• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Optimal Upper and Lower Bounds for Logarithmic Mean*

      2011-12-25 06:49:42HOUShoueiXUYanCHUYuming
      關(guān)鍵詞:上海財(cái)經(jīng)大學(xué)平方根調(diào)和

      HOU Shou-w ei ,XU Yan-w u ,CHU Yu-ming

      (1.Department of Mathematics,Hangzhou Normal University,Hangzhou 310012,China;2.School of Economics,Shanghai University of Finance and Economic,Shanghai 200433,China;3.Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

      Optimal Upper and Lower Bounds for Logarithmic Mean*

      HOU Shou-w ei1,XU Yan-w u2,CHU Yu-ming3

      (1.Department of Mathematics,Hangzhou Normal University,Hangzhou 310012,China;2.School of Economics,Shanghai University of Finance and Economic,Shanghai 200433,China;3.Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

      M aking use of elementary differential calculus,we compare the logarithmic mean w ith the convex combination of root-square and harmonic root-squaremeans,and find the greatest valueαand the least valuesβsuch that the double inequalityholds fo r all a,b>0 w ithare the rootsquare,harmonic root-square,and Logarithmic meansof two positive numbers a and b,w ith a≠b,respectively.

      root-squaremean;harmonic root-squaremean;Logarithmic mean

      MSC 2000:26E60 26D20

      0 In troduction

      Fo r p∈R,the p-th pow er mean Mp(a,b)and logarithm ic mean L(a,b)of two positive num bers a and b is defined by respectively.

      Recently,both mean values have been the subject of intensive research.In particular,many remarkable inequalities for Mp(a,b)and L(a,b)can be found in the literature[1~17].It iswell know n that Mp(a,b)is continuous and strictly increasing w ith respect to p∈R fo r fixed a,b>0 w ith a≠b,and many means are special cases of the power mean,for examp le,

      are the harmonic root-square,harmonic,geometric,arithmetic,and root-square means of a and b,respectively.

      Lin[13]p resent the op timal double inequality

      fo r all a,b>0 w ith a ≠b.

      In[6],Long and Chu answer the question:w hat are the greatest value p=p(α,β)and least value q=q(α,β)such that the double inequality

      holds fo r all a,b>0 w ith a≠b andα,β>0 w ithα+β<1?

      The follow ing sharp bounds for the combination of arithmetic and logarithmic means in term s ofpower mean are given in[7]:

      fo r allα∈(0,1)and a,b>0 w ith a ≠b.

      The main purpose of thispaper is to answer the question:w hat are the greatest valueαand least valueβsuch that the double inequality

      holds fo r all a,b>0 w ith a≠b.

      1 Lemma

      In order to establish our main result we need a lemma,w hich we p resent in this section.

      2 Main Result

      [1]SH IM Y,CHU Y M,JIANG Y P.Op timal inequalities among varousmeansof two arguments[J].Abstr Appl Anal,2009,2009:1~10.

      [2]SH IM Y,CHU Y M,JIANG Y P.Three best inequalities fo r means[J].Int Math Fo rum,2010,5(22):1059~1066.

      [3]CHU Y M,XIA W F.Two sharp inequalities fo r powermean,geometricmean,and harmonicmean[J].J Inequal App l,2009,2009:1~6.

      [4]CHU YM,XIA W F.Inequalities for generalized logarithmic means[J].J Inequal Appl,2009,2009:1~7.

      [5]LONGB Y,CHU Y M.Op timal inequalities for generalized logarithmic,arithmetic,and geometric means[J].J Inequal App l,2010,2010:1~10.

      [6]LONGB Y,CHU Y M.Op timal powermean bounds for the weighted geometric mean of classicalmeans[J].J Inequal App l,2010,2010:1~6.

      [7]XIA W F,CHU Y M,WANG GD.The op timal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means[J].Abstr Appl Anal,2010,2010:1~9.

      [8]CHU Y M,LONGB Y.Best possible inequalities between generalized logarithmic mean and classicalmeans[J].Abstr App l Anal,2010,2010:1~13.

      [9]CHU Y M,XIA W F.Two op timal double inequalities between power mean and logarithmic mean[J].Comput Math App l,2010,60(1):83~89.

      [10]LONGB Y,XIA W F,CHU YM.An op timal inequality for powermean,geometric mean and harmonic mean[J].Int J Mod Math,2010,5(2):149~155.

      [11]CHU Y M,Q IU Y F,WANG M K.Sharp power mean bounds fo r the combination of Seiffert and geometric means[J].Abstr Appl Anal,2010,2010:1~12.

      [12]Wang M K,Chu Y M,Qiu Y F,et al.An op timal power mean inequality for the comp lete ellip tic integrals[J].App l Math Letters,2011,24:887~890.

      [13]L IN T P.The power and the logarithmic mean[J].Amer Math Monthly,1974,81:879~883.

      [14]STOLARSKY K B.The power and generalized logarithmic means[J].Amer Math Monthly,1980,87(7):545~548.

      [15]IMORU C O.the power mean and the logarithmic mean[J].Internat J Math Math Sci,1982,5(2):337~343.

      [16]BURK F.The geometric,logarithmic,and arithmetic mean inequality[J].Amer Math Monthly,1987,94(6):527~528.

      [17]ALZER H,Q IU SL.Inequalities for means in two variables[J].A rch Math,2003,80(2):201~215.

      MSC 2000:26E60 26D20

      對(duì)數(shù)平均的最佳上下界

      候守偉1,徐言午2,褚玉明3

      (1.杭州師范大學(xué)數(shù)學(xué)系,浙江杭州310012;2.上海財(cái)經(jīng)大學(xué)經(jīng)濟(jì)學(xué)院,上海200433;3.湖州師范學(xué)院理學(xué)院,浙江湖州 313000)

      利用初等微分學(xué)比較了對(duì)數(shù)平均與平方根平均和調(diào)和平方根平均的凸組合,發(fā)現(xiàn)了使得雙向不等式αS(a,b)+(1對(duì)所有 a,b>0且 a≠b成立的α的最大值和β的最小值,其中 S(a,b)分別表示二個(gè)正數(shù) a與b的平方根平均、調(diào)和平方根平均和對(duì)數(shù)平均.

      平方根平均;調(diào)和平方根平均;對(duì)數(shù)平均

      O174.1

      O174.1 Document code:A Article ID:1009-1734(2011)01-0007-04

      date:2011-01-21

      s:This research is suppo rted by the Natural Science Foundation of China(11071067)and the Innovation Team Foundation of the Department of Education of Zhejiang Porvince(T200924).

      Biography:Hou Shou-wei,Postgraduate student of grade 2009,Department of Mathematics,Hangzhou Normal U-niversity,Research Interest:Comp lex Analysis.

      猜你喜歡
      上海財(cái)經(jīng)大學(xué)平方根調(diào)和
      五味調(diào)和醋當(dāng)先
      從“調(diào)結(jié)”到“調(diào)和”:打造“人和”調(diào)解品牌
      調(diào)和映照的雙Lipschitz性質(zhì)
      “平方根”學(xué)習(xí)法升級(jí)版
      平方根易錯(cuò)點(diǎn)警示
      幫你學(xué)習(xí)平方根
      如何學(xué)好平方根
      獨(dú)立學(xué)院ACCA課程設(shè)置優(yōu)化改革——上海財(cái)經(jīng)大學(xué)浙江學(xué)院的實(shí)踐探索
      應(yīng)用本科與專業(yè)碩士貫通培養(yǎng)模式改革研究——以上海財(cái)經(jīng)大學(xué)財(cái)經(jīng)“E+e”新教育實(shí)踐項(xiàng)目為例
      國(guó)際認(rèn)證指導(dǎo)下的商學(xué)院實(shí)踐型師資隊(duì)伍建設(shè)研究——以上海財(cái)經(jīng)大學(xué)商學(xué)院為例
      伊金霍洛旗| 嵊泗县| 土默特右旗| 永新县| 新余市| 香河县| 苗栗县| 喀喇| 临泉县| 新宁县| 哈密市| 隆昌县| 九江县| 舒城县| 根河市| 始兴县| 大同县| 平远县| 洛宁县| 定南县| 天津市| 九寨沟县| 廉江市| 沙田区| 略阳县| 凤阳县| 张掖市| 济阳县| 巫溪县| 含山县| 元氏县| 汨罗市| 温州市| 濮阳县| 丹江口市| 鹿邑县| 徐闻县| 建平县| 漳平市| 吉安市| 五指山市|