高均立
(西安航空技術(shù)高等專科學(xué)校電氣工程系, 陜西 西安 71007)
圖像增強(qiáng)技術(shù)不考慮圖像降質(zhì)的原因,而衰減掉不需要的圖像信息.圖像增強(qiáng)的方法主要有兩大類:空間域法和頻率域法.空間域法主要是在空間域直接對(duì)圖像的灰度系數(shù)進(jìn)行處理;頻率域法是在圖像的某個(gè)變化域內(nèi)對(duì)圖像的變換系數(shù)值進(jìn)行某種修整,然后通過(guò)逆變化獲得增強(qiáng)圖像.頻率域法屬于間接增強(qiáng)的方法,低通濾波、同態(tài)圖像增強(qiáng)均屬于該類;空間域法屬于直接增強(qiáng)的反復(fù)法,它又分為灰度級(jí)校正、灰度變化和直方圖修正,直方圖均衡屬于空間域單點(diǎn)增強(qiáng)的直方圖修正法.
如果獲得的一幅圖像的直方圖效果不理想,則可以通過(guò)直方圖均衡化處理技術(shù)做適當(dāng)修改,實(shí)現(xiàn)使圖像清晰的目的,這種方法的基本思想是對(duì)原始圖像中的像素灰度做某種映射變換,使變換后的圖像灰度的概率密度均勻分布.幾何變換后圖像是一幅灰度級(jí)均勻分布的圖像,這意味著圖像灰度的動(dòng)態(tài)范圍得到了增加,從而可提高圖像的對(duì)比度.例如,一幅對(duì)比度較小的圖像,其直方圖分布一定集中在某一比較小的范圍之內(nèi),經(jīng)過(guò)均衡化處理后的圖像增加了圖像的動(dòng)態(tài)范圍和對(duì)比度.
為了研究方便,用r和s分別表示原始圖像灰度和變換后的圖像灰度,即0≤r≤1,0≤s≤1(0代表黑,1代表白),在[0,1]區(qū)間內(nèi)的任一個(gè)r值都可以產(chǎn)生一個(gè)s值,且s=T(r),T(r)為變換函數(shù).為使這種灰度變換具有實(shí)際意義,T(r)應(yīng)滿足下列條件:(1)在0≤r≤1區(qū)間,T(r)為單調(diào)遞增函數(shù).(2)在0≤r≤1 區(qū)間, 有0≤T(r)≤1.這里,條件(1)保證灰度級(jí)從黑到白的次序,條件(2)保證變換后的像素灰度仍在原來(lái)的動(dòng)態(tài)范圍內(nèi).
由s到r的反變換為
r=T-1(s) (0≤s≤1)
(1)
這里T-1(s)對(duì)s也滿足條件(1)和(2).
由概率論知,若原圖像灰度級(jí)的概率密度函數(shù)Pr(r)和變換函數(shù)T(r)已知,且T-1(s)是單調(diào)增加函數(shù),則變化后的圖像灰度極的概率密度函數(shù)Ps(s)如式(2)所示:
(2)
對(duì)于連續(xù)圖像,當(dāng)直方圖均衡化后有Ps(s)=1,即
ds=Pr(r)dr=dT(r)
(3)
兩邊取積分得:
(4)
式(4)就是所求的變換函數(shù),它表明變化函數(shù)是原圖像的累積分布函數(shù),是一個(gè)非負(fù)的遞增函數(shù).
對(duì)于離散圖像,假定數(shù)字圖像中的總像素為N,灰度級(jí)總數(shù)為L(zhǎng)個(gè),第k個(gè)灰度級(jí)的值為rk的像素?cái)?shù)目為nk,則該圖像中灰度級(jí)rk的像素出現(xiàn)的概率為:
(5)
對(duì)其進(jìn)行均勻化處理的變換函數(shù)為
(6)
相應(yīng)的逆變化函數(shù)為
rk=T-1(sk) 0≤sk≤1
(7)
利用式(6)對(duì)圖像做灰度變換,即可得到直方圖均衡化后的圖像.下面通過(guò)實(shí)例說(shuō)明數(shù)字圖像直方圖均衡化處理的詳細(xì)過(guò)程.
設(shè)有一幅64×64,8 bit的灰度圖像,其直方圖如圖1所示,均衡化后得到的直方圖如圖2所示.需注意,由于不能(或著說(shuō)沒有理由)將同一個(gè)灰度值的各個(gè)像素變換到不同的灰度級(jí),所以數(shù)字圖像直方圖均衡化的結(jié)果一般只是近似均衡的直方圖.
圖1 原始圖 圖2 均衡化后的直方圖
表1 各灰度級(jí)概率分布
假設(shè)有一幅圖像,共有64×64個(gè)像素,8個(gè)灰度級(jí),各個(gè)灰度級(jí)概率分布如表1所示,將其均衡化.
根據(jù)表1作出此圖像的直方圖如圖3所示,利用式(1)~(6)可求得變換函數(shù)為
圖3 原直方圖 圖4 均衡化后的直方圖
同樣按此方法計(jì)算出s2、s3、s4、s5、s6、s7如下:s2=0.16,s3=0.28,s4=0.42,s5=0.62,s6=0.84,s7=1.
根據(jù)變換函數(shù)T(rk)可以逐個(gè)將rk變成sk,從表2可以看出原圖像給定的rk是等間隔的,即在0,1/7,2/7,3/7,4/7,5/7,6/7,1中取值,經(jīng)過(guò)T(rk)求得的sk不一定就是等間隔的,表2給出了重新量化后得到的新灰度.
把相應(yīng)的原灰度級(jí)的像素相加得到新的灰度級(jí)的像素?cái)?shù).均勻化后的直方圖如圖4所示.從圖4中可以看出均衡化后的直方圖比原直方圖均勻了,但它并不完全均勻,這是由于在均衡化的過(guò)程中原直方圖上的幾個(gè)像素較少的灰度級(jí)歸并到一個(gè)新的灰度級(jí)上,而像素較多的灰度級(jí)間隔被拉大了.直方圖均衡化提高了圖像的對(duì)比度,但是,它是以減少圖像的灰度等級(jí)為代價(jià)的.在均衡化的過(guò)程中,原直方圖上圖像灰度級(jí)有可能合并成一個(gè)新的灰度級(jí),因此原圖像的一些細(xì)節(jié)經(jīng)過(guò)均衡化以后完全損失掉了.
表2 量化后的灰度概率分布
clear
clc
close all
I=imread('tire.tif');
%imshow(I);
for k=1:256
a1(k)=k-1;
sum(k)=0;
end
[a,b]=size(I);
%統(tǒng)計(jì)各個(gè)灰度值像素個(gè)數(shù)
for k=1:256
for i=1:a
for j=1:b
if I(i,j)==a1(k)
sum(k)=sum(k)+1;
end
end
end
end
%列出原始直方圖
for i=1:256
p(i)=sum(i)/(a*b);
end
%figure,imhist(I)
%計(jì)算原始累計(jì)直方圖
s(1)=p(1);
for i=2:256
s(i)=s(i-1)+p(i);
end
%取整
for k=1:256
g(k)=floor(255*s(k)+0.5);
end
I1=I;
for k=1:256if g(k)+1-k~=0
for i=1:a
for j=1:b
if I(i,j)==a1(k)
I1(i,j)=g(k);
end
end
end
end
end
%figure;imshow(I1);
%figure,imhist(I1);
subplot(121),imshow(I),title('原始圖像');
subplot(122),imshow(I1),title('均衡化后的圖像');
figure
subplot(121),imhist(I),title('原始圖像的直方圖');
subplot(122),imhist(I1),title('均衡化后圖像的直方圖');
從直方圖均衡化的實(shí)例仿真結(jié)果(圖5、圖6)可以看出,原圖較暗且動(dòng)態(tài)范圍較小,反映在直方圖上就是其直方圖所占據(jù)的灰度值比較窄,而且集中在灰度值較低的一邊.原圖經(jīng)處理后,直方圖占據(jù)了整個(gè)圖像灰度值允許的范圍.由于直方圖均衡化增加了圖像灰度動(dòng)態(tài)范圍,所以也增加了圖像的對(duì)比度,反映在圖像上就是圖像的反差較大,許多細(xì)節(jié)都看得比較清楚了.但需要注意的是,直方圖均衡化在增強(qiáng)圖像反差的同時(shí),也增加了圖像的顆粒感,感覺好像圖像有許多細(xì)小的顆粒組成.
圖5 處理前后圖像對(duì)比
圖6 處理前后直方圖對(duì)比
參考文獻(xiàn)
[1] David F.Rogers.計(jì)算機(jī)圖形學(xué)算法基礎(chǔ)[M].北京:電子工業(yè)出版社,2002.
[2] 李信真,車剛明,歐陽(yáng)潔,等.計(jì)算方法[M].西安:西北工業(yè)大學(xué)出版社,2000.
[3] 劉 駿.Delphi數(shù)字圖像處理及高級(jí)應(yīng)用[M].北京:科學(xué)出版社,2003.
[4] 李弼程,彭天強(qiáng),彭 波,等.智能圖像處理技術(shù)[M].北京:電子工業(yè)出版社,2004.
[5] Kenneth R.Castleman著,朱志剛,石定機(jī)譯.數(shù)字圖像處理[M].北京:電子工業(yè)出版社,2002.
[6] Milan Sonka, Vaclav Hlavac, Roger Boyle.Image Processing, Analysis, and Machine Vision[M].北京:人民郵電出版社,2003.
[7] 阮秋奇.數(shù)字圖像處理學(xué)[M].北京:電子工業(yè)出版社, 2001.
[8] 劉宏昆.Delphi應(yīng)用技巧與常見問(wèn)題[M].北京:機(jī)械工業(yè)出版社, 2003.