秦喜梅, 錢 云
(巢湖學(xué)院數(shù)學(xué)系,安徽巢湖 238000)
雙連續(xù)N次積分C-半群的逼近定理
秦喜梅, 錢 云
(巢湖學(xué)院數(shù)學(xué)系,安徽巢湖 238000)
在C0半群和雙連續(xù)半群逼近定理的啟發(fā)下,討論了雙連續(xù)n次積分C-半群的逼近定理.
雙連續(xù);n次積分C-半群;雙等度連續(xù);生成元
近年來對有界連續(xù)(或一致連續(xù))函數(shù)空間上半群的研究,引起了人們對Banach空間上非強連續(xù)半群的研究.Kǔhnemund在Banach空間上另外附加一個比范數(shù)拓撲粗的局部凸拓撲,使得半群在這個局部凸拓撲下強連續(xù),由此提出了雙連續(xù)半群的概念,為半群理論的研究開辟了新的研究領(lǐng)域,說明了雙連續(xù)半群理論有很好的前景和研究價值.
本文討論的雙連續(xù)n次積分C-半群所在的空間要滿足:
設(shè)(X,‖·‖)是Banach空間,其共軛空間是X′,τ是X上的一個局部凸拓撲并具有如下性質(zhì):
(i)空間(X,τ)在‖·‖-有界集上序列完備,即每個‖·‖-有界的τ-柯西列在(X,τ)中收斂;
(ii)拓撲τ比‖·‖-拓撲粗且τ是Hausdorff拓撲;
(iii)空間(X,‖·‖)中的范數(shù)可由空間(X,τ)′定義,即對每個x∈X,有
為了方便,記Φ={φ∈(X,τ)′∶‖φ‖(X,‖·‖)′≤1}.Pτ表示X上的局部凸τ拓撲τ所對應(yīng)的半范數(shù)族.由約定,不失一般性,假定p(x)≤‖x‖,?x∈X,p∈Pτ.
如不特別說明,本文中的積分均是在τ-拓撲意義下的積分,算子C∈B(X)為單射.
下面給出雙連續(xù)n次積分C-半群的定義.以下記(M,ω,C)表示空間X上的指數(shù)有界的雙連續(xù)n次分C-半群全體.
一般情形可以由歸納法證明.
(ii)由(i)易證.
(iii)由(i)知對任意x∈D(An+1),有
對上式兩端關(guān)于t再求一次導(dǎo)數(shù),得
[1]Albanese A,Mangino E.Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups[J].J.Math.Anal.Appl.,2004,289(2):477-492.
[2]Kǔhnemund F.A Hille-Yosida theorem for bi-continuous semigroups[J].Semigroup Forum,2003,67(2):205-225.
[3]Xiao Tijun,Liang Jin.Approximation of Lapace transforms and integrated semigroups[J].Joural of Function Analysis,2000,172(1):202-220.
[4]Liang Jin,Xiao Tijun.Higher order abstract Cauchy problem:their existence and uniqueness families[J].J.London Math.Soc.,2003,67(1):149-164.
[5]Liang Jin,Xiao Tijun,Li Fang.Multiplicative perturbations of localC-regularized semigroups[J].Semigroup Forum,2006,72(3):375-386.
[6]Sun Guozheng.Representation theorem for mildC-existence families[J].Northeast Math.,1999,15(4):469-472.
[7]Delaubenfels R.,Sun Guozheng,Wang Shengwang.Regularized semigroups,existence families and the abstract Cauchy problem[J].Differential Integral Equations,1995,8(6):1477-1496.
[8]Lizama C.On the convergence and approximation of integrated semigroups[J].Math.Anal.Appl.,1994,181(1):89-103.
[9]Zheng Quan.Perturbation and approximations of integratedC-semigroups[J].Acta.Math.Sinica,New Series,1993,9(3):252-260.
[10]秦喜梅,葛國菊.指數(shù)有界的雙連續(xù)n次積分C-半群及其生成逼近定理[J].大學(xué)數(shù)學(xué),2008,24(3):104-111.
The Approximation Theorem for Bi-ContinuousN-times IntegratedC-Semigroups
QINXi-mei,QIANYun
(Department of Mathematics,Chaohu College,Chaohu Anhui 238000,China)
Inspired by the approximation theorems forC0semigroups and bi-continuous semigroups,we discuss the approximation theorems for bi-continuousntimes integratedC-semigroups.
bi-continuous;Ntimes integratedC-semigroup;bi-equicontinuous;generator
O177
A
1672-1454(2011)04-0103-05
2008-09-09
安徽省教育廳自然科學(xué)研究項目(KJ2010B127;KJ2009B097)