, 2021, 70(5): 982-994.DOI: 10.1136/gutjnl-2020-320786.
[2] SHEN Y, WU SD, CHEN Y, et al. Alterations in gut microbiome and metabolomics in chronic hepatitis B infection-associated liver dis?ease and their impact on peripheral immune response[J]. Gut Mi?crobes, 2023, 15(1): 2155018. DOI: 10.1080/19490976.2022.2155018.
[3] ZENG YB, CHEN SJ, FU Y, et al. Gut microbiota dysbiosis in pa?tients with hepatitis B virus-induced chronic liver disease covering chronic hepatitis, liver cirrhosis and hepatocellular carcinoma[J]. J Viral Hepat, 2020, 27(2): 143-155. DOI: 10.1111/jvh.13216.
[4] CHEN B, HUANG H, PAN CQ. The role of gut microbiota in hepatitis B disease progression and treatment[J]. J Viral Hepat, 2022, 29(2): 94-106. DOI: 10.1111/jvh.13595.
[5] SUNG CM, LIN YF, CHEN KF, et al. Predicting clinical outcomes of cirrhosis patients with hepatic encephalopathy from the fecal microbi?ome[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(2): 301-318. e2.DOI: 10.1016/j.jcmgh.2019.04.008.
[6] GUO ZW, ZHANG JX, LI S, et al. Research advances in intestinal flora and the development and prognosis of chronic hepatitis B[J].J Clin Hepatol, 2022, 38(5): 1137-1142. DOI: 10.3969/j.issn.1001-5256.2022.05.034.郭紫薇, 張嘉鑫, 李碩, 等. 腸道菌群與慢性乙型肝炎發(fā)生發(fā)展及預(yù)后的關(guān)系[J]. 臨床肝膽病雜志, 2022, 38(5): 1137-1142. DOI: 10.3969/j.issn.1001-5256.2022.05.034.
[7] LI YG, YU ZJ, LI A, et al. Gut microbiota alteration and modulation in hepatitis B virus-related fibrosis and complications: Molecular mecha?nisms and therapeutic inventions[J]. World J Gastroenterol, 2022,28(28): 3555-3572. DOI: 10.3748/wjg.v28.i28.3555.
[8] MILOSEVIC I, RUSSO E, VUJOVIC A, et al. Microbiota and viral hepatitis: State of the art of a complex matter[J]. World J Gastroen?terol, 2021, 27(33): 5488-5501. DOI: 10.3748/wjg.v27.i33.5488.
[9] LIU SY, YANG XL. Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer[J]. Front Cell Infect Microbiol, 2023,13: 1140126. DOI: 10.3389/fcimb.2023.1140126.
[10] WU LL, HUANG TS, SHYU YC, et al. Gut microbiota in the innate im?munity against hepatitis B virus-implication in age-dependent HBV clearance[J]. Curr Opin Virol, 2021, 49: 194-202. DOI: 10.1016/j.co?viro.2021.06.006.
[11] ZHU RR, LIU LW, ZHANG GZ, et al. The pathogenesis of gut micro?biota in hepatic encephalopathy by the gut-liver-brain axis[J]. Biosci Rep, 2023, 43(6): BSR20222524. DOI: 10.1042/BSR20222524.
[12] KOH A, de VADDER F, KOVATCHEVA-DATCHARY P, et al. From di?etary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. DOI: 10.1016/j.cell.2016.05.041.
[13] WU S, CHEN SJ, LIN JP, et al. Gut microbiota dysbiosis in patients with hepatitis B virus-related cirrhosis[J]. Ann Hepatol, 2022, 27(2): 100676. DOI: 10.1016/j.aohep.2022.100676.
[14] PANT K, MISHRA AK, PRADHAN SM, et al. Butyrate inhibits HBV replication and HBV-induced hepatoma cell proliferation via modulat?ing SIRT-1/Ac-p53 regulatory axis[J]. Mol Carcinog, 2019, 58(4):524-532. DOI: 10.1002/mc.22946.
[15] CAI JW, RIMAL B, JIANG CT, et al. Bile acid metabolism and signal?ing, the microbiota, and metabolic disease[J]. Pharmacol Ther, 2022,237: 108238. DOI: 10.1016/j.pharmthera.2022.108238.
[16] WANG XL, CHEN L, WANG H, et al. Modulation of bile acid profile by gut microbiota in chronic hepatitis B[J]. J Cell Mol Med, 2020,24(4): 2573-2581. DOI: 10.1111/jcmm.14951.
[17] ROAGER HM, LICHT TR. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9(1): 3294. DOI: 10.1038/s41467-018-05470-4.
[18] WANG YX, PAN CQ, XING HC. Advances in gut microbiota of viral hepatitis cirrhosis[J]. Biomed Res Int, 2019, 2019: 9726786. DOI:10.1155/2019/9726786.
[19] YOSHIO S, SUGIYAMA M, SHOJI H, et al. Indoleamine-2, 3-dioxy?genase as an effector and an indicator of protective immune re?sponses in patients with acute hepatitis B[J]. Hepatology, 2016, 63(1): 83-94. DOI: 10.1002/hep.28282.
[20] SUN X, PAN CQ, XING H. Effect of microbiota metabolites on the progression of chronic hepatitis B virus infection[J]. Hepatol Int,2021, 15(5): 1053-1067. DOI: 10.1007/s12072-021-10230-6.
[21] LANG PA, CONTALDO C, GEORGIEV P, et al. Aggravation of viral hepatitis by platelet-derived serotonin[J]. Nat Med, 2008, 14(7):756-761. DOI: 10.1038/nm1780.
[22] KWAK DS, JUN DW, SEO JG, et al. Short-term probiotic therapy allevi?ates small intestinal bacterial overgrowth, but does not improve intesti?nal permeability in chronic liver disease[J]. Eur J Gastroenterol Hepa?tol, 2014, 26(12): 1353-1359. DOI: 10.1097/MEG.0000000000000214.
[23] LIU YH, CHEN KF, LI FY, et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthe?sis and enhancing bile acid excretion in mice[J]. Hepatology, 2020,71(6): 2050-2066. DOI: 10.1002/hep.30975.
[24] LEE DK, KANG JY, SHIN HS, et al. Antiviral activity of Bifidobacterium adolescentis SPM0212 against hepatitis B virus[J]. Arch Pharm Res,2013, 36(12): 1525-1532. DOI: 10.1007/s12272-013-0141-3.
[25] BAJAJ JS, KASSAM Z, FAGAN A, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: A ran?domized clinical trial[J]. Hepatology, 2017, 66(6): 1727-1738. DOI:10.1002/hep.29306.
[26] WEI Q, YANG JN, HE XL, et al. Role and potential mechanism of fe?cal microbiota transplantation in treatment of chronic hepatitis B[J].Chin J Pathophysiol, 2020, 36(10): 1833-1843. DOI: 10.3969/j.issn.1000-4718.2020.10.015.魏琦, 楊靜楠, 何學(xué)良, 等. 糞便菌群移植在慢性乙肝治療中的作用及機(jī)制[J]. 中國(guó)病理生理雜志, 2020, 36(10): 1833-1843. DOI: 10.3969/j.issn.1000-4718.2020.10.015.
[27] ACHARYA C, BAJAJ JS. Altered microbiome in patients with cirrho?sis and complications[J]. Clin Gastroenterol Hepatol, 2019, 17(2):307-321. DOI: 10.1016/j.cgh.2018.08.008.
[28] TREBICKA J, MACNAUGHTAN J, SCHNABL B, et al. The microbiota in cirrhosis and its role in hepatic decompensation[J]. J Hepatol,2021, 75(Suppl 1): s67-s81. DOI: 10.1016/j.jhep.2020.11.013.
[29] PONZIANI FR, ZOCCO MA, D’AVERSA F, et al. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation[J]. World J Gastroenterol, 2017, 23(25): 4491-4499. DOI:10.3748/wjg.v23.i25.4491.
收稿日期:2024-06-07;錄用日期:2024-07-24
本文編輯:王亞南
引證本文:LI YN, LI CZ. Gut microbiota in hepatitis B cirrhosis[J]. J Clin Hepatol, 2025, 41(3): 552-555.
李艷男, 李長(zhǎng)政. 腸道菌群與乙型肝炎肝硬化[J]. 臨床肝膽病雜志, 2025, 41(3): 552-555.