• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Extensions of Reduced Rings

      2011-12-22 07:35:02WUHuifeng
      關(guān)鍵詞:冪級數(shù)約化環(huán)上

      WU Hui-feng

      (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

      Extensions of Reduced Rings

      WU Hui-feng

      (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

      A ringRis a reduced ring,provided thata2=0implies thata=0.The paper discussed the relations between reduced rings and 3-Armendariz rings and proved that power series rings and some special upper triangular matrix rings of reduced rings are 3-Armendariz rings.

      reduced ring;power series ring;3-Armendariz ring.

      1 Introduction

      Condition(P) For alla,b,c∈R,if(abc)2=0,thenabc=0.(see[1])

      Proposition 1IfRis a reduced ring,thenRsatisfies the Condition(P),but the converse is not true.

      ProofIt is easy to prove thatRis a reduced ring implies thatRsatisfies the Condition(P),there exists a ring that satisfies the Condition(P)but is not a reduced ring.Let

      From[1],we know thatRis 3-Armendariz ring if and only ifR[x]is 3-Armendariz ring.Clearly,all subrings of 3-Armendariz rings are 3-Armendariz rings.IfR[[x]]is a 3-Armendariz ring,thenR[x]is a 3-Armendariz ring,but the converse is not true.

      Theorem 1LetRbe a reduced ring,thenR[[x]]is a 3-Armendariz ring.

      Corollary 1IfRis a reduced ring,thenR[x]is a 3-Armendariz ring.

      Theorem 2LetRbe a reduced ring,then is a 3-Armendariz ring.

      ProofIt is well know that for a ringRand any positive integern≥2,R[x]/(xn)≌S.where(xn)is the ideal ofR[x]generated byxn.It is evident thatR[x]/(xn)≌R′,R′is subring ofR[[x]],soR′≌S.SinceRis reduced ring,by Theorem 1,we knowR[[x]]is 3-Armendariz ring,moveover,subrings of 3-Armendariz rings are 3-Armendariz rings,soR′is a 3-Armendariz ring.ThereforeSis a 3- Armendariz ring and the proof is complete.

      Theorem 3LetRbe a reduced ring,then

      is a 3-Armendariz ring.

      ProofSinceRis a reduced ring,thenRsatisfies the Condition(P),that is

      InR,since(bca)2=bcabca=bc(abc)a=0,sobca=0.

      We can denote their addition and multiplication by:

      So every polynomial ofR[y]can be expressed by(f0(0),f0(y),f1(y)),wheref0(y),f1(y)∈R[x][y].For allf(y),g(y),h(y)∈R〈x〉[y],and

      Iff(y)g(y)h(y)=0,we have the following system of equations:

      If we multiply(3)on the right side byf0(y),then

      Also if we multiply(3′)on the right side byg0(y),then

      Thusf0(0)g0(0)h1(y)f0(0)g0(0)=0.So(f0(0)g0(0)h1(y))2=f0(0)g0(0)h1(y)f0(0)g0(0)h1(y)=0.SinceRa reduced ring,thenR[x]is a reduced ring,and thenR[x][y]is a reduced ring.Thereforef0(0)g0(0)h1(y)=0.Hencef0(0)g1(y)h0(y)f0(y)=0,sof0(0)g1(y)h0(y)f0(0)=0,it means that(f0(0)g1(y)h0(y))2=0,thenf0(0)g1(y)h0(y)=0.

      And sof0(0)g0(0)h1(y)=f0(0)g1(y)h0(y)=f1(y)g0(y)h0(y)=0.

      Write

      and set

      For all 0≤i≤r,0≤j≤s,0≤k≤t,we have

      we knowR[x][y]is a reduced ring,soR[x][y]is a 3-Armendariz ring.Sincef0(0)g0(0)h0(0)=0,thenf1i(0)f2j(0)f3k(0)=0.Sincef0(y)g0(y)h0(y)=0,thenf1i(x)f2j(x)f3k(x)=0.Sincef0(0)g0(0)h1(y)=0,thenf1i(0)f2j(0)g3k(x)=0.Sincef0(0)g1(y)h0(y)=0,thenf1i(0)g2j(x)f3k(x)=0.Sincef1(y)g0(y)h0(y)=0,theng1i(x)f2j(x)f3k(x)=0.

      Consequently

      HenceR〈x〉is a 3-Armendariz ring.

      Example 1Z2〈x〉is a 3-Armendariz ring,henceZ2〈x〉is a Armendariz ring whereZ2is the field with two elements.

      ProofIn view of Theorem 3,Z2〈x〉is a 3-Armendariz ring.ButZ2〈x〉has an identity,and so it is a Armendariz ring.

      [1]Yang Suiyi.On the extension of Armendariz rings[D].Lanzhou:Lanzhou University,2008:9-19.

      [2]Anderson D D,Camillo V.Armendariz rings and Gaussian rings[J].Comm Algebra,1998,26(7):2265-2272.

      [3]Rege M B.Chhawchharia S.Armendariz rings[J].Proc Japan Acad Ser A Math Sci,1997,73:14-17.

      [4]Hirano Y.On annihilator ideals of a polynomial ring over a non commutative ring[J].J Pure Appl Algebra,2002,168:45-52.

      [5]Yan Zhanping.Armendariz property of a class of matrix rings[J].Journal of Northwest Normal University Natural Science,2003,39(3):22-24.

      [6]Wang Wenkang.Armendariz and semicommutative properties of a class of upper triangular matrix rings[J].Journal of Shandong University:Natural science Edition,2008,43(2):62-65.

      [7]Kim N K,Lee K H,Lee Y,Power series rings satisfying a zero divisor porperty[J].Comm Alg,2006,34:2205-2218.

      約化環(huán)的推廣

      伍惠鳳

      (杭州師范大學理學院,浙江杭州 310036)

      稱環(huán)R是約化環(huán),如果a2=0,那么a=0.討論了約化環(huán)和3-Armendariz環(huán)之間的關(guān)系,證明了不帶單位元的約化環(huán)上的冪級數(shù)環(huán)和某些特殊的上三角矩陣環(huán)是3-Armendariz環(huán).

      約化環(huán);冪級數(shù)環(huán);3-Armendariz環(huán).

      O153.3 MSC2010:16E99;14F99 Article character:A

      1674-232X(2011)05-0407-04

      10.3969/j.issn.1674-232X.2011.05.005

      date:2011-03-18

      Biography:Wu Hui-feng(1982—),famale,born in Anqing,Anhui province,master,engageed in Algebraic.E-mail:yaya57278570@163.com

      猜你喜歡
      冪級數(shù)約化環(huán)上
      約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
      冪級數(shù)的求和方法總結(jié)
      主動脈瓣環(huán)擴大聯(lián)合環(huán)上型生物瓣膜替換治療老年小瓣環(huán)主動脈瓣狹窄的近中期結(jié)果
      矩陣環(huán)的冪級數(shù)弱McCoy子環(huán)
      冪級數(shù)J-Armendariz環(huán)*
      交換環(huán)上四階反對稱矩陣李代數(shù)的BZ導子
      取繩子
      投射可遷環(huán)上矩陣環(huán)的若當同態(tài)
      M-強對稱環(huán)
      關(guān)于強冪級數(shù)McCoy環(huán)
      黔南| 叶城县| 武胜县| 敦化市| 石林| 永济市| 盐山县| 灵山县| 洛宁县| 都匀市| 北海市| 灵武市| 明光市| 磴口县| 长武县| 静海县| 广东省| 弋阳县| 宿迁市| 建始县| 永州市| 盐源县| 南皮县| 如东县| 灵山县| 同心县| 永年县| 永州市| 岳池县| 凤山县| 连山| 昌宁县| 陈巴尔虎旗| 海口市| 镇雄县| 康保县| 上林县| 正定县| 泸西县| 北流市| 渝北区|