王標(biāo)詩,杜建中,金 蓓,李汴生,曾慶孝,阮 征,黃海敏
超高靜壓對(duì)細(xì)菌芽孢致死效應(yīng)的研究進(jìn)展
王標(biāo)詩1,杜建中1,金 蓓1,李汴生2,曾慶孝2,阮 征2,黃海敏1
(1.湛江師范學(xué)院化學(xué)科學(xué)與技術(shù)學(xué)院,廣東 湛江 524048;2.華南理工大學(xué)輕工與食品學(xué)院,廣東 廣州 510640)
在超高靜壓殺菌過程中,細(xì)菌芽孢往往比其營養(yǎng)體更耐壓,而單獨(dú)的壓力處理并不能完全殺死芽孢。超高靜壓對(duì)普通微生物營養(yǎng)體有較好的殺滅效果,但超高靜壓對(duì)細(xì)菌芽孢殺滅效應(yīng)有待于進(jìn)一步研究。研究表明,超高靜壓結(jié)合適度的熱處理能顯著增加芽孢的殺滅效果。本文綜述了芽孢對(duì)食品安全的影響、超高靜壓誘導(dǎo)芽孢發(fā)芽以及超高靜壓導(dǎo)致細(xì)菌芽孢失活的影響因素等。
超高靜壓;滅活;細(xì)菌芽孢
超高靜壓對(duì)普通微生物營養(yǎng)體有較好的殺滅效果,但人們對(duì)有關(guān)超高靜壓對(duì)細(xì)菌芽孢殺滅效應(yīng)的認(rèn)識(shí)還很有限。一般來說,處于對(duì)數(shù)生長期的細(xì)胞比處于靜止期的細(xì)胞對(duì)壓力反應(yīng)更為敏感。革蘭氏陽性菌比革蘭氏陰性菌對(duì)壓力更具抵抗力,芽孢對(duì)壓力的抵抗力更強(qiáng),可以在高達(dá)1000MPa的壓力下生存,病毒對(duì)壓力也有較強(qiáng)的抵抗力[1]。芽孢菌是食品是否徹底殺菌的標(biāo)志,而殺死芽孢也是食品加工和貯藏中最難解決的問題之一。
細(xì)菌芽孢對(duì)物理和化學(xué)處理極端的抗性使得它們成為食品工業(yè)非常關(guān)注的問題。為了確保食品安全,需要使用高強(qiáng)度的處理方法,但這會(huì)損害食品的質(zhì)量。在食品中發(fā)現(xiàn)芽孢能引起感官質(zhì)量的破壞,典型的是芽孢桿菌屬和梭狀芽孢桿菌屬[2]。與人類健康密切相關(guān)的是能引起食源性疾病的芽孢桿菌屬和梭狀芽孢桿菌屬,從引起嘔吐性的疾病到威脅生命的波特淋菌中毒都包括在內(nèi)。最重要的能形成芽孢的食源性病菌是:1)肉毒梭狀桿菌(Clostridium botulinum)。它能產(chǎn)生一種對(duì)人類最致命的毒素,也是產(chǎn)生具有潛在致命性疾病食源性波特淋菌中毒的一個(gè)原因,這種中毒非常少見[3]。波特淋菌中毒是由細(xì)菌產(chǎn)生的神經(jīng)毒素的攝取引起的,這種細(xì)菌最常出現(xiàn)在家庭裝罐藏食品中,中毒后最典型的特征就是肌肉麻痹,可能導(dǎo)致窒息[4]。2)產(chǎn)氣莢膜梭菌(Clostridium perfringens)。它也能引起食源性疾病,最典型的癥狀為腹痛,腹瀉和嘔吐,它經(jīng)常出現(xiàn)在加工好的肉制品中[5]。3)蠟狀芽孢桿菌(Bacillus cereus)。蠟狀芽孢桿菌在很多食品中食源性疾病發(fā)生時(shí)普遍存在的一種微生物,特別是在那些與土壤有關(guān)的食品[6]。由蠟狀芽孢桿菌引起的食源性疾病的發(fā)生很難準(zhǔn)確預(yù)測,因?yàn)榇思膊“l(fā)病癥狀不明顯,并不值得報(bào)告[7]。地衣桿菌和枯草桿菌也常與食源性疾病的爆發(fā)有關(guān)[2,8]。能引起食源性疾病且可形成芽孢的一些細(xì)菌見表1。
表1 細(xì)菌芽孢導(dǎo)致的食品腐敗Table 1 Food spoilage caused by spore-forming bacteria
休眠的芽孢對(duì)熱、輻射和有毒的化學(xué)物質(zhì)有極端的抗性,而萌發(fā)的芽孢就失去了這些極端的抗性。這也是高壓處理能殺死芽孢的主要原因,因?yàn)楦邏禾幚砟苁寡挎呙劝l(fā)。發(fā)芽的芽孢會(huì)被壓力和由壓力導(dǎo)致的高溫所殺死,然而,這些處理溫度不能完全殺死休眠的芽孢。
壓力誘導(dǎo)芽孢萌發(fā)的機(jī)理因所使用的壓力而有所不同。50~300MPa的中等高壓是通過激活芽孢的營養(yǎng)受體,并由激發(fā)的營養(yǎng)發(fā)芽通道來誘導(dǎo)萌發(fā)的[14-16]。相反,400~800MPa特別高的壓力并不是通過營養(yǎng)受體而誘導(dǎo)發(fā)芽的[14-15,17]。確切地說,特別高的壓力直接引起鈣吡啶2,6-二羧酸復(fù)合物(Ca-DPA)的釋放,從而引發(fā)芽孢的發(fā)芽。對(duì)于這兩種壓力的任一種而言,發(fā)芽的芽孢繼續(xù)通過萌發(fā)的第二階段,然而,如果高壓處理?xiàng)l件阻止或抑制了皮層溶解酶的作用,孢子則只能迅速完成萌發(fā)的第一階段,如果可能的話再慢慢的通過第二階段[17]。第一階段萌發(fā)的芽孢和二階段萌發(fā)的芽孢對(duì)濕熱的敏感性不同,它們比休眠的芽孢更敏感。特別高的壓力處理可以使芽孢完全發(fā)芽,但是生長很緩慢[18]。
總的來說,最近幾年有關(guān)壓力誘導(dǎo)芽孢發(fā)芽的研究很多,但是對(duì)這一過程仍有很多不明確的問題。其中一個(gè)是仍有小部分超休眠芽孢受各種發(fā)芽條件(包括壓力)誘導(dǎo)發(fā)芽的速率相當(dāng)慢。因此,這些超休眠的芽孢在某些處理?xiàng)l件下(如高壓)仍能存活,只有讓這些芽孢發(fā)芽才能殺死它們。在高壓處理中這些超休眠的芽孢的滅活成為一個(gè)難點(diǎn),主要是因?yàn)椴磺宄?dǎo)致芽孢超休眠的原因。因此,芽孢超休眠現(xiàn)象是值得進(jìn)一步研究的芽孢生物學(xué)問題,因?yàn)槿绻菝叩难挎哂袝r(shí)不能完全失活,這將是超高靜壓處理在食品工業(yè)應(yīng)用中潛在的重要難題。
細(xì)胞本身的遺傳性、組成、形態(tài)、種類,處理溫度、環(huán)境介質(zhì)、pH值等,其他的協(xié)同條件(如添加防腐劑、與超聲波組合等)等都是芽孢失活的影響因素。
3.1 細(xì)胞本身的影響
不同的芽孢菌由于其組成不同,其對(duì)超高靜壓的耐壓性不同。有研究者報(bào)告[19-20],芽孢菌對(duì)壓力的抗性為:嗜熱脂肪芽孢桿菌(B.stearothermophilus)>凝結(jié)芽孢桿菌(B.coagulans)>黏草芽孢桿菌(B.subtilis)>蠟狀芽孢桿菌(B. cereus)>多黏類芽孢桿菌(Paenibacillus polymyxa)>巨大芽孢桿菌(B.megaterium)。施加壓力下,芽孢較大的菌類(如蠟狀芽孢桿菌)比芽孢較小的菌類(如枯草芽孢桿菌)更為敏感;桿狀、薄片狀比球狀也更為敏感。
3.2 pH值的影響
酸性條件通常能增強(qiáng)高壓滅活細(xì)菌微生物的效果[21]。在低pH值下壓力對(duì)芽孢滅活的影響有兩種觀點(diǎn),一種認(rèn)為增強(qiáng),一種則認(rèn)為有一點(diǎn)效果甚至沒效果。Roberts等[22]發(fā)現(xiàn)凝結(jié)芽孢桿菌在pH4.0時(shí)比在pH7.0時(shí)對(duì)壓力(400MPa)滅活更有效。對(duì)于在100~600MPa和40℃處理的枯草芽孢桿菌來說,Wuytack等[23]發(fā)現(xiàn)酸性環(huán)境并不能增加芽孢的滅活效果,然而,當(dāng)芽孢先在中性pH值高壓處理再經(jīng)過1h的低pH值環(huán)境其滅活效果更高。王琴等[24]研究表明,不同pH值(3.6~6.6)對(duì)嗜熱脂肪芽孢桿菌的滅活效果不明顯。
3.3 介質(zhì)成分的影響
芽孢所處的介質(zhì)對(duì)其發(fā)芽有很大的影響,因?yàn)楹芏嗍称酚泻茇S富的芽孢發(fā)芽所需營養(yǎng)物。此外,一些食品如牛奶,對(duì)營養(yǎng)細(xì)胞有一定的保護(hù)作用[25]。Moerman等[26]研究表明脂肪含量高的肉和碳水化合物含量高的土豆介質(zhì)同有機(jī)成分少的介質(zhì)相比它們能賦予梭狀芽孢特別強(qiáng)的保護(hù)作用。Reddy等[27]比較肉毒桿菌在緩沖液和蟹肉中高壓滅活效果,結(jié)果發(fā)現(xiàn),蟹肉對(duì)致死效果并不起保護(hù)作用,然而van Opstal等[28]發(fā)現(xiàn)蠟狀芽孢在牛奶中比在緩沖液中發(fā)芽水平更高,而在牛奶中蠟狀芽孢的存活率比在緩沖液中要高1個(gè)數(shù)量級(jí),這表明盡管在牛奶中更易發(fā)芽,但是牛奶中的成分能保護(hù)細(xì)胞,降低壓力對(duì)其致死效果。
3.4 熱處理組合方法的影響
在室溫條件下,單獨(dú)依靠超高靜壓很難得到理想的芽孢滅活效果。因此,僅僅只依靠超高靜壓的手段想達(dá)到芽孢失活的效果并不理想,而且要達(dá)到更高的壓力需要更好的儀器設(shè)備等,研究表明熱處理同超高靜壓的組合能顯著提高細(xì)菌芽孢的滅活效果。Stewart等[29]研究表明,檸檬酸鹽緩沖液中枯草芽孢桿菌孢子數(shù)在高溫條件下比在室溫條件下降低更多,404MPa和70℃能使孢子下降5個(gè)數(shù)量級(jí),而在同樣的壓力和室溫條件下只能降低0.5個(gè)數(shù)量級(jí)。Millls等[30]也報(bào)道了生孢梭菌孢子在600MPa和20℃處理30min只有很小甚至沒有鈍化效果,而400MPa和60℃同時(shí)處理30min或80℃室溫下先處理10min,接著400MPa、40或60℃再處理30min更有效,可使其下降3個(gè)數(shù)量級(jí)。Rajan等[31]研究蛋餅(低酸性食品)中的嗜熱芽孢桿菌在壓力和熱處理下失活的情況,相對(duì)于常見熱殺菌條件(121℃)下,15min嗜熱芽孢桿菌芽孢減少1.5個(gè)數(shù)量級(jí);在700MPa、105℃、5min條件下則減少了4個(gè)數(shù)量級(jí)。
曾慶孝[32]對(duì)超高靜壓下嗜熱脂肪芽孢桿菌殺菌作用的研究結(jié)果表明,壓力處理前經(jīng)預(yù)熱處理(45℃、20min)比壓力處理后再經(jīng)熱處理有更高的殺菌作用。高瑀瓏等[33]通過響應(yīng)面對(duì)殺滅芽孢桿菌的分析實(shí)驗(yàn)來研究溫度(30~60℃)、壓力(200~600MPa)和處理時(shí)間(10~20min)對(duì)滅活枯草芽孢桿菌殺滅的影響,這些因素影響的順序?yàn)椋簻囟龋緣毫Γ緣毫μ幚頃r(shí)間。
在高壓組合熱處理加工中壓力輔助熱殺菌是當(dāng)前研究的熱點(diǎn)問題[34-35]。壓力輔助熱殺菌是壓力和溫度的組合過程,以此來使芽孢失活。單獨(dú)的壓力對(duì)細(xì)菌的營養(yǎng)體有顯著的效果,而單獨(dú)的壓力對(duì)細(xì)菌芽孢的作用很有限。當(dāng)然,芽孢是食品工業(yè)很關(guān)心的問題,特指桿菌屬和梭狀桿菌屬,尤其是肉毒桿菌。在貨架溫度的低酸性食品的制造過程中,微生物安全是必須要特別考慮的重要先決條件,肉毒桿菌芽孢的消除是最關(guān)鍵的目標(biāo)。壓力輔助熱處理對(duì)孢子的致死可以看成是壓力下蛋白質(zhì)的聚集和熱處理下蛋白質(zhì)變性和酶失活的組合[36]。當(dāng)然,這種雙重過程的應(yīng)用不能看成是非熱過程,但是壓力下熱處理的溫度相對(duì)來說較低的。壓力輔助熱殺菌能有效地去除微生物的存在,包括營養(yǎng)體和芽孢,而獲得的產(chǎn)品的質(zhì)量優(yōu)于傳統(tǒng)的熱殺菌方法[37]。
3.5 其他組合方法的影響
Hayakawa等[38]在富含營養(yǎng)成分介質(zhì)中的脂肪嗜熱芽孢桿菌芽孢進(jìn)行了超高靜壓殺菌研究。經(jīng)過600MPa、70℃(指加壓過程中測出的實(shí)際溫度,包括加壓前加熱和絕熱壓縮溫升),加壓5min,然后降至常壓,并重復(fù)脈沖加壓處理5次。超高靜壓處理后,立即用營養(yǎng)瓊脂平板在55℃經(jīng)過7d培養(yǎng)未能檢出微生物,起到了完全殺滅作用。而在70℃以下進(jìn)行同樣壓力和更長保壓時(shí)間的超高靜壓處理,也不能達(dá)到完全滅菌的效果。Furukawa等[39]比較了連續(xù)和循環(huán)壓力處理對(duì)枯草芽孢桿菌芽孢鈍化效果,循環(huán)壓力處理下其鈍化和損傷效果都比連續(xù)壓力處理時(shí)的情況好,對(duì)于孢子結(jié)構(gòu)的破壞,如包衣和皮層,通過掃描和透射電鏡觀察在循環(huán)壓力下更明顯。
Garcia-Gonzalez等[40-41]報(bào)道了對(duì)懸浮在生理鹽水中的枯草芽孢桿菌芽孢,在溫度為36~75℃、壓力為7~15MPa、保壓時(shí)間1~24h的條件下進(jìn)行殺菌處理。單獨(dú)進(jìn)行60℃、24h加熱處理枯草芽孢桿菌芽孢,芽孢無一滅活;但是在60℃、7MPa、保壓24h超臨界CO2處理,所有芽孢全部滅活。單獨(dú)進(jìn)行75℃、24h加熱處理只有部分芽孢滅活;而在75℃、7MPa、保壓2h超臨界CO2處理,所有芽孢全部滅活。
多種抗菌物同高壓組合來增強(qiáng)細(xì)菌芽孢壓力滅活效果。這些抗菌物的使用可以降低壓力處理?xiàng)l件,因此,更能保持食品的營養(yǎng)和感官特性。尼生素也常被用于高酸性和低酸性食品中抑制細(xì)菌的生長和破壞,如嗜熱脂肪芽孢桿菌。
高壓和輻射的組合能增強(qiáng)生孢梭菌芽孢的滅活效果。Crawford等[42]發(fā)現(xiàn)先進(jìn)行中等輻射在壓力處理同單獨(dú)壓力處理相比能提高鈍化效果。壓力和輻射同時(shí)處理也都能提高芽孢的鈍化效果[43]。
高壓和脈沖電場組合作為一種食品處理方法對(duì)孢子滅活不能保證一定有效,仍值得進(jìn)行探討。Pagan等[44]試圖通過高壓誘導(dǎo)桿狀芽孢發(fā)芽再進(jìn)行脈沖電場處理鈍化敏感的發(fā)芽細(xì)胞。然而,對(duì)孢子滅活的研究結(jié)果表明效果不好,沒有進(jìn)一步研究的必要。
在超高靜壓殺菌中,細(xì)菌芽孢比營養(yǎng)體更耐壓,而且單獨(dú)的壓力處理并不能充分達(dá)到殺滅芽孢的效果。最近很多研究表明,超高靜壓協(xié)同中溫能夠有效地增加芽孢的滅活效果。壓力輔助熱殺菌有望解決細(xì)菌芽孢難殺滅的問題,但是有關(guān)這方面的報(bào)道相對(duì)較少,其致死芽孢的機(jī)理有待于進(jìn)一步的研究。
[1]陳復(fù)生, 張雪, 錢向明. 食品超高壓加工技術(shù)[M]. 北京: 化學(xué)工業(yè)出版社, 2005: 149-150.
[2]BROWN K L. Control of bacterial spores[J]. British Medicine Bulletin, 2000, 56(1): 158-171.
[3]LUND B M. Foodborne disease due to Bacillus and Clostridium species [J]. Lancet, 1990, 336: 982-986.
[4]SHAPIRO R L, HATHEWAY C, SWERDLOW D L. Botulism in the United States: a clinical and epidemiologic review[J]. Annals of Internal Medicine, 1998, 129(3): 221-228.
[5]SMITH L D S, WILLIAMS B L. Clostridium perfringens[M]// SMITH L D S, WILLIAMS B L. The pathogenic anaerobic bacteria. Springfield IL: Charles C. Thomas, 1984: 101-136.
[6]BORGE G I A, SKEIE M, SORHAUG T, et al. Growth and toxin profiles of Bacillus cereus isolated from different food sources[J]. International Journal of Food Microbiology, 2001, 69(3): 237-246.
[7]GRANUM P E, BAIRD P T C. Bacillus species[M]//LUND B M, BAIRD P A C, GOULD G W. The microbiological safety and quality of food. Gaithersburg, Md: Aspen Publishing, 2000: 1029-1039.
[8]SALKINOJA S M S, VUORIO R, ANDERSSON M A, et al. Toxigenic strains of Bacillus licheniformis related to food poisoning[J]. Applied and Environmental Microbiology, 1999, 65(10): 4637-4645.
[9]ANDERSSON A, RONNER U, GRANUM P E. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens[J]. International Journal of Food Microbiology, 1995, 28(2): 145-155.
[10]WESTHOFF D C. Microbiology of ultrahigh temperature milk[J]. Journal of Dairy Science, 1981, 64(1): 167-173
[11]DASGUPTA A P, HULL R R. Late blowing of Swiss cheese: incidence of Clostridium tyrobutyricum in manufacturing milk[J]. Australian Journal of Dairy Technology, 1989, 44(2): 82-87.
[12]ROBERTS T A, DERRICK C M. Sporulation of Clostridium putrefaciens and the resistance of the spores to heat, γ-radiation and curing salts[J]. Journal of Applied Bacteriology, 1975, 38(1): 33-37.
[13]SPLITTSTOESSER D F, CHUREY J J, LEE C Y. Growth characteristics of aciduric sporeforming bacilli isolated from fruit juices[J]. Journal of Food Protection, 1994, 57(12): 1080-1083.
[14]PAIDHUNGAT M, SETLOW P. Spore germination and outgrowth [M]//ABRAHAM L, SONENSHEIN, HOCH J A, et al. Bacillus subtilis and its relatives: from genes to cells. Washington, D.C. : ASM Press, 2002: 537-548.
[15]WUYTACK E Y, SOONS J, POSCHER F, et al. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores [J]. Applied and Environmental Microbiology, 2000, 66(1): 257-261. [16]BLACK E P, KOZIOL D K, GUAN D, et al. Factors influencing the germination of Bacillus subtilis spores via the activation of nutrient receptors by high pressure[J]. Applied and Environmental Microbiology, 2005, 71(10): 5879-5887.
[17]BLACK E P, WEI J, ATLURI S, et al. Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure[J]. Jounal of Applied Microbiology, 2007, 102(1): 65-76.
[18]WUYTACK E Y, BOVEN S, MICHIELS C W. Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressure[J]. Applied and Environmental Microbiology, 1998, 64(9): 3220-3224.
[19]LECHOWICH R V. Food safety implications of high hydrostatic pressure as a food processing method[J]. Food Technology, 1993, 47(6): 170-172.
[20]NAKAYAMA A, YANO Y, KOBAYASHI S, et al. Comparison of pressure resistance of spores of six Bacillus strains with their heat resistances[J]. Applied and Enviromental Microbiology, 1996, 62(10): 3897-3900.
[21]ALPAS H, KALCHAYANAND N, BOZOGLU F, et al. Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive stains of foodborne pathogens[J]. International Journal of Food Microbiology, 2000, 60(1): 33-42.
[22]ROBERTS C M, HOOVER D G. Sensitivity of Bacillus coagulans spores to combinations of high pressure, heat, acidity and nisin[J]. Journal of Applied Bacteriology, 1996, 81(4): 363-368.
[23]WUYTACK E Y, MICHIELS C W. A study on the effects of high pressure and heat on Bacillus subtilis spores at low pH[J]. International Journal of Food Microbiology, 2001, 64(3): 333-341.
[24]王琴, 曾慶孝, 阮征, 等. 介質(zhì)酸堿條件對(duì)高靜壓滅菌效果的影響[J].食品科學(xué), 1997, 18(12): 10-13.
[25]王標(biāo)詩, 李汴生, 曾慶孝, 等. 熱壓協(xié)同對(duì)嗜熱脂肪芽孢桿菌芽孢滅活動(dòng)力學(xué)的研究[J]. 食品工業(yè)科技, 2009, 30(5): 112-115.
[26]MOERMAN F, MERTENS B, DEMEY L, et al. Reduction of Bacillus subtilis, Bacillus stearothermophilus and Streptococcus faecalis in meat batters by temperature-high pressure pasteurization[J]. Meat Science, 2001, 59(2): 115-125.
[27]REDDY N R, SOLOMON H M, TEZLOFF R C, et al. Inactivation of Clostridium botulinum type A spores by high pressure processing at elevated temperatures[J]. Journal of Food Protection, 2003, 66(6): 1402-1407.
[28]van OPSTAL I, BAGAMBOULA C F, VANMUYSEN S C M, et al. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments[J]. International Journal of Food Microbiology, 2004, 92(2): 227-234.
[29]STEWART C M, DUNNE C P, SIKES A, et al. Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters[J]. Innovative Food Science and Emerging Technologies, 2000, 1(1): 49-56.
[30]MILLS G, EAMSHAW R, PATTERSON M F. Effects of high hydrostatic pressure on Clostridium sporogenes spores[J]. Letter in Applied Microbiology, 1998, 26(3): 227-230.
[31]RAJAN S, PANDRANGI S, BALASUBRAMANIAM V M, et al. Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing[J]. LWT-Food Science and Technology, 2006, 39(8): 844-851.
[32]曾慶孝. 高靜壓對(duì)嗜熱脂肪芽孢桿菌的殺菌作用[J]. 食品工業(yè)科技, 1999, 20(6): 16.
[33]高瑀瓏, 王允祥. 響應(yīng)面法優(yōu)化超高壓殺滅食品中枯草芽孢桿菌工藝[J]. 食品科學(xué), 2004, 25(3): 101-106.
[34]MEYER R S, COOPER K L, KNORR D, et al. High-pressure sterilization of foods[J]. Food Technology, 2000, 54(11): 67-72.
[35]AHN J, BALASUBRAMANIAM V M, YOUSEF A E. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressureassisted thermal processing[J]. International Journal of Food Microbiology, 2007, 113(3): 321-329.
[36]RODRIGUEZ A C, LARKIN J W, DUNN J, et al. Model of the inactivation of bacterial spores by moist heat and high pressure[J]. Journal of Food Science, 2004, 69(8): 367-374.
[37]MATSER A M, KREBBERS B, van DENBERG R W, et al. Advantages of high pressure sterilisation on quality of food products[J]. Trends in Food Science and Technology, 2004, 15(2):79-85.
[38]HAYAKAWA I, KANNO T, YOSHIYAMA K, et al. Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores[J]. Food Science, 1994, 59(1): 164-167.
[39]FURUKAWA S, SHIMODA M, HAYAKAWA I. Mechanism of the inactivation of bacterial spores by reciprocal pressurization treatment[J]. Journal of Applied Microbiology, 2003, 94(5): 836-841.
[40]GARCIA G L, GEERAERD A H, SPILIMBERGO S, et al. High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future[J]. International Journal of Food Microbiology, 2007, 117(1): 1-28.
[41]曾慶梅. 降低超高壓殺菌壓力的協(xié)同措施研究進(jìn)展[J]. 食品科學(xué), 2004, 25(10): 346-350.
[42]CRAWFORD Y J, MURANO E A, OLSON D G, et al. Use of high hydrostatic pressure and irradiation to eliminate Clostridium sporogenes spores in chicken breast[J]. Journal of Food Protection, 1996, 59(7): 711-715.
[43]GOULD G W, JONES M V. Combination and synergistic effects[M]// GOULD G W. Mechanisms of action of food preservation procedures. London: Elsevier Applied Science, 1989: 401-421.
[44]PAGAN R, ESPLUGAS S, GONGORA N M M, et al. Inactivation of Bacillus subtilis spores using high intensity pulsed electric fields in combination with other food conservation technologies[J]. Food Science and Technology International, 1998, 4(1): 33-44.
Progress of Research on Inactivation Effect of High Hydrostatic Pressure Processing on Bacterial Spores
WANG Biao-shi1,DU Jian-zhong1,JIN Bei1,LI Bian-sheng2,ZENG Qing-xiao2, RUAN Zheng2,HUANG Hai-min1
(1. School of Chemistry Science and Technology, Zhanjiang Normal College, Zhanjiang 524048, China;2. College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China)
In high hydrostatic pressure treatment, bacterial spores are more resistant than vegetative cells thus pressure treatment alone is not sufficient in inactivating bacterial spores. High hydrostatic pressure processing can effectively inactivate vegetative bacteria; however, the knowledge about inactivation on bacterial spores by the high hydrostatic pressure is still limited. Recently, many researchers demonstrated that the combination of high hydrostatic pressure with moderate heat treatment were effective in increasing the inactivation of bacterial spores. This review focuses on food safety and spores, high hydrostatic pressure-induced germination and effects of high hydrostatic pressure on inactivation of bacterial spores.
high hydrostatic pressure;inactivation;bacterial spores
TS201.2
A
1002-6630(2011)03-0252-04
2009-12-15
廣東省自然科學(xué)基金項(xiàng)目(05006597);湛江師范學(xué)院博士啟動(dòng)項(xiàng)目(ZL0805);
廣東省高校優(yōu)秀青年創(chuàng)新人才培養(yǎng)計(jì)劃項(xiàng)目(LYM09100)
王標(biāo)詩(1980—),男,講師,博士,研究方向?yàn)槭称饭こ碳鞍踩?。E-mail:hang_kong2002@163.com