• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of 3-Monochloropropane-1,2-diol in Soy Sauce and Oyster Sauce by Solid Phase Extraction Combined with Gas Chromatography-Mass Spectrometry

    2011-04-14 21:53:03XIONGJunGONGLiangLAIYidong
    食品科學 2011年14期
    關(guān)鍵詞:丙二醇檢出限分類號

    XIONG Jun,GONG Liang,LAI Yi-dong

    (Guangdong Dongguan Quality Supervision and Testing Center, Dongguan 523808, China)

    Determination of 3-Monochloropropane-1,2-diol in Soy Sauce and Oyster Sauce by Solid Phase Extraction Combined with Gas Chromatography-Mass Spectrometry

    XIONG Jun,GONG Liang,LAI Yi-dong

    (Guangdong Dongguan Quality Supervision and Testing Center, Dongguan 523808, China)

    Abstract :A simple and sensitive method for determination of 3-monochloropropane-1,2-diol (3-MCPD) in sauce samples by solid phase extraction (SPE) coupled with with gas chromatography-mass spectrometry (GC-MS) is described. In this work, elution solvent type and amount and sample loading amount were investigated to optimize SPE conditions. The optimal sample preparation procedure for treating 5.0 g of samples involved homogenization with 5 mol/L sodium chloride solution, clean-up on SPE column and derivitization prior to GC-MS analysis. The limit of detection of the method for 3-MCPD was 0.15μg/kg, and the linear range 0.51-6144μg/kg, with a correlation coefficient of 0.9998 and a relative standard deviation of 8.8% (RSD, n = 5). The method was applied to determine soy sauce and oyster sauce samples and spiked recoveries of 87.2%-109.4% with RSDs (n = 3) of 5.6%-10.2% were obtained.

    Key words:solid phase extraction;3-monochloropropane-1,2-diol;gas chromatography-mass spectrometry (GC-MS);sauce samples

    3-Monochloropropane-1,2-diol (3-MCPD) was first detected in acid-hydrolyzed vegetable protein (HVP) by the reaction of hydrochloric acid with residual vegetable lipid and had been obtained more and more attention during the last few decades due to its carcinogenic effects[1]. Several studies have showed that 3-MCPD exists in a wide variety of food during food processing such as nontraditionally prepared soy sauce, vinegar and so on, its formation is origin from glycerol or acylglycerols and chloride ions and influenced by a series of factors including moisture, lipid content, pH value and food type[2-4]. Therefore, it is necessary to set safe levels of consumption to protect human health from the adverse effects of 3-MCPD. Commission Regulation (EC) No 1881/2006 of 19 December 2006[5]sets the tolerable daily intake (TDI) at 2μg/kg bw. Besides, the maximum permitted concentration of 3-MCPD in foodstuffs are controlled by legislation. For example, maximum levels in foodstuffs (in particular HVP and soy sauce) are 20μg/kg for a liquidproduct containing 40% dry matter, while a maximum level of 50μg/kg in dry matter. In view of the situation a sensitive, fast, simple and accurate method of analysis is required and it is necessary to determine its level in food and to ensure it is within the permitted limits.

    However, it is difficult to analyse 3-MCPD sensitively due to its high boiling point and absence of a suitable chromophore. At present, the determination of 3-MCPD in food samples is mainly carried out by gas chromatography (GC) with a variety of detectors including flame ionization detector (FID)[6], electron capture detector (ECD)[7-8]and mass spectrometry (MS)[7,9-13]. Among the above detectors, FID and ECD are subject to interference, which makes the qualitative analysis difficult. Relatively speaking, GC-MS is the most powerful technique for the analysis of 3-MCPD due to its high selectivity and high accuracy. Because of high polarity and low volatility, 3-MCPD needs derivatisation. Heptafluorobutyrylimidazole (HFBI), heptafluorobutyric acid anhydride (HFBA), boronic acid, ketones, N,O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) derivatives are usually used as derivatization reagents.

    To date, in order to detect low levels of the analytes, a preconcentration step is needed prior to instrumental determination. Liquid-liquid extraction (LLE)[8]and solid-phase extraction (SPE)[6-7,9-12]were the most popular sample pretreatment techniques. But LLE has many drawbacks such as time consumption, being labour-intensive and the use of large volumes of solvent, which often leads to the formation of emulsions. In addition, a large volume of sample is often required due to the low concentration of analytes in the samples. SPE is less time-consuming compared with LLE. In recent years, methods based on SPE, derivatisation and subsequent GC-MS analysis usually enable quantification of 3-MCPD at theμg/kg level[6-7,9-12]. For example, SPE-GC-MS for the determination of 3-MCPD in foods and food ingredients using HFBI as a derivatization reagent was purposed by Brereton et al[6].

    In the present work, the effective and sensitive method based on SPE has been developed for the determination of 3-MCPD in sauce samples by GC-MS. To obtain an optical condition for the extraction of 3-MCPD, a serious of influencing factors including type of elution solvent, volume of elution solvent and sample have been investigated. The developed method has been validated by the analysis of 3-MCPD in real samples.

    1 Materials and Methods

    1.1Reagents and materials

    3-MCPD and HFBI were obtained from Thermo Fisher Scientific (Fair Lawn, NJ, USA). Their purity was above 98.0%. Hexane, ethyl acetate and ether were purchased from Sinopharm Chemical Reagent Co. Ltd., (Shanghai, China). All reagents used were at least of analytical reagent grade. Doubly distilled water was used throughout this work. Standard stock solution (1.280 mg/mL) of 3-MCPD was prepared in hexane and stored in refrigerator. Working solutions used in further studies were prepared freshly by diluting different amounts from the standard solution with doubly distilled water to the required concentrations. All solutions were stored at 4 ℃ in a refrigerator prior to use.

    1.2Preparation of samples

    The soy sauce and oyster sauce samples were purchased from a local supermarket in Dongguan, China. About 5.000 g of soy sauce sample was weighed into a glass tube, and 5 mol/L NaCl solution was added until the mixture solution was 10 mL. Then, the tube was tightly closed and mixed on the vortex meter for 3 min. Subsequently, the mixture solution was directly processed according to SPE procedure under the optimized condition.

    For the oyster sauce sample, the preparation process of weight and mixture was the same to the soy sauce. Then, the mixture solution was centrifuged for 5 min at 6000 r/min due to its complicated matrix. Finally the upper solution was directly processed according to SPE procedure under the optimized condition.

    For the recovery study, the samples were prepared by spiking a known amount of the target analyte, and processed according to SPE procedure under the optimized condition.

    1.3Procedure

    The SPE column using 15 mL (3000 mg) of the MN Chromabond-XTR was not conditioned. 3.0 mL of the sample mixture solution passed through the column. After 30 min, the column was leached with 10.0 mL of n-hexane and then eluted by 12.0 mL of the mixture solution of ethyl acetate and ether (9∶1,V/V) at a flow rate of 1.0 mL/min. The elution solution was collected and concentrated under a gentle nitrogen flow. The residue was redissolved in 1.0 mL n-hexane and derivated with HBFI at 70 ℃ for 20 min in the subsequent. After cooling to room temperature, 2 mL of 5 mol/L NaCl solution was added to remove the excess derivatization agent. The nhexane layer was separated and analyzed by GC-MS.

    1.4GC-MS analysis

    Chromatographic analysis was made on an Agilent 6890N gas chromatograph equipped with 5975B mass spec-trometry (MS) system (Agilent Technologies, Palo Alto, CA, USA). A DB-5MS capillary column (30 m × 0.25 mm id and 0.25μm film thickness) purchased from J & W Scientific (Folsom, CA, USA) was employed. The injection was made in the splitless mode at 250 ℃. Helium was used as carrier gas with constant flow of 1.0 mL/min. The column oven temperature was as follows∶ first held at 50 ℃ for 1 min, then programmed at 5 ℃/min to 90 ℃, finally 50 ℃/min to 250 ℃ and held for 6.0 min. The GC-MS was operated in the electronimpact mode at 70 eV with the transfer line temperature of 280 ℃ and an ion source trap temperature of 200 ℃. Full scan data acquisitions were carried out over the mass range m/z 40 -500. Qualitative and quantitative analysis was carried out by selectively monitoring the detector response of characteristic molecular ions at m/z 253, 275, 289, 291, 453 for the derivative of 3-MCPD.

    2 Results and Analyses

    In order to obtain best sensitivity, different parameters affecting on SPE including elution solvent type, the volume of elution solvent and sample have been optimized and established.

    2.1Optimization of solid phase extraction

    2.1.1Effect of elution solvent type

    Fig.1 Effect of elution solvent on SPE

    Careful attention should be paid to the selection of the elution solvent, which is very important for achieving good selectivity of the target compound. The elution solvent should fulfill the following requirements∶ First, it should have high elution efficiency; Second, it should not interfere with analyte and have low toxicity; Third, it should have compatibility with GC system. Hence, ether, ethyl acetate, and the mixture solution of ethyl acetate and ether have been investigated. Fig.1 was the effect of elution solvent on the recovery of target. As could be seen, compared with other elution solvents ether showed relative poorer elution efficiency for 3-MCPD, while, the mixture solvent of ethyl acetate and ether (9∶1, V/V) gave the best elution efficiency for the tested target analyte. Therefore, the mixture solvent of ethyl acetate and ether (9∶1, V/V) was selected as the elution solvent in subsequent experiments.

    Fig.2 Effect of the volume of elution volume

    2.1.2Effect of volume of elution solvent

    SPE will attain the maximum sensitivity after the target analyte has been completely eluted. Therefore, the effect of the volume of elution solvent on the recovery was investigated with the volume in the range of 6-12 mL. The result showed that the recovery of 3-MCPD increased with the increase the volume and 3-MCPD could be quantitatively recovered when the volume was 12 mL (Fig.2). To ensure acquisition of satisfied recovery and trade off the analytical speed and the sensitivity, a volume of 12 mL was employed as the volume of eluent solvent for the following experiments. 2.1.3Effect of breakthrough volume of SPE column

    Fig.3 Effect of the volume of sample volume

    Under the following constant conditions (elution solvent, the mixture solution of ethyl acetate and ether (9∶1,V/V); eluent solvent volume, 12 mL; flow rate, 1.0 mL/min), different volumes (1.0, 2.0, 3.0, 3.5 mL) of the standard solution of the studied analyte passed through the SPE. Fig.3 was the effect of the breakthrough volume of the sample solution on the 3-MCPD recovery. As could be seen, the recovery was not lower than 90% when the volume of sample was less than 3.5 mL. To obtain better recovery and sensitivity, a volume of 3.0 mL was used for further experiments.

    Table 1 Analytical performance of SPE-GC-MS for the determination 3-MCPD

    2.2Analytical performance of the SPE procedure

    The linearity of calibration curve of SPE for the target compound was observed in the range of 0.51-6144μg/kg with the correlation coefficient of 0.9998, which showed good linearity. Under the optimal experimental conditions, the repeatability, expressed as relative standard deviation (RSD) for five replicate analyse, spiked at 0.76μg/L of the target compound, was 8.8%. The limit of detection (LOD, RSN=3) was 0.15μg/kg (Table 1). From the above data, the LOD data showed that the sensitivity of method was good enough to ensure reliable measurements.

    Table 2 is the comparison of the limit of detection obtained by LLE, SPE and SPME for extraction and determination of 3-MCPD in real samples. As could be seen, the LOD obtained by this method is lower than that reported in references[7-14], comparable with that obtained in the reference[15], and the proposed SPE-GC-MS method is sensitive and effective.

    2.3Application of the SPE to the real samples

    Quantitative analysis of real sample was carried out by SPE mode. Fig.4 depicted typical chromatogram of the real sample obtained after SPE. Peak identification of the 3-MCPD in samples was based on the comparison with the retention time of standard compounds, characteristic molecular ions and was confirmed by spiking known standard compounds to the sample. Accuracy was calculated as the percentage recovery of known amounts of target analyte added to soy sauce and oyster sauce and subjected to the SPE method under the optimized conditions. The recovery was defined as the ratio of the concentration of analyte found to the concentration of analyte spiked. With the application of external standard method, the average concentration of target compound in sauce and oyster sauce were determined by the proposed method and the results were given in Table 3. It could be seen that the recoveries for the spiked real samples varied from 87.2% to 109.4% and the RSDs calculated from these experiments were from 5.6% to 10.2%. The results showed that recoveries were good for the analyte, thus illustrating the practical effectiveness of the method.

    Table 2 Comparison of detection limits found in the literature for the determination of 3-MCPD in real samples

    Table 3 Analytical results and recoveries of target analytes in samples by SPE-GC-MS

    Fig.4 Chromatogram of real sample obtained by SPE-GC-MS under optimized conditions

    3 Conclusion

    The determination of 3-MCPD in soy sauce and oyster sauce samples by means of solid phase extraction (GC-MS) with gas chromatography-mass spectrometry is described. The proposed method has many practical advantages such as not condition, simplicity of the extraction, high sensitivity and an outstanding capacity of avoiding the necessity of separate sample cleanup and was applied to soy sauce and oyster sauce samples. The recovery ranging from 87.2%-109.4% with RSDs of 5.6%-10.2% were obtained for SPE. References:

    [1]VELISEK J, DAVIDEK J, HAJSLOVA J, et al. Chlorohydrins in protein hydrolysates[J]. Z Lebensm Unters Forsch, 1978, 167(4)∶ 241-244.

    [2]CREWS C, HOUGH P, BRERETON P, et al. Survey of 3-monochloropropane-1,2-diol (3-MCPD) in selected food groups, 1999 -2000[J]. Food Addit Contam, 2002, 19(1)∶ 22-27.

    [3]COLLIER P D, CROMIE D D O, DAVIES A P. Mechanism of formation of chloropropanols present in protein hydrolysates[J]. J Am Oil Chem Soc, 1991, 68(10)∶ 785-790.

    [4]HASNIP S, CREWS C, BRERETON P, et al. A concerted study of factors affecting the formation of 3-MCPD in foods[J]. Pol J Food Nutr, 2002, 52(11)∶ 119-121.

    [5]EC Commission Regulation. (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs[S]. Off J Eur Union, L364∶ 5-24.

    [6]BRERETON P, KELLY J, CREWS C, et al. Determination of 3-chloro-1,2-propanediol in foods and food ingredients by gas chromatography with mass spectrometric detection∶ collaborative study[J]. Journal of AOAC International, 2001, 84(2)∶ 455-465.

    [7]Van BERGEN C A, COLLIER P D, CROMIE D D O, et al. Determination of chloropropanols in protein hydrolysates[J]. J Chromatogr A, 1992, 589(1/2)∶ 109-119.

    [8]MATTHEW B M, ANASTASIO C. Determination of halogenated monoalcohols and diols in water by gas chromatography with electron-capture detection[J]. J Chromatogr A, 2000, 866(1)∶ 65-77.

    [9]CHUNG W C, HUI K Y, CHENG S C. Sensitive method for the determination of 1,3-dichloropropan-2-ol and 3-chloropropane-1,2-diol in soy sauce by capillary gas chromatography with mass spectrometric detection[J]. J Chromatogr A, 2002, 952(1/2)∶ 185-192.

    [10]ABU-EI-HAJ S, BOGUSZ M J, IBRAHIM Z, et al. Rapid and simple determination of chloropropanols (3-MCPD and 1,3-DCP) in food products using isotope dilution GC-MS[J]. Food Control, 2007, 18(1)∶ 81-90. [11]XU Xiaomin, REN Yiping, WU Pinggu, et al. The simultaneous separation and determination of chloropropanols in soy sauce and other flavourings with gas chromatography-mass spectrometry in negative chemical and electron impact ionization modes[J]. Food Addit Contam, 2006, 23(2)∶ 110-119.

    [12]CHUNG S W C, KWONG K P, YAU J C W, et al. Chloropropanols levels in foodstuffs marketed in Hong Kong[J]. J Food Comp Anal, 2008, 21(7)∶ 569-573.

    [13]LEE M R, CHIU T C, DOU J. Determination of 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce by headspace derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry[J]. Anal Chim Acta, 2007, 591(2)∶ 167-172.

    [14]MARKUS K S, UTE B, ALEXANDRA O G, et al. Rapid and simple micromethod for the simultaneous determination of 3-MCPD and 3-MCPD esters in different foodstuffs[J]. J Agric Food Chem, 2010, 58 (11)∶ 6570-6577.

    [15]CAO Xiujun, SONG Guoxin, GAO Yihan, et al. A novel derivatization method coupled with GC-MS for the simultaneous determination of chloropropanols[J]. Chromatographia, 2009, 70(3/4)∶ 661-664.

    中圖分類號:TS207.3

    文獻標識碼:A

    文章編號:1002-6630(2011)14-0232-05

    收稿日期:2010-11-09

    基金項目:廣東省質(zhì)量技術(shù)監(jiān)督局科技項目(2008SJ029)

    作者簡介:熊珺(1978—),女,博士,研究方向為痕量化合物的檢測技術(shù)。E-mail:xxiongjjun@yahoo.com.cn

    固相萃取與氣相色譜-質(zhì)譜聯(lián)用分析調(diào)味料中3-氯-1,2-丙二醇

    熊 珺,龔 亮,賴毅東
    (廣東省東莞市質(zhì)量監(jiān)督檢測中心,廣州 東莞 523808)

    摘 要:建立固相萃取與氣相色譜-質(zhì)譜聯(lián)用(solid phase extraction with gas chromatography-mass spectrometry,SPEGC-MS)測定調(diào)味料中3-氯-1,2-丙二醇的新方法。對影響分析物SPE萃取效率的諸因素如洗脫溶劑、洗脫溶劑的體積和上樣體積等進行詳細考察和優(yōu)化。最佳萃取條件為5.0g樣品與5mol/L氯化鈉溶液混勻,經(jīng)SPE萃取凈化、衍生后,以GC-MS進行測定,該方法對3-氯-1,2-丙二醇的檢出限為0.15μg/kg,線性范圍為0.51~6144μg/kg,相關(guān)系數(shù)和相對標準偏差(relative standard deviation,RSD)(n=5)分別為0.9998和8.8%。該方法成功應用于調(diào)味料3-氯-1,2-丙二醇的分析,加標回收的回收率為87.2%~109.4%。

    關(guān)鍵詞:固相萃?。?-氯-1,2-丙二醇;氣相色譜-質(zhì)譜聯(lián)用;調(diào)味液

    猜你喜歡
    丙二醇檢出限分類號
    陶氏推出可持續(xù)丙二醇生產(chǎn)技術(shù)
    環(huán)境監(jiān)測結(jié)果低于最低檢出限數(shù)據(jù)統(tǒng)計處理方法
    定量NMR中多種檢出限評估方法的比較
    波譜學雜志(2022年2期)2022-06-14 09:52:02
    A Study on the Change and Developmentof English Vocabulary
    丙二醇頭孢曲嗪的有關(guān)物質(zhì)檢查
    Translation on Deixis in English and Chinese
    基于EP-17A2的膠體金法檢測糞便隱血的空白限、檢出限及定量限的建立及評價
    用濕巾擦手后吃東西等于吃毒,是真的嗎?
    The law of exercise applies on individual behavior change development
    石墨爐原子吸收法測定土壤中痕量金檢出限的不確定度分析
    久久精品91无色码中文字幕| 精品欧美国产一区二区三| 日韩亚洲欧美综合| 亚洲人成网站高清观看| 国产精品98久久久久久宅男小说| 丁香欧美五月| 亚洲欧美日韩卡通动漫| 免费在线观看成人毛片| 亚洲国产欧美网| 国内精品美女久久久久久| 久久99热这里只有精品18| 午夜亚洲福利在线播放| 狂野欧美白嫩少妇大欣赏| 国产色婷婷99| 悠悠久久av| 国产精品av视频在线免费观看| 国产精品三级大全| 日韩亚洲欧美综合| 亚洲欧美激情综合另类| 18禁黄网站禁片午夜丰满| 好男人在线观看高清免费视频| 色播亚洲综合网| 俺也久久电影网| 熟女人妻精品中文字幕| 色视频www国产| 久久久久精品国产欧美久久久| 亚洲天堂国产精品一区在线| h日本视频在线播放| 午夜福利欧美成人| 免费搜索国产男女视频| 亚洲av电影不卡..在线观看| 国产精品99久久99久久久不卡| 天天躁日日操中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品合色在线| 婷婷六月久久综合丁香| 一夜夜www| 午夜激情福利司机影院| 国产探花极品一区二区| 啦啦啦免费观看视频1| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 在线观看免费视频日本深夜| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 成人一区二区视频在线观看| 人妻夜夜爽99麻豆av| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清专用| 丁香六月欧美| 2021天堂中文幕一二区在线观| 国产精品爽爽va在线观看网站| 无人区码免费观看不卡| 18+在线观看网站| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| 国产麻豆成人av免费视频| 成人一区二区视频在线观看| 精品福利观看| 国产精品久久久久久精品电影| 一个人观看的视频www高清免费观看| 特大巨黑吊av在线直播| 国产av麻豆久久久久久久| 亚洲无线观看免费| 亚洲国产欧美网| 国产精品亚洲美女久久久| 一本综合久久免费| 国产精品国产高清国产av| 动漫黄色视频在线观看| 12—13女人毛片做爰片一| 两个人的视频大全免费| 日韩免费av在线播放| 丁香欧美五月| 99在线人妻在线中文字幕| 欧美日韩乱码在线| 久久精品91无色码中文字幕| 免费av毛片视频| 免费在线观看影片大全网站| 午夜福利18| 免费av毛片视频| 久久6这里有精品| 精品熟女少妇八av免费久了| 男女那种视频在线观看| www日本在线高清视频| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 国产三级在线视频| 精品国产三级普通话版| 亚洲无线在线观看| 亚洲五月天丁香| 狂野欧美白嫩少妇大欣赏| 国内久久婷婷六月综合欲色啪| 脱女人内裤的视频| 久久久久国产精品人妻aⅴ院| 一区二区三区高清视频在线| 男人舔女人下体高潮全视频| 亚洲精品粉嫩美女一区| 久久天躁狠狠躁夜夜2o2o| 在线免费观看不下载黄p国产 | 日本一本二区三区精品| 欧美xxxx黑人xx丫x性爽| 日韩高清综合在线| 99久久精品国产亚洲精品| 国产综合懂色| 一区二区三区国产精品乱码| av福利片在线观看| 此物有八面人人有两片| 午夜免费观看网址| 极品教师在线免费播放| 香蕉丝袜av| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 又粗又爽又猛毛片免费看| 久久精品国产亚洲av香蕉五月| 舔av片在线| 国模一区二区三区四区视频| 最近在线观看免费完整版| 国产麻豆成人av免费视频| 99热这里只有是精品50| 亚洲色图av天堂| 欧美一区二区精品小视频在线| 精品国产亚洲在线| 亚洲真实伦在线观看| 亚洲激情在线av| 琪琪午夜伦伦电影理论片6080| 亚洲欧美一区二区三区黑人| 国产成人影院久久av| 欧美日韩一级在线毛片| 欧美另类亚洲清纯唯美| 啦啦啦韩国在线观看视频| netflix在线观看网站| 天天一区二区日本电影三级| 亚洲中文字幕一区二区三区有码在线看| 精品久久久久久,| 老汉色av国产亚洲站长工具| 亚洲国产精品成人综合色| 很黄的视频免费| 啦啦啦韩国在线观看视频| 亚洲国产精品合色在线| 一进一出抽搐动态| 日韩欧美国产在线观看| 亚洲国产日韩欧美精品在线观看 | 色噜噜av男人的天堂激情| 内地一区二区视频在线| xxx96com| 老司机深夜福利视频在线观看| 亚洲精品在线美女| 日韩成人在线观看一区二区三区| 亚洲熟妇熟女久久| 精品久久久久久久末码| 国产亚洲欧美98| 免费在线观看日本一区| 国语自产精品视频在线第100页| 91字幕亚洲| 五月玫瑰六月丁香| 夜夜爽天天搞| 久久草成人影院| 欧美乱色亚洲激情| 日本免费一区二区三区高清不卡| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 99视频精品全部免费 在线| 亚洲精品粉嫩美女一区| 成人18禁在线播放| 99国产极品粉嫩在线观看| 免费搜索国产男女视频| 18+在线观看网站| avwww免费| 国产亚洲精品久久久com| 18+在线观看网站| 久久精品国产自在天天线| a在线观看视频网站| 可以在线观看毛片的网站| 男女午夜视频在线观看| 亚洲成av人片免费观看| 在线十欧美十亚洲十日本专区| 在线免费观看的www视频| 免费在线观看亚洲国产| 麻豆成人av在线观看| 少妇的逼好多水| 国产亚洲欧美98| 小说图片视频综合网站| 露出奶头的视频| 午夜福利成人在线免费观看| 97碰自拍视频| 国产成人影院久久av| 亚洲国产欧美网| 男女做爰动态图高潮gif福利片| 国产精品嫩草影院av在线观看 | 国产美女午夜福利| 精品福利观看| 日韩欧美免费精品| 99热精品在线国产| 亚洲激情在线av| 老司机午夜十八禁免费视频| 日本黄色视频三级网站网址| 99国产精品一区二区蜜桃av| 亚洲成av人片在线播放无| 日韩欧美一区二区三区在线观看| 国产成人欧美在线观看| 国产极品精品免费视频能看的| 欧美一区二区亚洲| 国内久久婷婷六月综合欲色啪| 中文字幕av成人在线电影| 免费人成视频x8x8入口观看| 免费观看精品视频网站| 美女免费视频网站| 国产美女午夜福利| 精品国产超薄肉色丝袜足j| 日韩欧美免费精品| 亚洲av中文字字幕乱码综合| 久久精品国产清高在天天线| 国内精品久久久久久久电影| 日本黄大片高清| 69人妻影院| 国产成人av激情在线播放| 美女大奶头视频| 国产精品嫩草影院av在线观看 | 亚洲av电影不卡..在线观看| 国产男靠女视频免费网站| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 亚洲熟妇熟女久久| 国产又黄又爽又无遮挡在线| 国产男靠女视频免费网站| 一本久久中文字幕| 国产精品一区二区三区四区免费观看 | 欧美激情在线99| 窝窝影院91人妻| 久久亚洲精品不卡| 一级黄片播放器| 国产老妇女一区| 香蕉丝袜av| 怎么达到女性高潮| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 日韩中文字幕欧美一区二区| 日本 欧美在线| 亚洲国产日韩欧美精品在线观看 | 中文资源天堂在线| 床上黄色一级片| 欧美另类亚洲清纯唯美| 日韩欧美精品v在线| 久久午夜亚洲精品久久| 在线观看66精品国产| 舔av片在线| 亚洲人成网站高清观看| 色综合亚洲欧美另类图片| 在线看三级毛片| 国产亚洲精品久久久久久毛片| 黄色视频,在线免费观看| 男女那种视频在线观看| 他把我摸到了高潮在线观看| 精品日产1卡2卡| 又粗又爽又猛毛片免费看| 99riav亚洲国产免费| 无限看片的www在线观看| 九色成人免费人妻av| 91麻豆av在线| 日韩欧美精品v在线| 别揉我奶头~嗯~啊~动态视频| 婷婷亚洲欧美| 欧美日韩乱码在线| 在线观看舔阴道视频| 五月玫瑰六月丁香| 九色国产91popny在线| 五月伊人婷婷丁香| 色视频www国产| 国产高潮美女av| 亚洲精品影视一区二区三区av| 亚洲午夜理论影院| 床上黄色一级片| 日韩欧美国产在线观看| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 亚洲 欧美 日韩 在线 免费| 91麻豆精品激情在线观看国产| 狠狠狠狠99中文字幕| 99久国产av精品| 少妇高潮的动态图| 草草在线视频免费看| 欧美xxxx黑人xx丫x性爽| 国产精品永久免费网站| 亚洲国产日韩欧美精品在线观看 | 九九在线视频观看精品| 久久婷婷人人爽人人干人人爱| 中国美女看黄片| 男女那种视频在线观看| 国产av在哪里看| 国产高清有码在线观看视频| 狠狠狠狠99中文字幕| 精品日产1卡2卡| 又紧又爽又黄一区二区| 在线免费观看的www视频| 国产真实乱freesex| 免费一级毛片在线播放高清视频| 我的老师免费观看完整版| 国产欧美日韩精品亚洲av| 一级作爱视频免费观看| 免费av观看视频| 91av网一区二区| 亚洲国产精品成人综合色| 亚洲av成人精品一区久久| 日韩人妻高清精品专区| 欧美性猛交黑人性爽| 中文字幕精品亚洲无线码一区| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 久久久久久久精品吃奶| 国产av一区在线观看免费| 国产一级毛片七仙女欲春2| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 久久久久久久久大av| 在线观看免费午夜福利视频| 国产伦一二天堂av在线观看| 日韩 欧美 亚洲 中文字幕| 男插女下体视频免费在线播放| 亚洲av中文字字幕乱码综合| 美女大奶头视频| 给我免费播放毛片高清在线观看| 午夜日韩欧美国产| 国产一区二区在线观看日韩 | 亚洲欧美日韩东京热| 18禁在线播放成人免费| 成人永久免费在线观看视频| 18禁在线播放成人免费| 国产免费男女视频| 在线观看美女被高潮喷水网站 | 欧美激情久久久久久爽电影| 日本免费a在线| 午夜免费男女啪啪视频观看 | 国产成+人综合+亚洲专区| www.999成人在线观看| 久久久久精品国产欧美久久久| 日本 av在线| 色综合欧美亚洲国产小说| 日韩成人在线观看一区二区三区| 久久草成人影院| 国产野战对白在线观看| 很黄的视频免费| 嫩草影视91久久| 国产美女午夜福利| 神马国产精品三级电影在线观看| 欧美色欧美亚洲另类二区| 嫩草影视91久久| bbb黄色大片| 日韩人妻高清精品专区| x7x7x7水蜜桃| 2021天堂中文幕一二区在线观| 一级黄片播放器| 91字幕亚洲| 国产精品美女特级片免费视频播放器| 欧美+亚洲+日韩+国产| 亚洲成人久久爱视频| 老汉色∧v一级毛片| 午夜精品在线福利| 91久久精品电影网| 美女 人体艺术 gogo| 国产爱豆传媒在线观看| 99热6这里只有精品| 久久久久久九九精品二区国产| 国产淫片久久久久久久久 | 两个人的视频大全免费| 国产精品日韩av在线免费观看| 天堂√8在线中文| 两人在一起打扑克的视频| 老熟妇乱子伦视频在线观看| 哪里可以看免费的av片| 99久国产av精品| 999久久久精品免费观看国产| 超碰av人人做人人爽久久 | 免费在线观看日本一区| 少妇人妻一区二区三区视频| 亚洲av免费高清在线观看| 国产免费男女视频| 国产高清视频在线观看网站| 中文字幕精品亚洲无线码一区| 欧美日韩综合久久久久久 | 免费在线观看日本一区| 国产一区二区在线观看日韩 | 韩国av一区二区三区四区| 99久久精品热视频| 欧美黄色淫秽网站| 日本黄色视频三级网站网址| 1024手机看黄色片| 国产三级中文精品| 桃色一区二区三区在线观看| 成人三级黄色视频| 国产精品 欧美亚洲| 亚洲美女视频黄频| www.熟女人妻精品国产| 五月玫瑰六月丁香| 一区二区三区国产精品乱码| 我要搜黄色片| 国产黄片美女视频| 久久久久九九精品影院| 精品一区二区三区人妻视频| 国产成人aa在线观看| 欧美又色又爽又黄视频| 国产精品久久久久久久久免 | 国产成年人精品一区二区| 怎么达到女性高潮| 国产一区二区三区在线臀色熟女| 免费看光身美女| 日韩av在线大香蕉| 日本成人三级电影网站| 最近在线观看免费完整版| 日韩免费av在线播放| 很黄的视频免费| 久久国产乱子伦精品免费另类| 亚洲欧美精品综合久久99| 午夜a级毛片| av黄色大香蕉| 床上黄色一级片| 国产亚洲精品综合一区在线观看| 91在线精品国自产拍蜜月 | 欧美日韩一级在线毛片| 2021天堂中文幕一二区在线观| 成年女人毛片免费观看观看9| 亚洲精品成人久久久久久| 亚洲av电影不卡..在线观看| 美女黄网站色视频| 麻豆一二三区av精品| 国产精品精品国产色婷婷| 搞女人的毛片| 亚洲精品久久国产高清桃花| 一区二区三区高清视频在线| 欧美丝袜亚洲另类 | 又粗又爽又猛毛片免费看| 桃色一区二区三区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久伊人香网站| 亚洲,欧美精品.| 可以在线观看毛片的网站| 嫩草影院精品99| 国产探花极品一区二区| 在线观看午夜福利视频| 国产爱豆传媒在线观看| 少妇的丰满在线观看| 男人舔女人下体高潮全视频| 国产精品一区二区免费欧美| 国产精品三级大全| 久久精品国产亚洲av涩爱 | 精品人妻一区二区三区麻豆 | 黄色丝袜av网址大全| 黄片小视频在线播放| 国产欧美日韩精品一区二区| 国产欧美日韩精品亚洲av| 日本 av在线| 在线免费观看不下载黄p国产 | 免费在线观看成人毛片| 久久香蕉精品热| 亚洲av电影在线进入| 一二三四社区在线视频社区8| 一级黄片播放器| 久久国产精品影院| 90打野战视频偷拍视频| 观看免费一级毛片| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 免费av不卡在线播放| 人妻丰满熟妇av一区二区三区| 国产三级在线视频| 无人区码免费观看不卡| 麻豆久久精品国产亚洲av| 性色avwww在线观看| 成人国产综合亚洲| 日本免费a在线| 午夜免费男女啪啪视频观看 | 岛国视频午夜一区免费看| 日本在线视频免费播放| 精华霜和精华液先用哪个| 国内精品久久久久久久电影| 亚洲专区中文字幕在线| 亚洲欧美日韩高清专用| 999久久久精品免费观看国产| 俺也久久电影网| 久久国产精品影院| 老鸭窝网址在线观看| 亚洲色图av天堂| 成人午夜高清在线视频| 老司机深夜福利视频在线观看| 俄罗斯特黄特色一大片| 日韩欧美在线乱码| 国产亚洲欧美在线一区二区| 免费在线观看日本一区| 免费高清视频大片| 国产探花在线观看一区二区| 午夜免费观看网址| 亚洲第一电影网av| 99热只有精品国产| 日韩欧美在线乱码| 国产精品久久视频播放| 久久精品人妻少妇| 精品99又大又爽又粗少妇毛片 | avwww免费| 国产色婷婷99| 亚洲欧美一区二区三区黑人| 亚洲中文字幕一区二区三区有码在线看| 老司机午夜十八禁免费视频| 黄色女人牲交| 真人做人爱边吃奶动态| 99久久无色码亚洲精品果冻| 欧美一区二区精品小视频在线| 国产精品久久久久久久久免 | 国内毛片毛片毛片毛片毛片| 久久香蕉精品热| 国产中年淑女户外野战色| av欧美777| 可以在线观看毛片的网站| 欧美成人性av电影在线观看| 麻豆久久精品国产亚洲av| 久久精品国产99精品国产亚洲性色| 国产精品久久久人人做人人爽| 精品久久久久久久人妻蜜臀av| 69av精品久久久久久| 国产极品精品免费视频能看的| 色视频www国产| 国产私拍福利视频在线观看| 欧美乱码精品一区二区三区| a在线观看视频网站| av天堂在线播放| 尤物成人国产欧美一区二区三区| 国产一区二区亚洲精品在线观看| 成人国产综合亚洲| 亚洲成人久久爱视频| 一a级毛片在线观看| 亚洲欧美日韩高清在线视频| 香蕉丝袜av| 精品国产超薄肉色丝袜足j| 亚洲一区高清亚洲精品| 97超视频在线观看视频| 欧美乱色亚洲激情| tocl精华| 国产不卡一卡二| 一级毛片女人18水好多| 欧美激情在线99| 久久久久久人人人人人| 亚洲不卡免费看| 亚洲精品粉嫩美女一区| 在线观看舔阴道视频| 叶爱在线成人免费视频播放| 欧美最新免费一区二区三区 | 99久国产av精品| www.色视频.com| 一区二区三区国产精品乱码| 午夜亚洲福利在线播放| 两个人的视频大全免费| 精品久久久久久成人av| 久久久国产精品麻豆| 一级黄色大片毛片| 亚洲人成伊人成综合网2020| 国产精品,欧美在线| 欧美日本视频| 欧美成人一区二区免费高清观看| 国产三级中文精品| 国产综合懂色| 天美传媒精品一区二区| 我的老师免费观看完整版| 欧美极品一区二区三区四区| 亚洲内射少妇av| 国产乱人伦免费视频| 一级黄片播放器| 国产精品,欧美在线| 内射极品少妇av片p| 亚洲av免费高清在线观看| 国产真人三级小视频在线观看| av专区在线播放| 久久天躁狠狠躁夜夜2o2o| 日本五十路高清| 日本一本二区三区精品| 岛国在线免费视频观看| 91字幕亚洲| 天堂影院成人在线观看| 欧美日韩乱码在线| 国产高潮美女av| svipshipincom国产片| or卡值多少钱| 精品一区二区三区视频在线观看免费| 欧美一级毛片孕妇| 哪里可以看免费的av片| 黄色成人免费大全| 亚洲一区高清亚洲精品| 99在线人妻在线中文字幕| 波野结衣二区三区在线 | 亚洲人成网站在线播放欧美日韩| 性欧美人与动物交配| 国产成人福利小说| 日韩国内少妇激情av| 日韩有码中文字幕| 久久久久久久久大av| 久久精品国产亚洲av涩爱 | 18+在线观看网站| 免费观看的影片在线观看| 国产一区二区在线观看日韩 | 一二三四社区在线视频社区8| 免费无遮挡裸体视频| 99久久精品国产亚洲精品| www.999成人在线观看| 国语自产精品视频在线第100页| av片东京热男人的天堂| 老汉色av国产亚洲站长工具| 国产精品98久久久久久宅男小说| 最新在线观看一区二区三区| 国产精品一区二区三区四区久久| 精品福利观看| 欧美3d第一页| 有码 亚洲区| 国产老妇女一区| 欧美成人免费av一区二区三区| 综合色av麻豆| 亚洲国产高清在线一区二区三| 校园春色视频在线观看|