尹麗蓉,余愛暉
(1.杭州師范大學(xué)錢江學(xué)院,浙江 杭州310012;2.浙江省淳安中學(xué),浙江 淳安 311700)
奇異兩點邊值問題的四次樣條解
尹麗蓉1,余愛暉2
(1.杭州師范大學(xué)錢江學(xué)院,浙江 杭州310012;2.浙江省淳安中學(xué),浙江 淳安 311700)
用四次樣條方法獲得一類奇異兩點邊值問題的數(shù)值解.證明這種方法是一階收斂的.最后用數(shù)值例子證明這種方法.
四次樣條方法;函數(shù);奇異兩點邊值問題;收斂階;導(dǎo)數(shù)
考慮如下一類奇異兩點邊值問題:
這樣的問題產(chǎn)生于物理中的一些軸對稱問題,文[1-3]用有限差分方法獲得了奇異兩點邊值問題(1)的離散數(shù)值解.有限差分方法的精確度到目前為止最多只有二階.Manoj Kumar[4]用二階樣條差分方法解決了問題(1).A.S.V.Ravi Kanth等[5]用三次樣條方法獲得了奇異兩點邊值問題(1)的近似數(shù)值解.J.Rashidinia等[6]用帶參數(shù)的三次樣條方法獲得了奇異兩點邊值問題(1)的近似數(shù)值解.
受文獻[6]的啟發(fā),用四次樣條方法獲得的奇異兩點邊值問題(1)的近似數(shù)值解具有較好的精確度.最后用數(shù)值例子證明了這種方法的優(yōu)越性.
設(shè)S(x)是u(x)的四次樣條近似解,把區(qū)間[a,b]用等區(qū)間結(jié)點
離散化,其中N 是正整數(shù),函數(shù)S(x)∈C3[a,b],四次樣條函數(shù)S(x)在區(qū)間[xi,xi+1]上通過滿足如下形
式的Qi(x)表示出來:
首先用ui,ui+1,mi,Mi,Mi+1來描述上式中的5個系數(shù).通過以下假設(shè)表示出來:
由此可以得到
在區(qū)間[xi-1,xi]上,四次樣條函數(shù)~Qi(x)的形式如下:
上述方法可以寫成如下矩陣形式:
表1 例1的數(shù)值結(jié)果
表2 例2的數(shù)值結(jié)果
數(shù)值結(jié)果證明這種方法是穩(wěn)健的且樣條在區(qū)間點具有好的近似.
[1]Chawla M M,Katti C P.Finite difference methods and their convergence for a class of singular two-point boundary value problems[J].Numer Math,1982,39:341-350.
[2]Chawla M M,Katti C P.A uniform mesh finite difference methods for a class of singular two-point boundary value problems[J].SIAM J Numer Anal,1985,22:561-565.
[3]Chawla M M,ShivKumar P N.An efficient finite difference method for two-point boundary value problems[J].Neural Parallel Sci Comp,1996,4(3):387-395.
[4]Manoj Kumar.A second order spline finite difference method for singular two-point boundary value problems[J].J Comput Appl Math,2003,142:283-290.
[5]Ravi Kanth A S V,Reddy Y N.Cubic spline for a class of singular two-point boundary value problems[J].J Comput Appl Math,2005,170:733-740.
[6]Rashidinia J,Mahmoodi Z,Ghasemi M.Parametric spline method for a class of singular two-point boundary value problems[J].Applied Mathematics and Computation,2007,188(1):58-63.
Quartic Splines Solutions for a System of Singular Two-Point Boundary Value Problems
YIN Li-rong1,YU Ai-hui2
(1.Qianjiang College,Hangzhou Normal University,Hangzhou 310012,China;2.Chun'an High School Zhenjiang Province,Chun'an 311700,China)
This paper obtained the numerical solution for a system of two-point boundary value problems by quartic splines method,proved the present method is a fifth order convergent method,and demonstrated the method with some numerical evidence.
quartic splines method;function;singular two-point boundary value problems;the convergent order;derivable
O241.1 MSC2010:34B16;33F05
A
1674-232X(2011)04-0325-04
2011-01-11
尹麗蓉(1982—),山西忻州人,講師,碩士,主要從事數(shù)論及其應(yīng)用研究.E-mail:ylr2005@163.com
10.3969/j.issn.1674-232X.2011.04.008