蔣廣義, 鄭傳宜, 余 艦, 李軍亮, 許新科, 鄭眉光, 李方成△
(1中山大學孫逸仙紀念醫(yī)院神經(jīng)外科,廣東 廣州 510120;2海南醫(yī)學院附屬醫(yī)院神經(jīng)外科,海南 海口 570125)
大鼠GLUT3啟動子的克隆及其缺糖調(diào)控活性的測定*
蔣廣義1, 鄭傳宜2, 余 艦1, 李軍亮1, 許新科1, 鄭眉光1, 李方成1△
(1中山大學孫逸仙紀念醫(yī)院神經(jīng)外科,廣東 廣州 510120;2海南醫(yī)學院附屬醫(yī)院神經(jīng)外科,海南 ???570125)
目的構(gòu)建葡萄糖轉(zhuǎn)運體3(GLUT3)啟動子的報告基因,并在正常和缺糖情況下檢測其轉(zhuǎn)錄活性。方法使用生物信息學軟件預測了GLUT3的啟動子序列,長度1 292 bp,包含第1個外顯子,通過PCR及雙酶切方法,從大鼠全血基因組DNA中獲得GLUT3基因編碼序列,包含GLUT3啟動子序列,然后克隆到報告基因pGL3-Basic載體上,構(gòu)建GLUT3啟動子的報告基因;用脂質(zhì)體轉(zhuǎn)染法將pGL3-GLUT3與胸腺嘧啶脫氧核苷激酶(pRL-TK)共轉(zhuǎn)染入PC12細胞中,以pRL-TK載體作內(nèi)參照,分別給予正常和缺糖培養(yǎng),采用雙螢光素酶報告系統(tǒng)評估GLUT3啟動子的活性。結(jié)果經(jīng)PCR方法擴增出GLUT3啟動子序列,測序與GenBank序列一致;轉(zhuǎn)染后檢測顯示,該pGL3-GLUT3明顯具有轉(zhuǎn)錄活性,而且在缺糖24 h情況下其雙螢光素酶活性有明顯升高。結(jié)論成功構(gòu)建出GLUT3啟動子報告基因,pGL3-GLUT3表現(xiàn)出很好的缺糖誘導活性,缺糖24 h是研究pGL3-GLUT3在缺糖情況下轉(zhuǎn)錄調(diào)控很有意義的時間點。
基因,GLUT3; 啟動子; 缺糖; 熒光素酶報告基因; 轉(zhuǎn)錄調(diào)控
葡萄糖轉(zhuǎn)運體3(glucose transporter type 3,GLUT3)是葡萄糖轉(zhuǎn)運體家族中的一員,主要表達在神經(jīng)細胞上,對葡萄糖分子有高親合性,是神經(jīng)細胞主要的葡萄糖轉(zhuǎn)運體。它主要負責把葡萄糖從細胞間質(zhì)轉(zhuǎn)運入神經(jīng)細胞內(nèi)[1,2]。對于以葡萄糖為主要能源底物的神經(jīng)元而言,GLUT3就像一個總電閘,其功能的重要性是不言而喻的。GLUT3的表達受多種因素的調(diào)控,缺氧缺糖、局限性腦缺血、癲癇發(fā)作和慢性低血糖均可以引起GLUT3蛋白的增高,通過GLUT3蛋白的合成調(diào)節(jié)而增加葡萄糖轉(zhuǎn)運,進而滿足細胞的有氧氧化[3-6]。不過參與這種調(diào)節(jié)的轉(zhuǎn)錄機制還不是十分明確。我們應用生物信息學方法對大鼠GLUT3基因5’側(cè)翼區(qū)序列進行分析,推測大鼠GLUT3基因啟動子可能的序列。PCR擴增啟動子片段,構(gòu)建成雙螢光素酶報告基因載體pGL3-GLUT3,并在PC12細胞內(nèi)檢測其在正常培養(yǎng)和缺糖情況下的活性表達。PC12細胞是大鼠腎上腺嗜鉻細胞瘤細胞,與神經(jīng)元有很大相似性[7]。本實驗在研究神經(jīng)元之前,先研究缺糖狀態(tài)下PC12細胞GLUT3的激活轉(zhuǎn)錄調(diào)控機制。
1材料
主要試劑 SD大鼠(中山大學醫(yī)學院實驗動物中心);基因組DNA提取試劑盒(上海申能博彩公司);PCR反應試劑盒、DNA快速純化回收試劑盒、內(nèi)切酶KpnI、內(nèi)切酶XhoI及T4 DNA連接酶(TaKaRa);脫氧核糖核酸酶I、高純度無內(nèi)毒素質(zhì)粒提取試劑盒(Tiangen);pGL3-Basic載體,內(nèi)參照pRL-TK(胸腺嘧啶脫氧核苷激酶,thymidine kinase)以及雙螢光素酶報告基因檢測系統(tǒng)(Promega);菌株DH5α、高糖(4 500 mg/L)、低糖(1 000 mg/L)、無糖(0 mg/L)DMEM培養(yǎng)基(廣州威佳公司);胎牛血清(Gibco);脂質(zhì)體轉(zhuǎn)染試劑Lipofectamine 2000和無血清培養(yǎng)基Opti-MEM(Invitrogen);BD Monolight 3010 luminometer (BD Biosciences)。
2GLUT3啟動子報告基因的構(gòu)建
根據(jù)大鼠GLUT3基因序列(NCBI RefSeq: NC-005103.2 / 159210116-159221169), 取其mRNA序列(NCBI GenBank: NM-017102.2)第1外顯子上游1 138 bp及下游154 bp共1 292 bp為GLUT3全長啟動子所在區(qū)域,設計引物進行PCR,上游引物5’-TACGGTACCACATGCTCAGCTGCTGCTCCAC-3’,下游引物5’-TAGCTCGAGTACCGACTGCTGGAGCTG ATCT- 3’,其中GGTACC和CTCGAG分別是內(nèi)切酶KpnI和XhoI的識別位點。以基因組DNA提取試劑盒提取的大鼠基因組DNA為模板,擴增出大鼠GLUT3基因5’側(cè)翼區(qū)。PCR擴增參數(shù)為:94 ℃預變性5 min, 94 ℃ 30 s,51 ℃ 30 s,72 ℃ 90 s,30個循環(huán)。選擇pGL3-Basic作為克隆表達載體,其結(jié)構(gòu)圖譜見圖1。PCR反應產(chǎn)物和pGL3-Basic 經(jīng)KpnI/XhoI雙酶切,切膠回收,連接后轉(zhuǎn)化大腸桿菌DH5α感受態(tài),陽性菌抽提質(zhì)粒,雙酶切篩選連入大小正確外源基因的轉(zhuǎn)化子,送測序。引物合成及測序由廣州Invitrogen公司完成。
Figure 1. The structure map of pGL-Basic.
3細胞培養(yǎng)
PC12細胞為本實驗室長期保存,用高糖DMEM培養(yǎng)基培養(yǎng),內(nèi)含10%胎牛血清,未含抗生素,種植于培養(yǎng)瓶中,37 ℃、5%CO2濕化培養(yǎng)箱培養(yǎng),倒置顯微鏡下觀察。
4GLUT3啟動子報告基因的轉(zhuǎn)染
按照Lipofectamine 2000說明書進行。PC12細胞在轉(zhuǎn)染前1 d按照1×107/L密度接種到96孔無菌培養(yǎng)板中,每孔100 μL。次日觀察細胞,狀態(tài)良好,細胞融合度達60%~70%時,進行分組轉(zhuǎn)染:實驗組: pGL3-GLUT3+pRL-TK;對照組:pGL3-Basic+pRL-TK,其中pRL-TK是內(nèi)對照,每次實驗設置3個復孔,實驗重復3次。每孔0.2 μg質(zhì)粒和0.04 μg pRL-TK,用Opti-MEM無血清培養(yǎng)基稀釋到25 μL;取0.5 μL的Lipofectamine 2000用Opti-MEM稀釋到25 μL,各自混勻5 min后再混勻兩者,室溫孵化20 min,即為轉(zhuǎn)染復合物。在此期間使用PBS或Opti-MEM洗滌細胞2次,加入50 μL Opti-MEM,孵化結(jié)束后按每孔50 μL轉(zhuǎn)染復合物,分組加入到96孔板的每一孔中,輕輕搖勻。37 ℃、5%CO2細胞濕化培養(yǎng)箱內(nèi)培養(yǎng),6 h后更換高糖DMEM培養(yǎng)基。
5正常和缺糖處理
5.1對實驗組和對照組的轉(zhuǎn)染細胞處理 更換新的正常高糖DMEM培養(yǎng)基培養(yǎng)24 h后裂解細胞,進行雙螢光素酶檢測。
5.2對轉(zhuǎn)染pGL3-GLUT3實驗組的PC12細胞處理 對生長狀態(tài)良好的轉(zhuǎn)染細胞分別給予高糖DMEM(4 500 mg/L)、低糖DMEM(1 000 mg/L)、無糖DMEM(0 mg/L)培養(yǎng),均含10%胎牛血清,每次實驗設置3個復孔,實驗重復3次,37 ℃、5%CO2濕化培養(yǎng)箱培養(yǎng),缺糖時段為10 min、15 min、30 min、1 h、3 h、6 h、12 h、24 h、48 h和72 h。48 h后換同樣處理培養(yǎng)基1次,減少干擾,分段裂解細胞,進行雙螢光素酶檢測。
6啟動子活性檢測
按照Promega的雙螢光素酶報告基因檢測系統(tǒng)操作手冊進行細胞裂解和螢光檢測,螢光檢測在Monolight 3010 luminometer 上進行,檢測時間為10 s,結(jié)果以X=螢火蟲螢光素酶活性/海腎素螢光素酶活性記錄。
7統(tǒng)計學處理
1GLUT3啟動子報告基因的克隆
以大鼠全血基因組DNA為模板,PCR擴增出1 292 bp,見圖2,挑取單一菌落搖菌,取菌液作為模板做PCR,結(jié)果顯示菌落中含有目的片段的DNA序列。pGL3-Basic 經(jīng)KpnI/XhoI雙酶切連接,轉(zhuǎn)化感受態(tài)DH5α,擴增后PCR。電泳提取陽性菌內(nèi)質(zhì)粒,經(jīng)雙酶切后,證實所提取得質(zhì)粒內(nèi)已經(jīng)接入預計大小的外源片段,見圖3。
Figure 2. GLUT3 promoter PCR product (Lane 1).M: DNA marker DL2000.
2雙螢光素酶報告基因檢測
在正常高糖培養(yǎng)基培養(yǎng)下轉(zhuǎn)染24 h后檢測螢光素酶的表達水平,轉(zhuǎn)染有pGL3-GLUT3的PC12細胞螢光素酶的表達顯著增高,是轉(zhuǎn)染空載體pGL3-Basic 活性的5.14倍,見圖4。
正常、低糖、無糖處理,分別在以上10個時段,檢測雙螢光素酶活性的表達。缺糖時間0~3 h雙螢光素酶活性表達變化不明顯, 在低糖無糖情況下3~24 h階段活性變化逐漸增強,24 h表達變化達到最高水平,無糖和低糖的GLUT3活性分別是正常高糖活性的1.72和3.10倍,48和72 h活性均有明顯升高,見圖5。
Figure 3. Electropherogram of GLUT3 promoter digested by dual restriction enzymes. M: DNA marker DL2000; Lane 1: GLUT3 promoter digested by Kpn I/Xho I.
Figure 4. The dual luciferase activity of pGL3-GLUT3. PC12 cells were transiently transfected with pGL3-Basic and pGL3-GLUT3, and pGL-TK served as internal control. After 24 h, the dual luciferase activity was examined±s.n=3.*Plt;0.05 vs pGL-Basic group.
Figure 5. The dual luciferase activity of GLUT3 promoter in hyperglucose,hypoglucose and glucose-free DMEM. PC12 cells were transiently transfected with pGL3-Basic and pGL3-GLUT3, and pGL-TK served as internal control. After 24 h, the medium was changed to hyperglucose,hypoglucose and glucose-free DMEM incubation for additional 10 time periods before measurement of dual luciferase activity±s.n=3.*Plt;0.05 vs hyperglucose(normal).
缺血、低糖血癥、貧血、惡性腫瘤內(nèi)部腫瘤缺血缺氧都會導致細胞處于低糖狀態(tài),會不同程度地影響GLUT3的表達,另外其它不同因素也對GLUT3產(chǎn)生影響,比如:雌激素、K+濃度、N-甲基-D-天冬氨酸受體(N-methyl-D-aspartic acid receptor, NMDA)。最近研究顯示:神經(jīng)營養(yǎng)因子(neuro-trophic factor,NF)、一氧化氮(NO)、生酮膳食、β-淀粉樣肽(amyloid beta-peptide,Aβ)、3-硝基丙酸(3-nitropropionic acid, 3-NPA)等可以使GLUT3 mRNA和蛋白水平增高[8-11]。
本研究中,在正常高糖培養(yǎng)基培養(yǎng)下轉(zhuǎn)染24 h后檢測熒光素酶的表達水平,與轉(zhuǎn)染空載體pGL3-Basic相比,轉(zhuǎn)染有pGL3-GLUT3的PC12細胞熒光素酶的表達顯著增高, 從而證實了pGL3-GLUT3真核表達載體構(gòu)建成功,pGL3-GLUT3內(nèi)連入的片段帶有啟動子功能。
從缺糖10個時段結(jié)果看出,缺糖0~3 h雙熒光素酶活性表達變化不明顯,考慮缺糖是比較緩慢的干預措施,會誘發(fā)多種自身調(diào)節(jié)機制,可以調(diào)動應激、糖酵解和糖異生等機制來滿足對能量的需求。在缺糖3~24 h啟動子活性變化逐漸增強,24 h表達達到最高水平,無糖的變化活性強于低糖的,考慮缺糖開始激活GLUT3的轉(zhuǎn)錄調(diào)控,誘導GLUT3基因的高表達。另外動物實驗缺血缺氧/再灌注也支持GLUT3在mRNA和蛋白水平24 h的表達最明顯[12],所以推斷,24 h是研究GLUT3在缺糖情況下活性表達十分有意義的時點。
文獻表明GLUT3轉(zhuǎn)錄調(diào)控受多種基因調(diào)節(jié),在神經(jīng)元細胞、惡性腫瘤細胞、單核細胞中GLUT3對缺氧的反應是通過HIF進行調(diào)節(jié)的[13];在肌肉細胞中胰島素樣生長因子-1(insulin-like growth factor-1,IGF-1)通過轉(zhuǎn)錄特異性因子-1(transcription specificity factor 1, Sp-1)調(diào)控GLUT3的表達[14];在神經(jīng)細胞分化過程中SP1/SP3可能和小鼠Y盒蛋白-1(mouse Y box protein, MSY-1)一起參與調(diào)節(jié)GLUT3的轉(zhuǎn)錄活性激活[15];在神經(jīng)傳輸過程中出現(xiàn)底物缺乏的情況時,磷酸化的反應元件結(jié)合蛋白(cAMP response element-binding protein, CREBP)可能調(diào)節(jié)著GLUT3的表達[16]。
本實驗通過生物信息軟件預測GLUT3啟動子序列,成功地擴增出了包含有第1外顯子及其5’側(cè)翼區(qū)的序列,克隆入pGL3-Basic中,構(gòu)建出pGL3-GLUT3報告基因載體,并轉(zhuǎn)染入PC12細胞后,經(jīng)雙熒光素酶報告基因檢測系統(tǒng)檢測,證明其轉(zhuǎn)錄活性。在缺糖狀態(tài)下誘發(fā)GLUT3活性表達,了解缺糖時間與GLUT3活性的關聯(lián)。該研究為更多地了解GLUT3在缺糖和其它因素下的轉(zhuǎn)錄調(diào)控機制奠定了基礎。
[1] Simpson IA, Carruthers A,Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters[J]. J Cereb Blood Flow Metab, 2007, 27(11): 1766-1791.
[2] Gómez O, Ballester-Lurbe B, Poch E,et al. Developmental regulation of glucose transportersGLUT3, GLUT4 and GLUT8 in the mouse cerebellar cortex[J]. J Anat, 2010, 217(5): 616-623.
[3] Fung C, Evans E, Shin D, et al. Hypoxic-ischemic brain injury exacerbates neuronal apoptosis and precipitates spontaneous seizures in glucose transporter isoform 3 heterozygous null mice[J]. J Neurosci Res, 2010, 88(15): 3386-3398.
[4] Espinoza-Rojo M, Iturralde-Rodríguez KI, Chánez-Cárdenas ME, et al. Glucose transporters regulation on ischemic brain: possible role as therapeutic target[J]. Cent Nerv Syst Agents Med Chem, 2010, 10(4): 317-325.
[5] Ganguly A, McKnight RA, Raychaudhuri S, et al. Glucose transporter isoform-3 mutations cause early pregnancy loss and fetal growth restriction[J]. Am J Physiol Endocrinol Metab, 2007, 292(5):E1241-E1255.
[6] Fung C, Evans E, Shin D, et al. Hypoxic-ischemic brain injury exacerbates neuronal apoptosis and precipitates spontaneous seizures in glucose transporter isoform 3 heterozygous null mice[J]. J Neurosci Res, 2010, 88(15): 3386-3398.
[7] Thoidis G, Kupriyanova T, Cunningham JM, et al. Glucose transporterGLUT3 is targeted to secretory vesicles in neurons and PC12 cells[J]. J Biol Chem, 1999, 274(20): 14062-14066.
[8] Ayala FR, Rocha RM, Carvalho KC, et al. GLUT1 andGLUT3 as potential prognostic markers for oral squamous cell carcinoma[J]. Molecules, 2010, 15(4): 2374-2387.
[9] Tsukioka M, Matsumoto Y, Noriyuki M, et al. Expression of glucose transporters in epithelial ovarian carcinoma: correlation with clinical characteristics and tumor angiogenesis[J]. Oncol Rep, 2007, 18(2): 361-367.
[10]Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol, 2005, 202(3): 654-662.
[11]陳為安,楊得獎,屈 洋,等. 3-硝基丙酸預處理對腦缺血耐受模型GLUT1和GLUT3表達的影響[J]. 中國病理生理雜志,2010,26(11):2212-2216.
[12]李方成,陶宗玉,劉安民,等.葡萄糖轉(zhuǎn)運體3在腦缺血/再灌注后缺血半影區(qū)表達的變化及意義[J].中國病理生理雜志,2004,20(12):2276-2279.
[13]Simpson IA, Dwyer D, Malide D, et al. The facilitative glucose transporterGLUT3: 20 years of distinction[J]. Am J Physiol Endocrinol Metab, 2008, 295(2): E242-E253.
[14]Copland JA, Pardini AW, Wood TG,et al. IGF-1 controlsGLUT3 expression in muscle via the transcriptional factor Sp1[J]. Biochim Biophys Acta, 2007, 1769(11-12): 631-640.
[15]Rajakumar A, Thamotharan S, Raychaudhuri N, et al. Trans-activators regulating neuronal glucose transporter isoform-3 gene expression in mammalian neurons[J]. J Biol Chem, 2004, 279(25): 26768-26779.
[16]Weisová P, Concannon CG, Devocelle M, et al. Regulation of glucose transporter 3 surface expression by the AMP-activated protein kinase mediates tolerance to glutamate excitation in neurons[J]. J Neurosci, 2009, 29(9): 2997-3008.
MicroRNA-122通過調(diào)節(jié)多重耐藥基因表達和誘導細胞周期阻滯
增強肝癌細胞對阿霉素與長春新堿的敏感性
肝細胞癌具有血管增生過多,快速增長且對傳統(tǒng)化療敏感性低的特點。MicroRNA-122,又稱miR-122,是具有肝臟特異性的微小RNA,在肝癌細胞中的表達往往處于低水平。研究發(fā)現(xiàn),用腺病毒載體轉(zhuǎn)染肝癌細胞致miR-122高表達,可使肝癌細胞改變對阿霉素和長春堿的敏感性。對細胞周期分布的分析提示,miR-122的增殖抑制作用與G2/M期細胞數(shù)量增加有關。在miR-122高水平的情況下,阿霉素、長春堿綜合治療結(jié)果使處于G2/M期的肝癌細胞大量積累。進一步研究說明miR-122高表達可下調(diào)多重耐藥基因MDR-1、GST- 和MRP,同時下調(diào)抗凋亡基因bcl-w和細胞周期相關基因cyclin B1,最終改變肝癌細胞對化療藥物的敏感性??傊?,用腺病毒載體轉(zhuǎn)染miR-122聯(lián)合化療藥物可誘導肝癌細胞在G2/M期停滯,從而抑制細胞增長,其部分機制是促使腫瘤細胞多重耐藥相關基因和cyclin B1表達下調(diào)。
Cancer Lett, 2011, 310(2):160-169(李 盼)
CloningofratGLUT3promoteranddeterminationofitsactivityunderglucosedeprivation
JIANG Guang-yi1, ZHENG Chuan-yi2, YU Jian1,LI Jun-liang1,XU Xin-ke1, ZHENG Mei-guang1, LI Fang-cheng1
(1DepartmentofNeurosurgery,SunYat-senMemorialHospital,SunYat-senUniversity,Guangzhou510120,China;2DepartmentofNeurosurgery,TheAffiliatedHospital,HainanMedicalCollege,Haikou570125,China.E-mail:sjwkli@163.com)
AIM: To construct the luciferase reporter gene vector containing the promoter of rat glucose transporter type 3 (GLUT3) gene and to identify the transcriptional activity of the promoter in normal and low glucose conditions.METHODSThe promoter sequence ofGLUT3 gene was predicted by the software of bioinformatics, which has 1 292 bp in length and contains the first exon. The DNA of the promoter was acquired from rat whole blood by PCR and dual restriction enzyme digestion, and was cloned into luciferase reporter vector pGL3-Basic. The reporter gene vector pGL3-GLUT3 containingGLUT3 promoter was cotransfected with pRL-TK (thymidine kinase) vector (used as inner control) into PC12 cells. Relative light unite (RLU) was measured by dual luciferase report gene assay system to prove whether there were promoter elements in this fragment. The activity of luciferase reporter gene was examined in the cells cultured with normal-glucose, low-glucose and glucose-free media.RESULTSThe promoter sequence was amplified by PCR, and was consistent with the sequence showed in GenBank. Compared with negative control pGL3-Basic, RLU of pGL3-GLUT3 was obviously increased. The responsiveness of luciferase reporter gene under glucose deprivation was higher than that in normal medium at 24 h.CONCLUSIONGLUT3 luciferase reporter vector is successfully constructed. pGL3-GLUT3 is an effective tool for studying the induction and regulation of gene transcription under the condition of glucose deprivation.
Genes,GLUT3; Promoter; Glucose deprivation; Luciferase reporter gene; Transcriptional regulation
1000-4718(2011)11-2147-05
Q78
A
10.3969/j.issn.1000-4718.2011.11.020
2011-04-28
2011-09-23
國家自然科學基金資助項目(No.30770765);廣東省自然科學基金資助項目(No.07001600)
△通訊作者 Tel:020-81332016; E-mail: sjwkli@163.com