• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extensions of Reduced Rings

    2011-12-22 07:35:02WUHuifeng
    關(guān)鍵詞:冪級數(shù)約化環(huán)上

    WU Hui-feng

    (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

    Extensions of Reduced Rings

    WU Hui-feng

    (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

    A ringRis a reduced ring,provided thata2=0implies thata=0.The paper discussed the relations between reduced rings and 3-Armendariz rings and proved that power series rings and some special upper triangular matrix rings of reduced rings are 3-Armendariz rings.

    reduced ring;power series ring;3-Armendariz ring.

    1 Introduction

    Condition(P) For alla,b,c∈R,if(abc)2=0,thenabc=0.(see[1])

    Proposition 1IfRis a reduced ring,thenRsatisfies the Condition(P),but the converse is not true.

    ProofIt is easy to prove thatRis a reduced ring implies thatRsatisfies the Condition(P),there exists a ring that satisfies the Condition(P)but is not a reduced ring.Let

    From[1],we know thatRis 3-Armendariz ring if and only ifR[x]is 3-Armendariz ring.Clearly,all subrings of 3-Armendariz rings are 3-Armendariz rings.IfR[[x]]is a 3-Armendariz ring,thenR[x]is a 3-Armendariz ring,but the converse is not true.

    Theorem 1LetRbe a reduced ring,thenR[[x]]is a 3-Armendariz ring.

    Corollary 1IfRis a reduced ring,thenR[x]is a 3-Armendariz ring.

    Theorem 2LetRbe a reduced ring,then is a 3-Armendariz ring.

    ProofIt is well know that for a ringRand any positive integern≥2,R[x]/(xn)≌S.where(xn)is the ideal ofR[x]generated byxn.It is evident thatR[x]/(xn)≌R′,R′is subring ofR[[x]],soR′≌S.SinceRis reduced ring,by Theorem 1,we knowR[[x]]is 3-Armendariz ring,moveover,subrings of 3-Armendariz rings are 3-Armendariz rings,soR′is a 3-Armendariz ring.ThereforeSis a 3- Armendariz ring and the proof is complete.

    Theorem 3LetRbe a reduced ring,then

    is a 3-Armendariz ring.

    ProofSinceRis a reduced ring,thenRsatisfies the Condition(P),that is

    InR,since(bca)2=bcabca=bc(abc)a=0,sobca=0.

    We can denote their addition and multiplication by:

    So every polynomial ofR[y]can be expressed by(f0(0),f0(y),f1(y)),wheref0(y),f1(y)∈R[x][y].For allf(y),g(y),h(y)∈R〈x〉[y],and

    Iff(y)g(y)h(y)=0,we have the following system of equations:

    If we multiply(3)on the right side byf0(y),then

    Also if we multiply(3′)on the right side byg0(y),then

    Thusf0(0)g0(0)h1(y)f0(0)g0(0)=0.So(f0(0)g0(0)h1(y))2=f0(0)g0(0)h1(y)f0(0)g0(0)h1(y)=0.SinceRa reduced ring,thenR[x]is a reduced ring,and thenR[x][y]is a reduced ring.Thereforef0(0)g0(0)h1(y)=0.Hencef0(0)g1(y)h0(y)f0(y)=0,sof0(0)g1(y)h0(y)f0(0)=0,it means that(f0(0)g1(y)h0(y))2=0,thenf0(0)g1(y)h0(y)=0.

    And sof0(0)g0(0)h1(y)=f0(0)g1(y)h0(y)=f1(y)g0(y)h0(y)=0.

    Write

    and set

    For all 0≤i≤r,0≤j≤s,0≤k≤t,we have

    we knowR[x][y]is a reduced ring,soR[x][y]is a 3-Armendariz ring.Sincef0(0)g0(0)h0(0)=0,thenf1i(0)f2j(0)f3k(0)=0.Sincef0(y)g0(y)h0(y)=0,thenf1i(x)f2j(x)f3k(x)=0.Sincef0(0)g0(0)h1(y)=0,thenf1i(0)f2j(0)g3k(x)=0.Sincef0(0)g1(y)h0(y)=0,thenf1i(0)g2j(x)f3k(x)=0.Sincef1(y)g0(y)h0(y)=0,theng1i(x)f2j(x)f3k(x)=0.

    Consequently

    HenceR〈x〉is a 3-Armendariz ring.

    Example 1Z2〈x〉is a 3-Armendariz ring,henceZ2〈x〉is a Armendariz ring whereZ2is the field with two elements.

    ProofIn view of Theorem 3,Z2〈x〉is a 3-Armendariz ring.ButZ2〈x〉has an identity,and so it is a Armendariz ring.

    [1]Yang Suiyi.On the extension of Armendariz rings[D].Lanzhou:Lanzhou University,2008:9-19.

    [2]Anderson D D,Camillo V.Armendariz rings and Gaussian rings[J].Comm Algebra,1998,26(7):2265-2272.

    [3]Rege M B.Chhawchharia S.Armendariz rings[J].Proc Japan Acad Ser A Math Sci,1997,73:14-17.

    [4]Hirano Y.On annihilator ideals of a polynomial ring over a non commutative ring[J].J Pure Appl Algebra,2002,168:45-52.

    [5]Yan Zhanping.Armendariz property of a class of matrix rings[J].Journal of Northwest Normal University Natural Science,2003,39(3):22-24.

    [6]Wang Wenkang.Armendariz and semicommutative properties of a class of upper triangular matrix rings[J].Journal of Shandong University:Natural science Edition,2008,43(2):62-65.

    [7]Kim N K,Lee K H,Lee Y,Power series rings satisfying a zero divisor porperty[J].Comm Alg,2006,34:2205-2218.

    約化環(huán)的推廣

    伍惠鳳

    (杭州師范大學理學院,浙江杭州 310036)

    稱環(huán)R是約化環(huán),如果a2=0,那么a=0.討論了約化環(huán)和3-Armendariz環(huán)之間的關(guān)系,證明了不帶單位元的約化環(huán)上的冪級數(shù)環(huán)和某些特殊的上三角矩陣環(huán)是3-Armendariz環(huán).

    約化環(huán);冪級數(shù)環(huán);3-Armendariz環(huán).

    O153.3 MSC2010:16E99;14F99 Article character:A

    1674-232X(2011)05-0407-04

    10.3969/j.issn.1674-232X.2011.05.005

    date:2011-03-18

    Biography:Wu Hui-feng(1982—),famale,born in Anqing,Anhui province,master,engageed in Algebraic.E-mail:yaya57278570@163.com

    猜你喜歡
    冪級數(shù)約化環(huán)上
    約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
    冪級數(shù)的求和方法總結(jié)
    主動脈瓣環(huán)擴大聯(lián)合環(huán)上型生物瓣膜替換治療老年小瓣環(huán)主動脈瓣狹窄的近中期結(jié)果
    矩陣環(huán)的冪級數(shù)弱McCoy子環(huán)
    冪級數(shù)J-Armendariz環(huán)*
    交換環(huán)上四階反對稱矩陣李代數(shù)的BZ導子
    取繩子
    投射可遷環(huán)上矩陣環(huán)的若當同態(tài)
    M-強對稱環(huán)
    關(guān)于強冪級數(shù)McCoy環(huán)
    石首市| 乳山市| 延津县| 饶河县| 柘城县| 和龙市| 三明市| 延安市| 白城市| 韶山市| 嘉善县| 剑川县| 龙江县| 喀喇沁旗| 井冈山市| 雷州市| 永靖县| 油尖旺区| 寿光市| 溆浦县| 秀山| 宽城| 陈巴尔虎旗| 开远市| 临城县| 奈曼旗| 涡阳县| 南京市| 庐江县| 繁昌县| 阜南县| 上栗县| 明光市| 梅河口市| 平山县| 耿马| 甘德县| 马尔康县| 汶川县| 江山市| 都安|