• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      The Automorphism Group of the Schr?dinger-Virasoro Lie Algebra*

      2010-09-14 09:46:38GAOShoulan
      湖州師范學(xué)院學(xué)報 2010年1期
      關(guān)鍵詞:自同構(gòu)理學(xué)院高壽

      GAO Shou-lan

      (Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

      The Automorphism Group of the Schr?dinger-Virasoro Lie Algebra*

      GAO Shou-lan

      (Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

      To study the structure of the Schr?dinger-Virasoro Lie algebrasv,we characterize the structure of the automorphism groupA ut(sv)ofsvby calculating the automorphisms ofsvand determining the relationships between certain subgroups generated by some special automorphisms.

      Virasoro algebra;Schr?dinger-Virasoro algebra;automorphism

      CLC number:O152.5Document code:AArticle ID:1009-1734(2010)01-0006-05

      MSC 2000:08A35

      0 Introduction

      The Schr?dinger Lie algebra plays an important role in mathematical physics and its applications. The Schr?dinger Lie algebra inddimensions,denoted byscd,has a basis

      and others vanish.scdis(d2+d+4)-dimensional with 1-dimensional centerCM0and a 3-dimensional simple Lie subalgebra sl(2,C)generated byX-1,X0,X1.The Schr?dinger Lie algebra has attached considerable interest since it was introduced and investigated as the algebra of symmetries of the free Schr?dinger equation[2~3].Its structure and representations have been extensively studied[4~5].

      In[1],M.Henkel firstly introduced Schr?dinger-Virasoro Lie algebrasvduring his study on the invariance of the free Schr?dinger equation.svis a vector space over the complex fieldCwith a basis

      for allm,n∈Z.It is easy to see thatsvis a semi-direct product of the centerless Virasoro algebraW= span{Ln|n∈Z}and the two-step nilpotent infinite-dimensional Lie algebrah=span{Mn,|n∈Z},Henkel investigated that sv has one-dimensional universal central extension.C.Roger and J.Unterberger studied the structure and representation theory ofsvin[6].They presented a detailed cohomological study and determinedsvhas three outer derivations.But the automorphism group ofsvhas not beenworked out.Recently,extensions and generalizations related to the Schr?dinger-Virasoro algebra have appeared and their structure and representation theory have been extensively studied,such as[7],[8].

      In this paper,we determine the structure of the automorphism groupA ut(sv)of the Schr?dinger-Virasoro algebrasv.Throughout the paper,we denote byZandC*the set of integers and the set of nonzero complex numbers respectively,and all the vector spaces are assumed over the complex fieldC.

      1 The Automorphism GroupAut(sv)

      TheSchr?dinger-VirasoroLiealgebrasvisaperfectLiealgebrawithfinitegenerators

      wheresvn=span{Ln,Mn}and=span{}for alln∈Z.

      Denote byA ut(sv)andIthe automorphism group ofsvand the inner automorphism group ofsvrespectively.Obviously,Iis generated by{exp(kadMm+lad Y),m,n∈Z,k,l∈C}.For convenience, set

      NoteCM0,MandM+Yare all non-trivial proper ideals ofsv,then it is easy to deduce the following lemma.

      lemma 1.1 For allσ∈A ut(sv),we have

      for alln∈Z.

      LetJbe a subgroup ofIgenerated by{exp(k ad Mn)|n∈Z,k∈C}.ThenJis an abelian normal subgroup ofI.As a matter of fact,Jis the center of the groupI.

      For alli,j,k∈Z,it is easy to see that

      Consequently,we can deduce that

      for allα,β∈C.Furthermore,we get

      for allmk∈Z,bmk∈C,1≤k≤t.

      lemma 1.2 For anyσ∈A ut(sv),there exist someτ∈Iandε∈{±1}such that

      Proof By the automorphism group of the classical Witt algebra[9],there exists someε∈{±1}such that

      wherei≠0 andk+l+1≠0.Obviouslyτ,∈I.Note that for anyθ∈I,we haveθ(Mn)=Mnfor alln∈Z. By direct calculation,we obtain

      wherei≠0 andy∈C.Setσ=τ-1σ,then there exists somea0∈Csuch that

      By Lemma 1.1 and the automorphism group of the classical Witt algebra,we can assume that

      where each formula is of finite terms andμ(nk)∈C*,ani,bnj+12,f(ns),h(nt+12)∈C*.From the relation that[σ(L0),σ(Lm)]=mσ(Lm),we have

      Thenni=εnforani≠0 andbnj+12=0 for allj.So

      Letm=1,thennaεn-aε=(n-1)aε(n+1).By induction onn∈Z,we can infer that

      Since[σ(L0),σ(Mn)]=nσ(Mn),we have=0,which implies thatni=εn.Therefore,

      This forces thatni=εnand

      Because[σ(Lm),σ(Mn)]=nσ(Mm+n),we getμ(ε(m+n))=μ(ε(n))forn≠0.Obviously,μ(ε(m))=μ (ε)for allm∈Z.So for allm∈Z,we have

      Comparing the coefficient ofon the both sides of

      we have

      Finally,by the coefficient ofMε(m+n+1)on the both sides of

      wherea,b∈C*andc,d∈C.It is easy to check the converse part of the theorem.

      Denote byσ(ε,a,b,c,d)the automorphism ofsvsatisfying(2)~(4),thenσ(ε1,a1,b1,c1,d1)= σ(ε2,a2,b2,c2,d2)if and only ifε1=ε2,a1=a2,b1=b2,c1=c2,d1=d2,and

      Therefore,Bis a normal subgroup ofA ut(sv)and we have

      lemma 1.3 A,TandBare all subgroups ofA ut(sv)and

      whereT≌Z2={±1},A≌C*×C*andB≌C×C.

      LetC∞={(ai)i∈Z|ai∈C,all but finitely manyai=0},Gthesubgroupgeneratedby{exp}.ThenC∞is an abelian group.DenoteΓ=G/Γthe quotient group ofG.By(1),we have

      It is easy to deduce that

      Proof Define f:?!鶦∞by

      whereaki=αkiforki<0,a0=c,andaki+2=αkiforki≥0,the others are zero,ki∈Zandk1≤k2≤…≤ks.Since every element ofJhas the unique formit is easy to check thatfis an isomorphism of group.

      Similar to the proof above,it is easy to prove thatvia(6).

      [1]HENKEL M.Schr?dinger invariance and strongly anisotropic critical systems[J].J Stat Phys,1994,75:1023.

      [2]HAGEN C R.Scale and conformal transformations in Galilean-covariant field theory[J].Phys Rev D,1972,5(2):377~388.

      [3]NIEDERER U.The maxiamal kinematical invariance group of the free Schr?dinger equation[J].Helv Phys Acta, 1972,73:802~810.

      [4]FEINSILVER P,KOCIK J,SCHOTT R.Representations of the Schr?dinger algebra and Appellsystems[J]. Fortschr Phys,2004,52(4),343~359.

      [5]FEINSILVER P,KOCIKJ,SCHOTT R.Berezin quantization of the Schr?dinger algebra,InfiniteDimensional Analysis [J].Quantum Probability and related topics,2003,6(1):57~71.

      [6]ROGER C,UNTERBERGER J.The Schr?dinger-Virasoro Lie group and algebra:Representation theory and cohomological study[J].Annales Henri Poincaré,2006(7~8):1477~1529.

      [7]GAO S,J IANG C,PEI Y.Structure of the extended Schrodinger-Virasoro Lie algebra[J].Algebra Colloquium,2009, 16(4):549~566.

      [8]UNTERBERGER J.On vertex algebra representations of the Schr?dinger-Virasoro Lie algebra[EB/OL].[2007-03-21].arXiv:cond-mat/0703214v2.

      [9]GAO S.The structures and representations of Schr?dinger-Virasoro algebras and non-graded Virasoro-like Lie algebras [D].Faculty of Science,Shanghai Jiaotong University,2008:11~14.

      MSC 2000:08A35

      一類Schr?dinger-Virasoro李代數(shù)的自同構(gòu)群

      高壽蘭
      (湖州師范學(xué)院理學(xué)院,浙江湖州313000)

      為了研究Schr?dinger-Virasoro李代數(shù)sv的結(jié)構(gòu),通過計算sv的自同構(gòu)及確定由某些特殊的自同構(gòu)生成的子群之間的關(guān)系,確定了sv的自同構(gòu)群A ut(sv)的結(jié)構(gòu).

      Virasoro李代數(shù);Schr?dinger-Virasoro李代數(shù);自同構(gòu)

      O152.5

      *Received date:2009-12-21

      Biography:GAO Shou-lan,Doctor,Research Interest:Lie algebra.

      猜你喜歡
      自同構(gòu)理學(xué)院高壽
      昆明理工大學(xué)理學(xué)院學(xué)科簡介
      昆明理工大學(xué)理學(xué)院簡介
      一類無限?ernikov p-群的自同構(gòu)群
      關(guān)于有限Abel p-群的自同構(gòu)群
      剩余有限Minimax可解群的4階正則自同構(gòu)
      養(yǎng)生篆刻
      西安航空學(xué)院專業(yè)介紹
      ———理學(xué)院
      古代長壽有哪些雅稱
      多病且可高壽一曾國藩的養(yǎng)生之道
      誰最“高壽”?
      察哈| 儋州市| 浦江县| 西林县| 稻城县| 南昌县| 西吉县| 册亨县| 慈溪市| 图木舒克市| 铜陵市| 天峨县| 文安县| 色达县| 东方市| 合江县| 太康县| 桦甸市| 常宁市| 盈江县| 磐安县| 乾安县| 平阳县| 通道| 新宾| 宁强县| 石河子市| 密山市| 博湖县| 霞浦县| 开远市| 南靖县| 瑞金市| 河北区| 天峨县| 河池市| 准格尔旗| 临泽县| 安新县| 台北市| 西宁市|