• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      三維軸對(duì)稱駐點(diǎn)流系統(tǒng)的一些研究

      2011-06-29 06:13:28張明捷黨龍飛徐艷芝
      關(guān)鍵詞:龍飛駐點(diǎn)工程學(xué)院

      張明捷, 黨龍飛, 徐艷芝

      (成都信息工程學(xué)院數(shù)學(xué)學(xué)院,四川成都610225)

      1 Introduction

      In this paper,we are concerned with the following third order differential equations arising in the boundary layer theory

      with boundary conditions

      Which has been used to describe the 3D axisymmetric inviscid stagnation flow[1,2].A solution of(1)~(3)is called a similarity solution.The two-dimensional case,λ=g=0,was solved by Hiemenz[3].The axisymmetric stagnation flow towards a plate,λ=1 and g=f,was solved by Homann[4].Howarth[5]studied the case 0<λ<1 which can be applied to the stagnation region of an ellipsoid.Davey[6]investigated the stagnation region near a saddle point(-1<λ<0).For λ≤-1 the vorticity generated is not confined in the boundary layer and the existence of solutions cannot be shown[2].Up to now,there is a little study on the case of λ≤-1.

      Utilizing the integral methods[7,8],Du Hauang and Zhang[9]presented a system of two integral equations on the case of λ<0 and obtained some properties and a non-existence result of(1)~ (3)on the case of λ<-4.

      In this paper,we shall study(1)~ (3)for the case of λ∈ R and λ≠0,we shall obtain further results on(1)~(3)and a new non-existence result on the case of λ≤-1.

      2 Positive solutions of a system of two integral equations

      In[9],Du,Hauang,Zhang presented a system of two integral equations

      Where G0,1(t,s)denotes the Green function for u″(t)=0 with u(0)=0 and u(1)=0 defined by

      They obtained the following results:

      (i)For λ<0(1)~(3)has a solution in∑if and only if(4)~(5)has a positive solution

      (ii)For λ<-4(1)~(3)has no solution in ∑.

      In this paper,let

      and

      Theorem1 If(λ,z,w)∈(-∞,+∞)×Q is a solution of(4)~(5),then

      (iii)w(0)=0,w(1)=1 and w(t)≥-1 for t∈[0,1]if λ<0 and w(t)≤1 for t∈[0,1]if λ>0.

      (i)Firstly,we prove z(t)=0.

      If z(1)≠0,then z(t)≠0,t∈[0,1].

      By the continuity of z(t),then m=min{z(t),t∈[0,1]}>0.From this and λ>0,we obtain by(4)

      This implies

      a contradiction.Hence,(i)holds.

      Since z(t)>0 for t∈(0,1),we have

      Integrating this inequality from 0 to ξ,we have

      From this we obtain

      Letting ξ→1-in the last inequality,we have,which contradicts∞.Thus,(ii)holds.

      (iii)Letting t=0 and t=1 in(5),we have w(0)=0 and w(1)=1.

      If λ>0 and there exist t0∈[0,1]such that w(t0)>1.Since w(0)=0,and w(1)=1,there must be exist t*∈(0,1)such that w(t*)=max{w(t):t∈[0,1]}and w(t*)>1.

      By(5),we have

      Reamrk1 Since we do not assume λ<0 and Q ?Q*,hence Theorem 1 in[9]is improved.

      Utilizing the solutions of(z,w)∈Q*,we may construct the solutions of(1)~(3)and then the use of(4)~(5)is expanded.

      Theorem2 If(z,w)∈Q*is a solution of(4)~(5),then(1)~(3)has a solution(f,g).

      Proof.Let(z,w)∈Q*be a solution of(4)~(5).By Theorem 1(ii),we have

      Let

      Then η(t)is strictly increasing on[0,1)and

      Let t=h(η)be the inverse function to η=η(t),we define the function

      Then

      and

      From(6),we have

      Differentiating(7)with respect to η,we have

      Then f″(η)>0 for 0≤η<+∞.

      Differentiating(8)with respect to η,we have

      Differentiating(4)with respect to t,we have

      By setting s=f′(α)and utilizing t=f′(η)and(8),we have

      By(8)~(11),we have

      Combing(10)and(11),we obtain

      This completes the proof.

      3 A non-existence result on(1)~(3)

      Let

      Lemma1 Let λ<0.If(f,g)∈Γis a solution of(1)~(3),then g″(∞)=0.

      Proof.Since g′(+∞)=1,we have

      Since(1)~(3),we have g?(0)=-λ,and λ<0.then g?(0)>0 and g″(η)>0.we have ?η*,such that g″(η)is increasing on[0,η*].(12)implies that there exists η0∈[η*,+∞)such that g″(η0)<g″(η*).Then we prove that g″(η)is decreasing on(η0,+∞).If there must exist η1,η2∈[ η0,+∞)with η1<η2such that g″(η1)<g″(η2).So let ?η∈[ η*,η2]such that g″(?η)=min{g″(η):η∈[ η*,η2]}.This implies g?(?η)=0 and g(4)(?η)≥0.

      Differentiating(2)with η,we have

      then

      By(f,g)∈Γand λ<0,we have g(4)(?η)≤0,a contradiction.Hence g″(η)is decreasing on[ η0,+∞)and thenexists.By(12),we obtain g″(∞)=0.

      Theorem3 If λ≤-1,then(1)~ (3)has no solution in Γ.

      Proof.The proof is by a contradiction.If(1)~ (3)has a solution(f,g)in Γ,then g″>0.

      Let η:=η(t)=(g′)-1(t)for t∈[0,1)be the inverse function to t=g′(η):[0,∞)→[0,1).It follows that g′is strictly increasing with[0,+∞)and η(t)=(g′)-1(t):[0,1)→[0,∞)with(g′)-1(0)=0

      Let x(t)=g″(η)>0 for t∈[0,1),by Lemma 1,x(1)=.This implies that x(t)>0 for t∈[0,1)and x is continuous on[0,1).By Lemma 1,we see that x is continuous from the left at 1.Hence,we have x(t)∈C[0,1]and x(1)=0.

      Using the Chain Rule to x(t)=g″(η),we obtainand by the Inverse Function Theorem,we have

      This,together with g′(η)=t,implies

      Integrating the last equality from 0 to t implies

      Let y(t)=f′(η)for t∈[0,1),y(1)=1,then y(t)∈ C[0,1)and 0≤y(t)≤1.Notice thatwe have

      Substituting g,g′,g″,g?and f into(2)implies

      Integrating(13)from t to 1,we have

      By x(1)=0,then

      we have

      Reamrk2 Theorem 12 improves non-existence result of(1)~ (3)in[6]from λ<-1 to λ≤-1.

      [1]C Y Wang.Axisymmetric stagnation flow on a cylinder[J].Quart.Appl.Math.1974,32:207-213.

      [2]C Y Wang.Similarity stagnation point solutions of the Navier-Stokes equations-review and extension[J].European Journal of Mechanics B/Fluids,2008,27:678-683.

      [3]K Hiemenz.Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder[J].Dinglers Polytech.J,1911,326:321-324.

      [4]F Homann.Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel[J].Z.Angew.Math.Mech.,1936,16:153-164.

      [5]L Howarth.The boundary layer in three dimensional flow-Part∏.The flow near a stagnation point,Philos[J].Mag.Ser.,1951,742:1433-1440.

      [6]A Davey.A boundary layer flow at a saddle point of attachment[J].J.Fluid.Mech.,1961,10:593-610.

      [7]G C Yang.Existence of solutions of laminar boundary layer equations with decelerating external flows[J].Nonlinear Analysis,2010,72:2063-2075.

      [8]K Q Lan,G C Yang.Positive solutions of the Falker-Skan equation arising in boundary layer theory[J].Canad.Math.Bull.,2008,51(3):386-398.

      [9]C Du,S J Huang,M J Zhang.On 3D axisymmetric inviscid stagnation flow related to Navier-Stokes equations[J].Nonlinear Analysis Form,2011,16:67-75.

      猜你喜歡
      龍飛駐點(diǎn)工程學(xué)院
      福建工程學(xué)院
      福建工程學(xué)院
      奇妙的大自然
      Orthonormality of Volkov Solutions and the Sufficient Condition?
      福建工程學(xué)院
      翼龍飛飛飛
      基于游人游賞行為的留園駐點(diǎn)分布規(guī)律研究
      張強(qiáng)、肖龍飛招貼作品
      福建工程學(xué)院
      利用遠(yuǎn)教站點(diǎn),落實(shí)駐點(diǎn)干部帶學(xué)
      密山市| 永新县| 乌拉特后旗| 仲巴县| 博湖县| 米林县| 万安县| 台山市| 尚志市| 抚顺县| 招远市| 铜陵市| 杨浦区| 盖州市| 忻州市| 九龙坡区| 自治县| 分宜县| 靖州| 东源县| 五家渠市| 西青区| 余庆县| 婺源县| 枣强县| 南华县| 大方县| 沅江市| 长沙市| 长子县| 黄龙县| 盖州市| 无锡市| 城固县| 定兴县| 江源县| 林周县| 孝昌县| 白城市| 广西| 宁德市|