高 麗, 張全信
(濱州學(xué)院數(shù)學(xué)與信息科學(xué)系,山東濱州 256603)
二階非線性攝動微分方程解的振動性質(zhì)
高 麗, 張全信
(濱州學(xué)院數(shù)學(xué)與信息科學(xué)系,山東濱州 256603)
研究了一類二階非線性攝動微分方程解的振動性質(zhì).在一定條件下,建立了兩個新的振動性定理,推廣和改進(jìn)了已知的結(jié)果.
非線性;攝動微分方程;振動性質(zhì)
文[1]研究了二階線性阻尼微分方程
的解的振動性質(zhì),[2]和[3]研究了二階非線性微分方程
的解的振動性質(zhì),[4]和[5]研究了二階非線性阻尼微分方程
的解的振動性質(zhì),分別建立了上述方程的若干個振動性定理.在此基礎(chǔ)上,本文討論了一類較為廣泛的二階非線性攝動微分方程
的解的振動性質(zhì),在一定條件下,建立了方程(1)的兩個新的振動性定理,推廣和改進(jìn)了已有的結(jié)果.
在本文中,對于方程(1),約定
本文總假設(shè)方程(1)的每一個解x(t)可以延拓于[t0,+∞)上.在任何無窮區(qū)間[T,+∞)上,x(t)不恒等于零,這樣的解叫正則解.一個正則解,若它有任意大的零點,則稱為振動的;否則就稱為非振動的.若方程(1)的所有正則解是振動的,則稱方程(1)是振動的.
定理1 設(shè)ψ(x)f′(x)≥k>0,x≠0,并且
[1] Yan Jurang.Oscillation theorems for second order linear differential equations with damping[J].Proc.Amer. Math.Soc.,1986,98(2):276-282.
[2] Cecchi M and Marini M.Oscillatory and nonoscillatory behavior of a second order functional differential equation [J].Rocky Mount.J.Math,1992,22(4):1259-1276.
[3] Rogovchenko Yu V.On oscillation of a second order nonlinear delay differential equation[J].Funkcial Ekvac, 2000,43(1):1-29.
[4] 張全信,燕居讓.一類二階非線性阻尼微分方程的振動性[J].系統(tǒng)科學(xué)與數(shù)學(xué),2004,24(3):296-302.
[5] 張全信,燕居讓.二階非線性阻尼微分方程解的振動性質(zhì)[J].數(shù)學(xué)雜志,2007,27(4):455-460.
[6] Ladde G S,Lakshmikantham V and Zhang B G.Oscillation theory of differential equations with deviating arguments[M].New York:Marcel Dekker,1987.
Oscillatory Property of Solutions for aclass of Second Order Nonlinear Differential Equation with Perturbation
GAO L i, Z HA N G Quan-xin
(Department of Mathematics and Information Science,Binzhou University,Binzhou,Shandong 256603,China)
This paper is concerned with oscillation property of soilutions of aclass of second order nonlinear differential equation with perturbation.Two new theorems of oscillation property are established.These results generalize the known results.
nonlinear;differential equation with perturbation;oscillation property
O175
A
1672-1454(2010)03-0099-04
2007-11-20
山東省教育廳科研發(fā)展計劃項目(J07WH01)