楊 娟綜述, 楊 薇審校
胰島素樣生長因子-I(Insulin-like growth factor-I,IGF-I)作為IGF家族中的一員,有重要的神經(jīng)營養(yǎng)和神經(jīng)保護(hù)作用,對神經(jīng)元的存活至關(guān)重要。本文就IGF-I對小腦顆粒神經(jīng)元(Cerebellar granule neurons,CGNs)保護(hù)機(jī)制的研究近況做一綜述。
IGF-I是一種由70個氨基酸組成的單鏈多肽類神經(jīng)營養(yǎng)因子,分子量為7.7KD。機(jī)體許多組織,如肺、腎、胸腺、脾臟、心臟、肌肉、胃都可以合成并分泌IGF-I,但主要由肝臟合成,此外IGF-I合成遍布全腦和脊髓[1]。研究表明,IGF-I信號傳導(dǎo)是調(diào)節(jié)機(jī)體蛋白質(zhì)合成、糖代謝、細(xì)胞增殖和分化的關(guān)鍵性細(xì)胞途徑之一,同時在中樞神經(jīng)系統(tǒng)(CNS)的發(fā)育和功能中起重要作用,包括神經(jīng)元存活的調(diào)節(jié)、神經(jīng)發(fā)生、學(xué)習(xí)、記憶、認(rèn)知功能、壽命等[2]。IGF-I通過旁分泌和自分泌方式與其同源性酪氨酸激酶受體IGF-I受體結(jié)合發(fā)揮生物學(xué)效應(yīng),并受IGF-I結(jié)合蛋白調(diào)節(jié)。
顆粒神經(jīng)元是腦中最大的同源性細(xì)胞群,占小腦神經(jīng)元的90%以上。嚙齒類動物的小腦皮質(zhì)在生后發(fā)育,出生后前3w通過外顆粒層增殖產(chǎn)生大量的小腦顆粒祖細(xì)胞,繼而停止細(xì)胞周期,穿浦肯野細(xì)胞層,遷移到內(nèi)顆粒層,在此最終分化為顆粒神經(jīng)元[3]。
在哺乳動物神經(jīng)系統(tǒng)發(fā)育過程中,約有50%的神經(jīng)元會發(fā)生凋亡。在小腦皮質(zhì)中,浦肯野細(xì)胞產(chǎn)生并釋放IGF-I,是體內(nèi)CGNs維持生存的首要神經(jīng)營養(yǎng)因子,當(dāng)浦肯野細(xì)胞減少時,IGF-I合成減少,導(dǎo)致 CGNs的變性[4]。亦有研究表明,當(dāng)給予IGF-I受體抗體時,浦肯野細(xì)胞對CGNs的促生長作用被抑制,提示浦肯野細(xì)胞分泌的IGF-I參與鄰近CGNs的凋亡的抑制[5]。有研究發(fā)現(xiàn),IGF-I、IGF-I受體、IGF-I結(jié)合蛋白的表達(dá)水平與生后小腦生長高峰相關(guān)[6]。對IGF-I轉(zhuǎn)基因鼠的研究很好地證明了其在小腦發(fā)育和功能中的重要性。IGF-I敲除鼠大多死于宮內(nèi),即使存活,腦部也明顯縮小,并伴有較少的髓磷脂和神經(jīng)過程[7]。而在CNS過度表達(dá)IGF-I的轉(zhuǎn)基因鼠中,腦部呈現(xiàn)過度生長狀態(tài),尤其以小腦為著,小腦達(dá)正常體積的2倍,顆粒神經(jīng)元和浦肯野細(xì)胞分別增加82%和20%[8]。有研究發(fā)現(xiàn)CGNs數(shù)目的增加主要?dú)w因于IGF-I的促存活作用,其次是由于對顆粒神經(jīng)元祖細(xì)胞的增殖作用[9]。體外CGNs原代培養(yǎng),在去除血清和低鉀條件下會誘導(dǎo)CGNs凋亡,是常用的凋亡模型。
研究發(fā)現(xiàn),IGF-I不僅參與凋亡信號的轉(zhuǎn)導(dǎo)、凋亡基因的激活和細(xì)胞凋亡的執(zhí)行,而且還通過影響其他生物活性分子起作用。IGF-I抗凋亡可能涉及的信號傳導(dǎo)通路主要包括絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)和磷脂酰肌醇3-激酶/絲氨酸-蘇氨酸蛋白激酶(Phosphatidylinositol3-kinase,PI3-K/AKT)信號通路,而 IGF-I對神經(jīng)元的保護(hù)作用主要通過PI3-K/AKT途徑。IGF-I通過結(jié)合IGFI受體,使之發(fā)生自身磷酸化,隨之激活PI3-K/AKT信號級聯(lián)反應(yīng),反過來介導(dǎo)IGF-I的神經(jīng)保護(hù)作用。AKT,又稱為蛋白激酶B(Protein Kinase B,PKB)是絲氨酸/蘇氨酸激酶受體,是PI3-K的下游調(diào)節(jié)分子,對神經(jīng)元的存活起關(guān)鍵作用,激活的AKT磷酸化BAD,使之滅活(BAD作為BCL-2家族的促凋亡成員,激活內(nèi)在凋亡途徑)[10]。IGF-I的神經(jīng)保護(hù)作用涉及的信號傳導(dǎo)途徑依據(jù)細(xì)胞類型不同而有所區(qū)別,例如IGF-I對CGNs的保護(hù)作用不受MAPK激酶抑制劑PD98059的影響,而PD98059與LY294002都能抑制IGF-I對PC12細(xì)胞的抗凋亡作用[11]。趙靈芝等人[12]研究證實苯妥英鈉通過降低AKT活性,參與CGNs的凋亡;IGF-I可顯著抑制由苯妥英鈉誘導(dǎo)的 CGNs凋亡,給予 PI3-K特異性抑制劑LY294002,可消除IGF-I對CGNs的保護(hù)作用。
Linseman等人研究發(fā)現(xiàn),IGF-I通過PI3-K/AKT此途徑抑制Bim(Bax依賴的細(xì)胞色素C產(chǎn)生的中介者)的產(chǎn)生,抑制Caspase-9(凋亡內(nèi)在途經(jīng)的起始者)與Caspase-3(凋亡的執(zhí)行者)的活性,進(jìn)而抑制細(xì)胞色素C的釋放[13]。IGF-I在生后發(fā)育的早期階段增加小腦抗凋亡蛋白Bcl-2、Bcl-xl的表達(dá),減少晚期階段促凋亡蛋白Bax和Bad的表達(dá),進(jìn)一步抑制caspase3蛋白催化活性[9]。目前線粒體細(xì)胞色素C的釋放,有兩大機(jī)制受到廣泛關(guān)注,一是通透性轉(zhuǎn)換孔(Permeability transition pore,PTP)的開放,PTP是由電壓依賴性陰離子通道、腺嘌呤核苷酸載體、親環(huán)蛋白D及一系列蛋白質(zhì)組成的異蛋白質(zhì)絡(luò)合物,其位于內(nèi)外線粒體膜的結(jié)合位點(diǎn),一些促凋亡因素能打開PTP,導(dǎo)致線粒體膜電位的破壞、ATP合成的減少、溶質(zhì)和水進(jìn)入線粒體基質(zhì),最后引起線粒體腫脹和線粒體外膜的破壞,蛋白質(zhì)滲出。去除營養(yǎng)因子的CGNs中,IGF-I并不能阻止線粒體腫脹和去極化,此時PTP是開放的,提示PTP的開放是不足以引起細(xì)胞色素C的釋放的[13]。二是線粒體外膜上含Bax或者Bak蛋白質(zhì)形成的通道。Bax與Bak從屬于Bcl-2家族,有促凋亡作用。研究顯示Bim增進(jìn)Bax與Bak的促凋亡作用,同時抑制Bcl-2的抗凋亡作用[14]。在去鉀和血清的CGNs中,蛋白表達(dá)定量分析顯示Bims的表達(dá)顯著上調(diào),而IGF-I減弱其表達(dá),說明Bim的抑制是IGF-I抑制細(xì)胞色素C釋放的機(jī)制之一[13]。
Yamagishi等人研究發(fā)現(xiàn),IGF-I能夠降低p38和c-Jun的活性,抑制CGNs的凋亡,但是給予LY294002并不能完全抑制IGF-I的促存活作用,提示IGF-I可能通過PI3-K以外的分子途徑激活A(yù)KT,發(fā)揮促存活作用[15]。Yamade等亦證明在培養(yǎng)的皮質(zhì)神經(jīng)元中,LY294002只是部分抑制IGF-I的促存活作用[16]。Berra等研究發(fā)現(xiàn),PI3-K/AKT的抑制導(dǎo)致p38的激活和凋亡的發(fā)生[17]。近來有研究報道,ASK1是p38-c-jun途徑的上游調(diào)節(jié)分子[18]。IGF-I能夠抑制ASK1,提示是通過PI3-K-ASK1途徑抑制p38的作用[15]。有研究顯示,糖原合酶激酶(Glycogen synthase kinase-3beta,GSK3β)促進(jìn)CGNs發(fā)生凋亡,結(jié)構(gòu)活躍的GSK3β使促凋亡Bcl-2家族成員BAX磷酸化并異位到CGNs的線粒體內(nèi)導(dǎo)致凋亡[19],應(yīng)用藥物抑制GSK3β的活性后,能阻止低鉀誘導(dǎo)的凋亡,同時研究發(fā)現(xiàn)GSK3β是高鉀、IGF-I、cAMP、鋰發(fā)揮促存活作用的共同下游調(diào)節(jié)分子,通過AKT誘導(dǎo)GSK3β磷酸化,抑制其活性,減少低鉀誘導(dǎo)的CGNs的凋亡[20]。同時有研究顯示,組蛋白去乙酰化酶(Histone deacetylases,HDACs)是GSK3β致神經(jīng)毒性的下游調(diào)節(jié)分子,在給予IGF-I后,通過激活A(yù)KT抑制 HDAC3介導(dǎo)的神經(jīng)毒性[21]。有研究證實 FoxG1是IGF-I介導(dǎo)神經(jīng)元存活的下游中介物,IGF-I通過抑制低鉀誘導(dǎo)CGNs凋亡過程中FoxG1表達(dá)的下降,減少CGNs的凋亡[22]。之前已有研究提示,F(xiàn)oxG1在Thr271位點(diǎn)被AKT直接磷酸化[23]。
Bonthius等研究證實,IGF-I通過 NO-cGMP-PKG途徑發(fā)揮對CGNs的神經(jīng)營養(yǎng)作用,但是對暴露于酒精的CGNs無保護(hù)作用[24]。目前酒精對腦的損壞眾所周知,發(fā)育中的小腦對酒精尤其敏感,但酒精導(dǎo)致神經(jīng)元數(shù)量減少的的具體作用機(jī)制不甚清楚,酒精可能直接殺死顆粒神經(jīng)元或通過抑制谷氨酸鹽的營養(yǎng)作用而減少細(xì)胞的數(shù)量。近來有研究顯示酒精會抑制IGF-I信號傳導(dǎo)通路。Zhang等研究證實,酒精通過抑制IGF-I受體激酶的自身磷酸化和與PI3-K的結(jié)合,拮抗IGF-I在低鉀條件下的抗凋亡作用,即使增大IGF-I含量也不能保護(hù)CGNs免于酒精毒性作用,提示酒精通過非競爭性作用機(jī)制抑制IGF-I的保護(hù)作用[25]。IGF-I對CGNs的保護(hù)作用的研究近來已成為研究熱點(diǎn),IGF-I對細(xì)胞凋亡的抑制調(diào)控機(jī)制尚未完全闡釋清楚,可能還存在許多未知的信號途徑和調(diào)控基因在發(fā)揮作用,但隨著對IGF-I與細(xì)胞凋亡研究的不斷深入,IGF-I信號傳導(dǎo)途徑的干預(yù)有可能作為保護(hù)CGNs的新靶點(diǎn)。
[1]D’Ercole AJ,Ye P,Calikoglu AS,etal.The role of the insulin-like growth factors in the central nervous system[J].Mol Neurobiol,1996,13(3):227-255.
[2]Broughton S,Partridge L.Insulin/IGF-like signalling,the central nervous system and aging[J].Biochem J,2009,418(1):1-12.
[3]Hatten ME,Heintz N.Mechanismsof neural patterning and specification in the developing cerebellum[J].Annu Rev Neurosci,1995,18:385-408.
[4]Selimi F,Doughty M,Delhaye-Bouchaud N,etal.Target-related and intrinsic neuronal death in Lurchermutantmice are both mediated by caspase-3 activation[J].JNeurosci,2000,20(3):992-1000.
[5]Linseman DA,McClure ML,Bouchard RJ,etal.Suppression of death receptor signaling in cerebellar Purkinje neurons protects neighboring granule neurons from apoptosis via an insulin-like growth factor I-dependentmechanism[J].J Biol Chem,2002,277(27):24546-24553.
[6]Lee WH,Javedan S,Bondy CA.Coordinate expression of insulin-like growth factor system components by neurons and neuroglia during retinal and cerebellar development[J].JNeurosci,1992,12(12):4737-4744.
[7]Powell-Braxton L,Hollingshead P,Warburton C,etal.IGF-I is required for normal embryonic growth in mice[J].Genes Dev,1993,7:2609-2617.
[8]Ye P,Xing Y,Dai Z,etal.In vivo actions of insulin-like growth factor-I(IGF-I)on cerebellum development in transgenic mice:evidence that IGF-I increases proliferation of granule cell progenitors[J].Brain Res Dev Brain Res,1996,95(1):44-54.
[9]Chrysis D,Calikoglu AS,Ye P,etal.Insulin-like growth factor-Ioverexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner[J].JNeurosci,2001,21(5):1481-1489.
[10]Datta SR,Dudek H,Tao X,etal.Akt phosphorylation of BAD couples survival signals to the cell-intrinsic deathmachinery[J].Cell,1997,91(2):231-241.
[11]PárrizasM,Saltiel AR,LeRoith D.Insulin-like growth factor Iinhibits apoptosis using the phosphatidylinositol 3’-kinase and mitogenactivated protein kinase pathways[J].JBiol Chem,1997,272(1):154-161.
[12]趙靈芝,銀 巍,蘇興文,等.IGF-I經(jīng)PI3K/Akt依賴性途徑保護(hù)苯妥英鈉誘導(dǎo)小腦顆粒神經(jīng)元凋亡[J].中國藥理學(xué)通報,2005,21(1):53-57.
[13]Linseman DA,Phelps RA,Bouchard RJ,etal.Insulin-like growth factor-Iblocks Bcl-2 interactingmediator of cell death(Bim)induction and intrinsic death signaling in cerebellar granule neurons[J].JNeurosci,2002,22:9287-9297.
[14]Zong WX,Lindsten T,Ross AJ,etal.BH3-only proteins that bind pro-survival Bcl-2 familymembers fail to induce apoptosis in the absence of Bax and Bak[J].Genes Dev,2001,15:1481-1486.
[15]YamagishiS,Matsumoto T,Yokomaku D,etal.Comparison of inhibitory effects of brain-derived neurotrophic factor and insulin-like growth factor on low potassium-induced apoptosis and activation of p38 MAPK and c-Jun in cultured cerebellar granule neurons[J].Brain Res Mol Brain Res,2003,119(2):184-191.
[16]Yamada M,Tanabe K,Wada K,etal.Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-I in cultured cerebral cortical neurons[J].JNeurochem,2001,78:940-951.
[17]Berra E,Diaz-Meco MT,Moscat J.Theactivation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway[J].JBiol Chem,1998,273:10792-10797.
[18]Yamagishi S,Yamada M,Koshimizu H,etal.Apoptosis-signal regulating kinase-1 is involved in the low potassium-induced activation of p38 mitogen-activated protein kinase and c-Jun in cultured cerebellar granule neurons[J].JBiochem,2003,133:719-724.
[19]Linseman DA,Butts BD,Precht TA,etal.Glycogen synthase kinase-3beta phosphorylates Bax and promotes itsmitochondrial localization during neuronal apoptosis[J].JNeurosci,2004,24:9993-10002.
[20]Chin PC,Majdzadeh N,D’Mello SR.Inhibition of GSK3beta is a common event in neuroprotection by different survival factors[J].Brain Res Mol Brain Res,2005,137(1-2):193-201.
[21]Bardai FH,D’Mello SR.Selective toxicity by HDAC3 in neurons:regulation by Akt and GSK3beta [J].JNeurosci,2011,31(5):1746-1751.
[22]Dastidar SG,Landrieu PM,D’Mello SR.FoxG1 promotes the survival of postmitotic neurons[J].JNeurosci,2011,31(2):402-413.
[23]Regad T,Roth M,Bredenkamp N,etal.The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKIand FGF[J].Nat Cell Biol,2007,9(5):531-540.
[24]Bonthius DJ,Karacay B,Dai D,etal.FGF-2,NGF and IGF-I,but not BDNF,utilize a nitric oxide pathway to signal neurotrophic and neuroprotective effects against alcohol toxicity in cerebellar granule cell cultures[J].Brain Res Dev Brain Res,2003,140(1):15-28.
[25]Zhang FX,Pubin R,Rooney TA.Ethanol induces apoptosis in cerebellar granule neurons by inhibiting insulin-like growth factor I signaling[J].JNeurochem,1998,71(1):196-204.